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1. Introduction

In this paper we shall study the uniqueness problem of positive radial solutions for
semilinear elliptic equations on annular domains. Indeed, we consider the following
equations:

2u+ f(u) = 0 in 5; (1.1)

u= 0 on @5; (1.2)

where 5 = 5a;b = {x ∈ Rn; 0¡a¡ |x|¡b} is an annular domain in Rn; n ≥ 3.
It is well known that the uniqueness problems of solutions of (1.1) and (1.2) are

both fundamental and often di8cult. During the last decade, there has been tremendous
progress in studying these problems when 5 is a ball in Rn or entire Rn n ≥ 3, see,
e.g., [1,2,5,10,11]. However, very little was known concerning the annular domain until
the work of Ni and Nussbaum [12]. Until very recently, Co<man [3] showed that when
n=3; f(u)=−u+ up; 1¡p ≤ 3, (1.1) and (1.2) have unique positive radial solution
for any annular domain, see also [13]. Then, it is of interest to extend Co<man’s result
to a more general situation. For example, we may ask the following question.

Question. Do (1.1) and (1.2) have unique positive radial solution when f(u) =−u+
up; 1¡p ≤ n=(n− 2), and n ≥ 4?
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In this paper, after carefully investigating the auxiliary functions which have been
used in [3,11] and some techniques developed in dealing with the problem on ball [1],
we can prove the uniqueness result in the case n= 4 and partial result when n= 5.

Indeed, we can prove the following general result.

Theorem 1. Assume f ∈ C1([0;∞)) and satis1es the following conditions:
(A-1) f(u)(u− 1)¿ 0 for u¿ 0 and u 	= 1,
(A-2) f′(u)u¿f(u) for u¿ 0,
(A-3) f′(u)(u− 1)¿f(u) for u¿ 1,
(A-4) I(u)¡ 0 for u¿ 1,
where

I(u) = (n− 2)f′(u)(u− 1)− nf(u): (1.3)

Then (1:1) and (1:2) have a unique positive radial solution on any annular domain
in Rn; n ≥ 3.

One consequence of Theorem 1 is the following result.

Theorem 2. For 3 ≤ n ≤ 5; f(u) =−u+ up; and 1¡p ≤ min(4=(n− 2); n=(n− 2)).
Then (1:1) and (1:2) have a unique positive radial solution on any annular domain
in Rn.

Higher dimensional cases are a subject of further study in future.
This paper is organized as follows: In Section 2, we present some preliminary results

concerning the positive radial solutions on annular domains. In Section 3, we prove
the main results.

2. Preliminaries

In this section we shall recall and prove some useful properties of positive radial
solution of (1.1). We always assume (A-1) holds.

The radial symmetric solution of (1.1) satisKes the following equation:

u′′(r) +
n− 1
r

u′(r) + f(u(r)) = 0; r ¿a¿ 0: (2.1)

Denote by u(·; �) the unique solution of Eq. (2.1) and initial conditions

u(a; �) = 0 and u′(a; �) = �¿ 0: (2.2)

If u(·; �) has a zero, then denote its Krst zero by R(�)(¡∞); otherwise, R(�) =∞. It
is known that the solutions can be classiKed into the following three types:

N = {�¿ 0: u(r; �)¿ 0 in (a; R(�)) and u(R(�); �) = 0; R(�)¡∞};

G =
{
�¿ 0: u(r; �)¿ 0 in (a;∞) and lim

r→∞ u(r; �) = 0
}
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and

P = (0;∞) \ (N ∪ G):

It is also proved that N 	= ∅ when (A-1) and (A-2) holds, see, e.g., [6,8,9]. Indeed,
N ⊃(�∗;∞) for some �∗ ¿ 0. In this case, there is a unique R0(�) ∈ (�; R(�)) such
that

u′(r; �)¿ 0 in (a; R0(�))

and

u′(r; �)¡ 0 in (R0(�); R(�));

see, e.g., [4,9].
To study the uniqueness problem, it is useful to study the variation ’ of u with

respect to �, i.e.,

’(r; �) =
@u(r; �)

@�
:

It is clear that ’ satisKes

’′′(r) +
n− 1
r

’′(r) + f′(u(r))’(r) = 0; r ¿a; (2.3)

’(a; �) = 0 and ’′(a; �) = 1: (2.4)

It is also known that ’ has a zero in (a; R(�)) when (A-1) and (A-2) hold, see e.g.,
[7]. The Krst zero of ’ in (a; R(�)] is denoted by r1(�). Denote the maximum ’(�)
of ’ in (a; r1); then it is easy to verify

’′(r; �)¿ 0 in (a; �(�)) and ’′(r; �)¿ 0 in (�(�); r1(�)); (2.5)

see, e.g., [4,9].
The following lemma due to Co<man [3] is critical.

Lemma 2.1. (Co<man [2,3]). If (A-1)–(A-3) hold; then

u(�; �)¿ 1: (2.6)

Proof. We Krst claim

’′ ¡
1
�
u′ in (a; �): (2.7)

Indeed, let V = (1=�)u− ’. Then V satisKes

V ′′ +
n− 1
r

V ′ + f′(u)V =
1
�
(f′(u)u− f(u)): (2.8)

From (2.3) and (2.8), we have

rn−1{V ′(r)’(r)− V (r)’′(r)}=
1
�

∫ r

a
sn−1(f′(u(s))u(s)− f(u(s)))’(s) ds:
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By (A-2), the right-hand side is positive in (a; r1), which implies

V ′(r)’(r)− V (r)’′(r)¿ 0 (2.9)

in (a; r1). Hence,

d
dr

{
V (r)
’(r)

}
=

1
’2(r)

{V ′(r)’(r)− V (r)’′(r)}¿ 0 in (a; r1):

Now,

V (a)
’(a)

= lim
r→a+

{
1
�
u(r; �)
’(r; �)

− 1
}

= 0:

Therefore, we have

V (r)¿ 0 in (a; r1):

By (2.9) and the last inequality, we have

V ′(r)¿ 0 in (a; �);

and thus (2.7) follows.
To prove (2.6), we need to introduce more auxiliary functions as follows:
Denote

F(u) =
∫ u

0
f(v) dv; (2.10)

M(r) = u′2(r) + 2F(u(r)); (2.11)

and

N(r) = u′(r)’′(r) + f(u(r))’(r): (2.12)

It is easy to verify

M′(r) =−2(n− 1)
r

u′2(r) (2.13)

and

N′(r) =−2(n− 1)
r

u′(r)’′(r): (2.14)

Therefore, by (2.11) and (2.13), we have

M(r) = �2 − 2(n− 1)
∫ r

a

u′2(s)
s

ds: (2.15)

Since u(R(�); �) = 0, we have

M(R(�)) = u′2(R(�))¿ 0:

Hence (2.13) implies

M(r)¿ 0 in [a; R(�)]:
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Eq. (2.15) implies

2(n− 1)
∫ r

a

u′2(s)
s

ds¡�2: (2.16)

Similarly, by (2.12) and (2.14) we have

N(r) = �− 2(n− 1)
∫ r

a

1
s
’′(s)u′(s) ds: (2.17)

By Schwartz inequality, (2.7) and (2.16), we have

2(n− 1)
∣∣∣∣
∫ r

a

1
s
’′s(s)u′(s) ds

∣∣∣∣

≤ 2(n− 1)
(∫ r

a

1
s
’′2(s) ds

)1=2 (∫ r

a

1
s
u′2(s) ds

)1=2

¡ 2(n− 1) · 1
�
·
∫ r

a

1
s
u′2(s) ds

¡�:

By (2.17) and the last inequality, we have

N(�)¿ 0:

Since ’(�)¿ 0 and ’′(�) = 0, by (2.12) we have

f(u(�; �))¿ 0:

By (A-1), we have

u(�; �)¿ 1:

The proof is complete.

Next, we shall prove the following lemma.

Lemma 2.2. If (A-1)–(A-3) hold; then

u(r1(�); �)¿ 1: (2.18)

Proof. Let W = u− 1, then W satisKes

W ′′ +
n− 1
r

W ′ + f′(u)W = f′(u)(u− 1)− f(u): (2.19)

By (2.3) and (2.19), we obtain

rn−1(W ′’−W’′)|r� =
∫ r

�
sn−1{f′(u(s))(u(s)− 1)

−f(u(s))}’(s) ds¿ 0 (2.20)

for any r ∈ (�; r1].
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We now claim W (r1)¿ 0. Otherwise, if there were r̂ ∈ (�; r1] such that W (r̂) = 0,
then, by (2.20) and(2.7) we have

r̂ n−1u′(r̂)’(r̂)¿�n−1u′(�)’(�)¿ 0

which implies

u′(r̂)¿ 0:

Now (2.6) and u(r̂) = 1 imply u′(r̂)¡ 0, a contradiction. This implies

W (r1)¿ 0:

The proof is complete.

3. Proofs of main results

In this section, we shall prove Theorems 1 and 2.
For any c ∈ R1, denote

vc(r) = ru′(r) + c(u(r)− 1): (3.1)

Then,

v′c(r) = (c + 2− n)u′(r)− rf(u(r)) (3.2)

and vc satisKes

v′′c (r) +
n− 1
r

v′c(r) + f′(u(r))vc(r) = Ic(u(r)); (3.3)

where

Ic(u) = cf′(u)(u− 1)− (c + 2)f(u): (3.4)

For notational simplicity, when c = n− 2, we denote

v= vn−2 = ru′(r) + (n− 2)(u(r)− 1)

and

I = In−2 = (n− 2)f′(u)(u− 1)− nf(u):

It is easy to verify

I ′(u) = (n− 2)f′′(u)(u− 1)− 2f′(u)

and

I ′′(u) = (n− 2)f′′′(u)(u− 1) + (n− 4)f′′(u):

The following lemma is crucial in studying the uniqueness problem.

Lemma 3.1. If (A-1)–(A-4) hold; then

v(r1(�); �)¡ 0: (3.5)
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Proof. By (2.3) and (3.3), we have

r n−1(v′’− v’′)|r1� =
∫ r1

�
r n−1I(u(r))’(r) dr:

Now, (A-4) implies I(u(r))¡ 0 in (�; r1). Therefore, we have

−r n−1
1 v(r1)’′(r1)− �n−1v′(�)’(�)¡ 0:

By (3.2), we have

−r n−1
1 v(r1)’′(r1) + �nf(u(�))’(�)¡ 0:

Now (2.6) implies f(u(�))¿ 0, therefore

v(r1)¡ 0:

The proof is complete.

To prove the main result, we need to introduce the following auxiliary function Z
which also has been used in [3]. Denote

Z(r) = v(r) · {r’′(r) + (n− 2)’(r)}+ r 2f(u(r))’(r): (3.6)

Then it is easy to verify that

Z ′(r) = r’(r)J (u(r)); (3.7)

where

J (u) = (4− n)f(u)− (n− 2)f′(u)(u− 1): (3.8)

It is easy to verify that

J (u) ≤ 0 for u¿ 1 (3.9)

when (A-3) holds.
After these preparations, we can now prove the following lemma which leads to the

main result.

Lemma 3.2. If (A-1)–(A-4) hold; then ’ has exactly one zero in (a; R(�)].

Proof. Suppose that ’(r; �) has a second zero r2 ∈ (a; R(�)]. Then there exists  ∈
(r1; r2) such that

 ’′( ) + (n− 2)’( ) = 0: (3.10)

If (3.10) holds, then we claim that

u( )¡ 1: (3.11)

Indeed, by (3.5), we have

Z(r1) = r1v(r1)’′(r1)¿ 0: (3.12)

By (3.7) and (3.9) we have

Z ′(r) ≥ 0 in (r1; r̂); (3.13)
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whenever u(r̂) ≥ 1. Otherwise, if (3.11) were false, i.e., u( ) ≥ 1. Then (3.12)
and(3.13) imply

Z( )¿ 0: (3.14)

On the other hand, by (3.6), (3.10), and (3.14), we have

 2f(u( ))’( )¿ 0

which implies f(u( ))¡ 0 or u( )¡ 1, a contradiction. Hence (3.11) follows.
Now, let v0 = ru′(r) as in (3.1). Then I0 =−2f(u), i.e., v0 satisKes

v′′0 (r) +
n− 1
r

v′0(r) + f′(u(r))v0 =−2f(u(r)): (3.15)

By (2.3) and (3.15), we have

r n−1(v′0’− v0’′)|r2 =−2
∫ r2

 
r n−1f(r(r))’(r) dr ¡ 0:

However, by (3.11), the left-hand side of the last equality is

−r n2 u
′(r2)’′(r2) +  nf(u( ))’( )¿ 0;

a contradiction. Therefore, ’ has no second zero in (a; R(�)). The proof is com-
plete.

Remark 3.3. In the proof of Lemma 3.2, it is critical to establish (3.11) which is
immediate when (3.5) holds. Therefore, to prove (3.5), more careful study is needed
for v(r; �) when (A-4) does not hold.

Proof of Theorem 1. Since

u(R(�); �) = 0 (3.16)

after di<erentiating (3.16) with respect to � ∈ N , we have

u′(r(�); �)
dR(�)
d�

+ ’(R(�); �) = 0: (3.17)

Therefore, Lemma 3.2 implies

dR(�)
d�

¡ 0 (3.18)

for any � ∈ N . Now, it is easy to see N = (�∗;∞), for some �∗ ¿ 0. Otherwise, if
there were (�1; �2)⊂N , 0¡�1 ¡�2 ¡∞ and �1 	∈ N; �2 	∈ N , then �1 and �2 will be
in G, a contradiction to (3.18). The proof is complete.

Now, we can apply Theorem 1 to prove Theorem 2.

Proof of Theorem 2. We will verify that f(u) satisKes all assumptions of Theorem 1.
It is easy to see that f(u) satisKes (A-1)–(A-3). To prove (A-4), by (1.3) we have
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I(u) = (n− 2)(pup−1 − 1)(u− 1)− n(up − u), then

I ′(u) = (n− 2)(p(p− 1)up−2 − 1)(u− 1)− n(pup−1 − 1);

I ′′(u) =p(p− 1)[(n− 4)up−2 + (u− 2)(p− 2)up−3(u− 1)]:

For 3 ≤ n ≤ 4; p − 2 ≤ n=(n − 2) − 2 = (4 − n)=(n − 2). Since I(1) = 0; I ′(1) =
−2(p− 1)¡ 0, and

I ′′(u)≤p(p− 1)[(n− 4)up−2 + (4− n)up−3(u− 1)]

=p(p− 1)(n− 4)up−3 ≤ 0;

we have I(u) negative for u¿ 1.
For 4¡n¡ 6, if I(u) is nonnegative somewhere in u¿ 1, then there is a u0 ¿ 1

such that I ′(u0) = 0 and I ′′(u0) ≥ 0. I ′(u0) = 0 is equivalent to

2(pup−1
0 − 1) = (n− 2)p(p− 1)up−2

0 (u0 − 1):

Hence,

0 ≤ u0I ′′(u0) = p(p− 1)[(n− 4)up−1
0 + (n− 2)(p− 2)up−2

0 (u0 − 1)]

= p(p− 1)(n− 4)up−1
0 + 2(p− 2)(pup−1

0 − 1)

= p[p(n− 2)− n]up−1
0 − 2(p− 2)

¡p[p(n− 2)− n]− 2(p− 2)

≤ 0 for 1¡p ≤ 4
n− 2

;

a contradiction. The proof is complete.
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