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Abstract

We investigate the structure, elastic and dynamical properties of the vortex matter in the presence of artificially created or intrinsic
gradients of the critical temperature in the framework of the Ginzburg–Landau theory. The region of parameters in which vortex cores
are not well separated is treated perturbatively in 1� H c2ðT Þ=H c2ð0Þ. Critical current for periodic pinning potential is obtained and gen-
eral expressions for elastic moduli at long wavelength are derived. We show that it is impossible to restrict the system to lowest Landau
level. We use it to provide a theory of the discontinuous peak effect in critical current which appears near H c2ðT Þ line in low T c strongly
type II superconductors. Influence of thermal fluctuations is also considered and we find softening of the shear modulus in the vicinity of
vortex lattice melting line.
� 2008 Elsevier B.V. All rights reserved.
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In type II, superconductors for which the penetration
depth k exceeds the correlation length n the magnetic field
penetrates the sample in a form of Abrikosov vortices,
which strongly interact thereby creating an elastic ‘‘vortex
matter”. Impurities, always present in a sample, lead to
inhomogeneities, which greatly affect the thermodynamic
and especially dynamic properties of the vortex matter.
Recently various experimental techniques were developed,
which allow to artificially create ‘‘pinning” on the scale
of up to tens of nm in an controllable way. When the inho-
mogeneity is strong enough, it pins the vortex matter,
resulting in dissipationless persistent current, thereby
recovering an original defining property of superconductor.
The pinning can be overcome if the current exceeds the crit-
ical current J c or if thermal fluctuations reduce the effect of
the inhomogeneities.
0921-4534/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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Two major theoretical simplifications are generally
made. In majority of the works, the vortex matter is consid-
ered as an array of elastic lines [1]. This (London) approx-
imation is generally valid far from the higher critical field
H c2ðT Þ, when the vortex density is low. Critical current is
interpreted as a current at which the Lorentz force on the
vortex line system overpowers the pinning force. An alter-
native simplification to the vortex matter is valid far
enough from the lower critical field H c1ðT Þ. At high vortex
densities magnetic fields of many vortices overlap and the
resulting magnetic inductance is nearly homogeneous and
Ginzburg–Landau (GL) model at constant magnetic field
can be used. It is usually supplemented by the so called
lowest Landau level (LLL) approximation. Here one does
not see a well separated vortices, but rather a distribution
of the order parameter fields with zeroes of the order
parameter marking the centers of ‘‘cores”. In most of the
cases, however, the dynamics of the vortex matter is
described in two steps. First, the system is treated
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collectively in the ‘‘elastic medium” approximation, namely
first elastic properties under external ‘‘forces” are deter-
mined and then random or permanent gradients of the
external parameters act of this elastic medium. Elastic
properties of the vortex matter therefore become essential
in understanding thermodynamic and transport properties
of the disordered vortex matter [2]. In addition, the shear
modulus was measured recently in BSCCO superconductor
using the AC response technique [3]. It demonstrates sharp
decrease at on the melting line of the vortex lattice. In par-
ticular, detailed knowledge of the elasticity of the vortex
lattice is required to understand the ‘‘peak effect” in critical
current [4–6].

In this paper, we consider the vortex lattice not far from
H c2ðT Þ in the presence of small gradients of the critical tem-
perature T cðrÞ using the GL approach. First, the inhomo-
geneity is considered as a perturbation. The changes in
distribution of both the superfluid density and the super-
current are obtained. The pinned state is described as a sta-
tic state which carries a net current. Critical current for
periodic pinning potential is obtained and general expres-
sions for elastic moduli at long wavelength are derived.
The value for the shear modulus near H c2ðT Þ is larger than
calculated before [7] restricting the strained system to LLL.
We show that it is impossible to restrict the pinned system
to LLL: contribution of the first Landau level (LL) is cru-
cial for both pinning and elastic deformations. We then
argue that the discontinuous peak effect in critical current
which appears near H c2ðT Þ line in low T c strongly type II
superconductors can be understood using the elastic mod-
uli. Influence of thermal fluctuations is also considered and
we find softening of the shear modulus in the vicinity of
vortex lattice melting line. The softening of the shear mod-
ulus was directly measured recently [3]. We focus on a par-
ticular case of strongly type II superconductors for which
the ratio j ¼ k=n is very large (for high T c cuprates and
most of the widely used and studied low T c type II super-
conductors j is ranging between 10 and 100). Qualitatively
for large j the compression and the tilt moduli are practi-
cally the same as those of magnetic field in vacuum (except
the dispersion [7]) and the most important modulus id the
shear which is much smaller (by a factor of 1=j2).

Our starting point is the GL Gibbs energy of a super-
conductor in homogeneous magnetic field H ¼ ð0; 0;HÞ:

G ¼
Z

dr
�h2

2m�
DaWj j2 þ �h2

2m�z
DzWj j2 þ a0jWj2

�

þ b0

2
jWj4 þ B�Hð Þ2

8p

#
; ð1Þ

where a ¼ x; y;m� and m�z ¼ c2m� are effective masses in
directions perpendicular and parallel to that of magnetic
field and c is the anisotropy parameter. We assume for sim-
plicity a0 ¼ aðT c � T Þ. It will be convenient to use
n2 ¼ �h2

2m�aT c
as unit of length in the x–y plane, and nz ¼ cn

in the field direction, gGL ¼
H2

c2

8pj2 as unit energy density
and rescale the order parameter field W2 ¼ 2aT c

b0 w2. The
upper critical field H c2 ¼ U0

2pn2, is a unit of magnetic field,
so that h ¼ H=H c2 describes the external field and
b ¼ B=H c2. In these units, the dimensionless GL energy
takes a form:

g ¼ G

4n2ncgGL

¼
Z

r

1

2
Diwj j2 � 1� t

2

� �
w rð Þj j2

�
þ 1

2
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4
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�
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ð2Þ

where i ¼ x; y; z and Di ¼ o
oxi � iAi are covariant

derivatives.
‘‘Force” acting on the vortex matter can be physically

realized in a variety of ways [8]. Let us consider a supercon-
ductor with spatially inhomogeneous critical temperature
T cðrÞ. Within the framework of the GL theory it is
described by a potential:

a0 ¼ a T � T c rð Þ½ � ¼ a T � T c 1þ U rð Þ½ �f g: ð3Þ

This model of generally used to describe the dT c pinning
[1]. This additional term naturally results in an elastic
deformation of the vortex lattice. In the absence of the
potential term, the solution is the Abrikosov lattice solu-
tion minimizing the functional Eq. (2) is given by a well
defined expansion in two small parameters j�2 and ah [9]:

wmf rð Þ ’
ffiffiffiffiffiffi
ah

bA

r
/0 þ ah/c þO a2

h

� �	 

þ O j�2

� �
bmf rð Þ ’ hþ j�2bc þO j�4

� �
;

ð4Þ

where bc ¼ �h ah

hbA
j/0j

2 þOða3
hÞ and /0 is the Abrikosov

wave function for hexagonal lattice:

/0 ¼ 31=8h�1=2
X1

l¼�1
exp

�
ihxyþ:il pl

2
þ 31=4p1=2h1=2x

� �

� 1

2
ðh1=2y � 31=4p1=2lÞ2

�
; ð5Þ

normalized to unit superfluid density. The correction /c

contains higher LLs. The currents pattern is simple: vorti-
ces around positions of zeroes at rn ¼ ðaðn1 þ n2=2Þ;
2p=an2Þ with n1; n2 integers.

To first-order in U the correction to the wave function
hðrÞ can be expanded in LLs basis /NkðrÞ, where k is qua-
simomentum and N LL:

h rð Þ ¼ �b�1a1=2
h b�1=2

A

X
Nk

U Nk/Nk rð Þ; ð6Þ

where U Nk ¼
R

r
/NkUðrÞ/0 and higher orders in ah were ne-

glected. The most important contribution to the current
density JðrÞ ¼ i

2
ðw�Dw� wDw�Þ comes from the first LL,

since the covariant derivatives in JðrÞ contains one ‘‘ras-
ing” operator, �iDx/0 ¼ Dy/0 ¼ ð2bÞ�1=2/1:



Fig. 1. Current distribution of the pinned vortex lattice. Pins are shown as
blobs. Left: unperturbed current distribution. Center: the perturbed
distribution by a localized periodic potential. Right: The current distri-
bution with the unperturbed subtracted. Since the unperturbed configu-
ration does not carry net current, the right picture demonstrate the
persistent current.
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As an example, let us consider potential which is periodic
(matching field H). One observes (see Fig. 1) that when
minima of the potential do not coincide with the zeroes
of the order parameter, the correction to current integrated
over a certain volume (the unit cell for example), dI ¼R

r
dJðrÞ, is nonzero and can be defined as the Lorentz force,

FL ¼ c�1½dI� b�: �F Ly þ iF Lx ¼ ahb
�1
A ðb=2Þ�1=2U 10. The

Lorentz force is balanced by ‘‘electric” pinning force,
Fpin ¼

R
r
j wj2$U as can be explicitly seen. The current

per vortex calculated that way cannot exceed a certain
value, thus determining the critical current. The above con-
sideration demonstrates that an equilibrium state in the
presence of the pinning force inevitably has mesoscopic
supercurrents and in view of Eq. (7) cannot be treated in
framework of LLL only.

One can determine perturbatively in U the new positions
of zeroes of the order parameters (‘‘centers” of the vorti-
ces). Before the perturbation was applied they were located
at rn ¼ ðaðn1 þ n2=2Þ; 2p=an2Þ. New positions of the zeroes
are found by demanding wðrn þ unÞ ¼ 0. Since displace-
ment un is first-order in U, expanding this relation to the
first-order gives:

a1=2
h b�1=2

A oa/0 rnð Þuan ¼ �h rnð Þ; ð8Þ

determining all the displacements. If one considers a con-
figuration possessing the hexagonal symmetry generally
the elastic energy can be written as:

gel ¼
1

2

X
k

c11 kxu0x þ kyu0y

� �2
h

þc66 kxu0y � kyu0x

� �2

þc44k2
z u2

0x þ u2
0y

� �i
: ð9Þ

The basic relation between stress and strain for potential
oaF b ¼ �vba ¼ cabcdocud with F b ¼ �obU one obtains the
following expression for the shear modulus:
c66 ¼
hah

2bA

; ð10Þ

in units of H 2
c2n

2nc=ð2pÞ.
In solid state, physics one can conveniently consider elas-

tic stress as a force acting on pointlike atoms. However,
from the earliest times electromagnetic fields can also be
considered as a kind of ‘‘elastic medium”. In particular, a
constant uniform magnetic field H in vacuum has well
defined compression and tilt moduli C11 ¼ C44 ¼ H2

4p, while
the shear modulus vanishes [1]. The elasticity is associated
with field deformation within the volume containing the
field. In electromagnetically, active media generally addi-
tional fields describing matter like magnetization in mag-
nets, polarization vector in ferroelectrics, etc., contribute
to elastic properties. Generally for any system of fields
one can obtain an expression for elastic moduli in a same
way one derives an expression for angular momentum
(rotation modulus). Qualitative picture behind theoretical
approach to elasticity was that magnetic field penetrates
the material as a system of Abrikosov vortices (fluxons).
Topological argument within the simplest GL model of a
one component superconductor implies that if n elementary
flux units U0 penetrate the sample, then the order parameter
w has exactly n zeroes. This determines unambiguously cen-
ters of vortices surrounded by normal cores of size of coher-
ence length. When cores of the vortices are well separated,
one can reduce the problem to the elasticity of a collection
of linelike (without internal structure) objects. This descrip-
tion becomes problematic near the upper critical field
H c2ðT Þ, when vortices are poorly separated and their inter-
nal structure is of importance. Moreover, there are impor-
tant cases in physics when fluxons do not possess a core
at all, see for example p-wave superconductors (similar to
those in superfluid He3). This does not imply that these
materials do not have a well defined elastic properties. In
these, cases one should not rely on location of zeroes, but
rather return to the original field theoretical description.

A more powerful general approach to elasticity is geo-
metrical in nature [12]. Elastic moduli describe the rigidity
with respect to local translations. For our purposes it is suf-
ficient to consider displacements in the plane perpendicular
to external magnetic field uðrÞ ¼ ðua; 0Þ. The corresponding
transformations of a scalar and a vector fields are:

w0ðrÞ ¼ wðr þ uÞ � wðrÞ þ uawa;

A0iðrÞ � AiðrÞ þ ubAa;b þ ub
aAb;

ð11Þ

where a short notation for derivatives, e.g., ub
j ¼ oub

orj is used
and i ¼ 1; 2; 3. Considering the displacement, ua;b ¼ ua

0kb,
and expanding in powers k, one observes that to order k0

the contributions cancel. This is just the Goldstone theo-
rem, which asserts that when a continuous symmetry (glo-
bal translations in the present case) is spontaneously
broken, there appears a ‘‘soft” mode. Terms linear in k

vanish due to reflection symmetry of the Abrikosov lattice
configuration, while the terms quadratic in k determine the
elastic moduli.
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Calculating the second functional derivatives and substi-
tuting the mean field solution of Eq. (4), one obtains

dg ¼ 1

2vol

Z
k;r

u0
au0

bkikj j2 dijAl;aAl;b þ Aa;jAi;b

� �	
þdij D�bw

�Dawþ DbwD�aw
�

� �i
: ð12Þ

Now we proceed to calculate the moduli in the Abrikosov
lattice configuration neglecting thermal fluctuations. As
mentioned in Introduction, the case of large j is of special
interest. It is natural therefore to expand a physical quanti-
ties in powers of j�1. Fortunately the expression for the most
important shear modulus is a regular function of both j�2

and the wave vector k, (the other two moduli are not [7]).
The contribution to elastic moduli to the leading order in
j�2 comes solely from the magnetic energy term. Substitut-
ing Aa ¼ 1

2
heabrb (symmetric gauge), one obtains that the

contributions to the compression and the tilt moduli are
equal,

c0
11 ¼ c0

44 ¼
h2j2

4
; ð13Þ

and consistent with the j2 term in expansion of Eq. (12) at
k ¼ 0. The contribution to the next to leading order in j�2,
c1

ijab comes both from magnetic and the order parameter
terms. The magnetic term is of order a2

h:

c1A
ijab ¼

1

vol

Z
r

dijA
0
l;aAc

l;b þ Ac
a;jA

0
i;b þ a$ bð Þ

� �

¼ � hah

2bA

1þ 2ahd0ð Þdaidbj:

The order parameter term (in Eq. (12)) contribution is pro-
portional to c1w

ijab ¼ dijsab

sab ¼
1

vol

Z
r

D�bw
�
mfDawmf þ cc

� �
¼ dabs; ð14Þ

where s ¼ hah

2bA
ð1þ 2ahd0Þ. The fact that symmetric tensor

sab is proportional to dab follows from hexagonal symmetry
of the mean field solution. One therefore has the following
contributions to compression, tilt and shear moduli

c1
11 ¼ d0

a2
hh

bA

; c1
44 ¼ c1

66 ¼
hah

2bA

1þ 2ahd0ð Þ: ð15Þ

Note that the order ah contributions to the compression
modulus from the magnetic term and the order parameter
term cancel. Also the correction to the tilt modulus leads to
the known result c0

44 ¼ hbj2

4
.

One observes that, while the compression and the tilt
moduli are the same as in thermodynamically calculated
[7], the value of the shear modulus is different. The thermo-
dynamic and the LLL calculation gives near H c2ðT Þ a value
of c66 ’ 0:24

b2
Aj2 a2

h, smaller than in Eq. (15). We discuss this
below.

The mean field result of the previous subsection is mod-
ified in strongly fluctuating superconductors like high T c

materials by thermal fluctuations. Generally it results is
softening of elastic moduli. In the extreme case, when the
system approaches the overheated crystal spinodal line
the shear modulus vanishes making the crystalline state
unstable. Below this temperature, however, the melting
transition into the vortex liquid state takes place. Thermal
fluctuations on the mesoscopic scale are accounted for by
averaging over all the configurations of fields with corre-
sponding Boltzmann factor. Generally for strongly type
II materials fluctuations of the magnetic field are negligibly
small. Since the compression and the tilt moduli remain
finite even in the liquid state, the only important modulus
is the shear. Therefore we concentrate on calculation of
corrections to the mean field for the quantity

sab ¼
1

vol

Z
r

DawD�bw
� þ D�aw

�Dbw


 �
th

¼ Z�1

vol

Z
w;w�

Z
r

DawD�bw
� þ D�aw

�Dbw
n o

e�
G wf g

T ; ð16Þ

where Z ¼
R

w;w� exp½� gfwg
p2
ffiffiffiffiffi
2Gi
p

t
�.

Assuming hexagonal symmetry, this symmetric tensor
simplifies sab ¼ dabs, so that c66 ¼ � 1

vol

R
rhw

�D2with. When
thermal fluctuations are not very large, one can apply the
low temperature perturbation theory around the field solu-
tion w ¼ wmf þ v. In the leading order, in ah one can neglect
thermal fluctuations of the higher Landau harmonics,
restricting the field to LLL: D2wLLL ¼ �hwLLL. In this case,
the modulus and the Gibbs energy simplify significantly:
c66 ¼ h

2
1

vol

R
rhj wj

2ith, gLLL ¼
R

r½�ahjwj2 þ 1
2
jwj4�. Therefore

within this approximation the shear modulus is propor-
tional to superfluid density. In the low temperature, expan-
sion it was calculated in [9]

c66 ¼
hah

2bA

� 0:55
ffiffiffiffiffi
Gi
p

th2

a1=2
h

: ð17Þ

The softening intensifies upon approaching the mean
field transition line ah ¼ 0. However, well below this line
the perturbation theory breaks down.

The shear modulus softening just below H c2ðT Þ plays a
crucial role in explaining the ‘‘peak effect” in the critical
current [13]. The peak generally appears just before the
‘‘melting” of the Abrikosov lattice due to thermal fluctua-
tions. Within the collective pinning theory [1], the critical
current is estimated from the balance of the pining force
on Larkin domain and the Lorentz force J cB. Size of the
Larkin domains can be estimated via relevant elastic mod-
uli leading to

J c ¼
A

bc44c2
66

: ð18Þ

The constant A is dependent on ah and gets smaller near
H c2ðT Þ, although the exact dependence is not known. How-
ever, since c66 of the thermodynamical argument is propor-
tional to a2

h; it was argued that one obtains a gradual
increase in J c approaching H c2ðT Þ since ‘‘softening” of
the vortex lattice overcomes decrease of the pinning force.
This corresponds to an ‘‘old” view on the ‘‘peak effect”,
when this increase was thought to be followed by an abrupt
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jumps of the critical current to zero at the melting point (in
practice might be smeared out by sample inhomogeneities).
The recent view, supported by experiments in which Corbi-
no geometry or width dependence were used to minimize or
subtract the edge effects [4,5], attributes the peak to the
amorphous homogeneous state. Critical current actually
monotonically decreases with field and then jumps from a
relatively low value in the crystalline state to a very high
value in the vortex glass (this was noticed early on in
[10]). Qualitatively this is due to the fact that it is easier
to pin a disordered homogeneous state than a rigid crystal-
line one. The continuous rise of the critical current ob-
served in numerous earlier experiments was caused by
poor resolution due to overheating of the solid and overco-
oling of the homogeneous states. The critical current in the
amorphous phase rapidly drops as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � T g
p

,when temper-
ature approaches the glass temperature [14] T g. Thus tradi-
tional picture predicts a gradual increase with subsequent
drop of the critical current, while modern picture predicts
a sudden increase followed by a fast but continuous de-
crease. If one uses the larger value of the shear modulus ob-
tained here, Eq. (10), one indeed obtains a monotonic
decrease to a constant value since both pinning force and
softening drop with similar rate in Eq. (18).

Using the GL theory under the assumption that the sys-
tem under a stress remains constrained to LLL, Brandt
derived [7] expressions for the softest modulus, the shear,
of the vortex lattice. At large j and near the mean field line
C66 is proportional to a2

h. The modulus is consistent with
thermodynamic derivation in which lattice energies of dif-
ferent symmetries were compared. The expression for shear
modulus and other moduli are used in numerous theoreti-
cal descriptions of phenomena as different as vortex lattice
melting [11] and critical current [1,7] of the pinned lattice.
As we demonstrate below the LLL assumption does not
follow directly from the ‘‘thermodynamic” argument. The
stress necessarily transforms the LLL equilibrium state into
a state containing significant contribution of higher LLs
near the H c2ðT Þ line. Qualitatively it reflects the fact that
shear for example changes the shape of the order parameter
spatial distribution into sheared one (ellipsoidal one rather
than round). The location of zeroes is exactly the same, but
internal structure of the vortex becomes important.

The sheared state is not a ground state of the Abrikosov
lattice with the same symmetry. The later is explicitly con-
structed in the symmetric gauge by Brandt [7]. Restricting
the shear transformations to LLL, he effectively retained
the notion of a single state for a given lattice symmetry.
Physically it is equivalent to an assumption that the degrees
of freedom related to shape of the vortices can ‘‘relax” to
their positions with minimal energy. It would mean that
the system returns to an LLL state upon this relaxation.
There is a popular belief that all degrees of freedom can
be divided in two sets: ‘‘slow” and ‘‘fast”. ‘‘Slow” variables
are the locations of vortices determined, for example, by
the vortex center positions (where w ¼ 0), and ‘‘fast” vari-
ables which contain all the other degrees of freedom related
to the shape of the vortices. While near H c1 one can argue
that the internal degrees of freedom are very costly energet-
ically, near H c2 this is not correct. To our knowledge, there
are no works which establish in what field range the sepa-
ration between two set of degrees of freedom becomes pos-
sible. The GL energy does not contain an evident small
parameter or ‘‘energy gap” which allows such a separation.
Correspondingly, in dynamics based on the time-dependent
GL equation there is no separation of time relaxation of
different degrees of freedom. Mathematically the shear
transformation takes the ground state /0 out of the LLL
sector since it does not commute with the ‘‘Hamiltonian”

� 1
2
D2 þ h

2
. Although in our calculation magnetic induction

deviates slightly from the external field h, the reason for a
significant increase of the shear modulus compared to ear-
lier estimates is not related to this.

To summarize, we considered elastic response of the vor-
tex lattice to inhomogeneity near the second critical field
H c2ðT Þ using the GL approach and showed that in the pin-
ned state the system is necessarily excited to states outside of
the LLL. This reflects the deformation of the current distri-
bution profile under stress. As a result the shear modulus is
much larger (of order 1� T=T c � H=H c2) than that found
by considering minimal energies of configurations with
symmetries corresponding to sheared lattice, leading to
ð1� T =T c � H=H c2Þ2 The obtained shear modulus leads
to a monotonic decrease of the bulk contribution to the crit-
ical current in the crystalline phase before it discontinuously
jumps to a much higher value in vortex glass. Such a behav-
ior was obtained experimentally recently when the edge
contributions were minimized.
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