
CIRCUITS SYSTEMS SIGNAL PROCESSING 
VOL. 20, NO. 3, 2001, PP. 361-373 

ONLINE RATE CONTROL FOR 
VIDEO STREAMS* 

Sassan Pejhan, t Tihao Chiang, 2 and Ya-Qin Zhang 3 

Abstract.  A mechanism for varying the frame rate of pre-encoded video clips online is 
described. The mechanism relies on two different encoders. An offline encoder creates 
a high-quality bit stream encoded at 30 fps, as well as separate files containing motion 
vectors for the same clip at lower frame rates. An online encoder decodes the bit stream (if 
necessary) and re-encodes it at lower frame rates in real time using the precomputed, stored 
motion information. Online frame rate control, used in conjunction with dynamic bit rate 
control, allows clients to solve the rate mismatch between the bandwidth available to them 
and the bit rate of the pre-encoded bit stream. Clients can therefore choose the amount of 
trade-off between temporal and spatial quality while resolving the rate mismatch problem. 
Moreover, online frame rate control provides a natural means for implementing a VCR- 
like fast forward control for video streaming applications, without increasing bandwidth 
consumption. 
Key words: MPEG, rate control, video streaming, bit allocation, video server. 

1. Introduction 

The growth o f  the Internet  and the prol i ferat ion of  Internet  browsers has enabled 

mil l ions  o f  users to access all kinds of  informat ion.  Mos t  of  the informat ion  is cur- 

rently in the fo rm of  text or still images  and graphics. This type of  informat ion  can 

be quick ly  downloaded  and displayed with the cl ick o f  a mouse  button. Access ing  

and playing back audio and video clips, however ,  is not as straightforward. 

There  are two ways to access v ideo  clips across the Internet.  The  first is to 

* Received February 26, 2000; revised October 1, 2000. An earlier version of this paper appeared 
in Proceedings of ACM Multimedia, 1999, pp. 141-144. 

1 Sorceron 459 W. 15th St. Suite 6E, New York, New York 10011, USA. 
E-mail: spejhan@sorceron.com 

2 Department of Electronics Engineering, Nation Chiao Tung University, 1001 Ta-Hsueh Road, 
Hsinchu, Taiwan 30050, People's Republic of China. E-mail: tchiang@cc.nctu.edu.tw 

3 Microsoft Research, 5K Beijing Sigma Center, No. 49, Zhichun Road, Haidian District, Beijing, 
100080 People's Republic of China. E-mail: yzhang@microsoft.com 



362 PEJHAN, CHIANG, AND ZHANG 

download the compressed bit stream in its entirety and then decode and display 
it. This method has a number of  drawbacks if the clip is more than a few 
seconds long. One is that tile user will have to wait a long time for the clip to 
be downloaded. Another is that the user needs to have enough free storage space 
to accommodate the entire video clip. 

The second approach is referred to as video streaming; each frame of a 
video clip is immediately decoded and displayed upon reception. However. video 
streaming poses a new set of challenges. The original video sequence is com- 
pressed at a certain bit rate. However. users may need to download it at a different 
rate. depending on the bandwidth available to them. Reducing the deliver5 rate of 
the stream would result in a "slow motion" display at the receiver. Implementing 
VCR-type controls such as fast forward also becomes more complicated when 
streaming multimedia clips. 

A common and widely investigated solution for the rate mismatch problem 
has been to partially decode the stream at the server and then re-encode it using 
different quantizer values, resulting in a different bit rate [2], [4]. This technique 
has proven to be quite powerful and accurate for a reasonable range of  bit rates, it 
effectively provides a lcalob with which the user can vary the bit rate of the video 
clip. But this knob will only go so far before it causes a significant degradation in 
the spatial quality of  the video clip. 

To provide greater control (to the user) over the incoming video stream, a 
second knob, which would vary the frame rate of the sequence, is proposed in 
Section 2. By reducing the frame rate of the clip, the bandwidth consumption 
will be reduced without further loss in the spatial quality (temporal quality will 
be reduced instead). Moreover. this extra knob can be used for implementing 
a fast forward (FF) control, as described in Section 3. Section 4 describes the 
software implementation, the test bed for the experiments, and the performance 
results obtained. It also points out the limitations of  the proposed scheme. Our 
conclusions are presented in Section 5. 

2. Online frame rate control mechanism 

Although one can partially decode and re-encode a video clip (using a different 
quantizer) in real time, decoding and re-encoding a stream at a different frame rate 
in real time is not as easy, unless the server is equipped with expensive special- 
purpose hardware. With certain encoding schemes, such as Motion JPEG [ 1 t ] (in 
which each frame is encoded independently), this is not a problem: frames can 
simply be skipped in Motion JPEG. 

However, such schemes, are much less efficient (in terms of compression) than 
schemes such as MPEG [7] and H.263 [10], which employ motion estimation 
techniques. Motion estimation, though, is an extremely time-consuming process, 
particularly if a full motion search algorithm is employed. -With these schemes the 



ONLINE RATE CONTROL FOR VIDEO STREAMS 363 

sender cannot arbitrarily drop frames in the compressed domain because decoding 
of subsequent frames at the receiver depends on them. Thus, if the sender is to re- 
encode the video stream at a different frame rate, it would have to recompute the 
motion vectors. Performing this in real time, without special-purpose hardware, 
is not likely except for very low-resolution images. 

One solution is to encode and store the sequence at different frame rates (say 
30, 15, 10, and 6 fps). However, this will take up a lot of space on the server 
(see Section 4 for a quantitative analysis). The solution that is proposed here is 
to store only the motion vectors for the lower frame rates. This way all motion 
estimation is done offline and a priori. When re-encoding, motion vectors can be 
read from the motion files instead of being computed. This enables the stream 
to be re-encoded (at a different frame rate) much faster. The motion files are 
much smaller than the corresponding compressed streams, as shown in Section 4. 
Although this scheme is equally applicable to any video coding scheme using 
motion compensation, the implementation details that will be described here are 
specific to the H.263 standard. 

2.1. Overview ofH.263 coding scheme 

The H.263 standard, specified in [10], is very similar to MPEG-1 and MPEG- 
2, although it is primarily geared towards very low-bit-rate coding. There are 
two types of frames in an H.263 stream: intracoded (I) frames and predicted (P) 
frames. (The use of a third type, PB-frames, is optional. PB-frames contain one 
predicted frame and one bidirectionally predicted frame. We will ignore these for 
the purpose of this paper.) Every single frame (regardless of the type) begins with 
a 17-bit picture start code (PSC). The I-frames are encoded very much like JPEG 
still images. A discrete cosine transform (DCT) operation is applied to 8 x 8 blocks 
of the frame. The DCT coefficients are then quantized and entropy encoded. 

The P-frames are predicted from a preceding I- or P-frame. Using motion 
estimation techniques, each 16 x 16 macroblock (MB) in a P-frame is matched 
to the closest MB of the frame from which it is to be predicted. The difference 
between the two MBs is then computed. If the closest match for the MB to be 
coded happens to be the corresponding MB in the reference frame (i.e., the one 
for which the motion is zero), and if the difference between the two MBs is below 
a certain threshold, then the MB is not coded at all. Instead a single bit, which is 
called the COD field and set to 1, is inserted in the bit stream. When the decoder 
encounters a C O D = 1 bit, it will simply repeat the MB of the preceding I- or 
P-frame. 

If the closest match is some other MB (i.e., nonzero motion vector), then the 
COD bit is set to 0, and the motion vector is encoded and inserted into the bit 
stream. By default, one motion vector is encoded for one MB, which corresponds 
to four 8 x 8 blocks. There is an option (referred to as advanced prediction or AP), 
that allows for one motion vector per 8 x 8 block (i.e., four vectors per MB). The 



364 PEJHAN, CH1ANG, AND ZHANG 

difference between the two MBs is then encoded in a similar fashion to blocks 

in the I-frames. Alternatively, if the difference (defined as the sum of absolute 

differences, or SAD) between the two MBs is larger than a threshold, then that 
particular MB will be encoded in INTRA mode (i.e,, similar to MBs in I-frames) 

even though the overall frame itself is still a P-frame. In this latter case, no motion 
information is encoded. 

2.2. Details o f  proposed scheme 

As mentioned before, the scheme proposed in this paper is to store a hig~-quafity, 

30 fps compressed bit stream, but in addition, store only the motion vectors for the 
lower frame rates in separate motion files. Of course, the "motion files" need to 

contain more information than just the encoded motion vectors. The motion files 

contain the 17-bit start of picture code that is present for each H.263 encoded 

frame, This allows the video server to dynamically switch frame rates in the 

middle of a transmission. Also. since a given MB in H.263 can be coded in various 
forms (which will lead to a variable number of motion vectors for that MB ~, some 

information regarding it needs to be added to the motion vector file. This can be 

done in two different ways. 
The first way is to add a single bit per MB indicating the presence or not of 

motion vectors. A "1" indicates that there is one morion vector for this MB. We 

have assumed that the AP mode of H.263 is not used (in AP mode there could be 

four morion vectors for each MB. and this would increase the size of the motion 

files). Similarly, we assume that PB-frame mode is not use& A "0" indicates that 

there are no motion vectors associated with the MB. which would be the case if 
the MB is not encoded (C O D = I) or if it is encoded in INTRA mode. To further 

distinguish between the C O D  = 1 case and the INTRA mode the encoder would 

have to perform SAD calculations for the zero vector and the INTRA case to 
decide whether the MB is to be encoded (INTRA) or not at all. However, these 
SAD calculations are time consuming, and will affect the performance of the 

online encoder. 
An alternative solution is to insert a variable-length coae (one or two bits) in the 

motion file to indicate both the COD and the MB type. A 0. for instance, would 
indicate C O D  = 1. a 10 would indicate mode -- I N T R A .  and an l l  would 
indicate mode = I N T E R  and the presence of a morion vector. This results in a 
faster encoder, but at the price of a larger motion file. The format of the morion 
file is shown in Figure 1. Following the PSC (one for each frame), there is a l or 
2 bit COD/MB type code per MB. If motion vectors are present, they are inserted 

following the COD/MB code. Otherwise. we move on to the COD/MB for the 
next MB. For the next frame, we again start with a PSC. and the pattern repeats 

itself. 
In a video streaming application, the user can either explicitly specify the 

desired frame rate or provide the desired target bit rate to the sender and have the 



ONLINE RATE CONTROL FOR VIDEO STREAMS 

17_BitPSC I 1/2bitCODi Motion ] . . .  
& MB Vector I 

Figure 1. Motion file format. 

365 

latter find an optimum between the frame rate and the quantization parameters. 
The sender would then decode the precompressed stream (encoded at 30 fps) 
frame by frame. For each frame, it will determine if the frame is to be encoded 
or not. For frames that need to be encoded and transmitted, it will open the 
motion file corresponding to the desired frame rate and encode the frame rates 
accordingly. 

Because the precompressed stream is encoded at very high quality, it will 
be visually lossless. There will therefore be little difference between using that 
stream for re-encoding at lower frame rates and using the original video sequence. 
In other words, the quality of the lower rate stream will not suffer noticeably from 
the fact that it is based on a precompressd, as opposed to an original, stream. 

One of the advantages of the proposed scheme is that because motion estima- 
tion is done off-line, a full search algorithm and a large search area can be used 
to obtain optimum compression efficiency. The encoders do not need to trade off 
quality for speed by using fast motion estimation algorithms. 

3. Fast forward control 

With the increased interest in playing back video clips on computers, be it from 
local storage or streaming clips over the network, there is a natural desire to have 
the same type of controls as one has with regular (analog) VCRs (such as play, 
stop/pause, fast forward, and rewind). Such controls can easily be implemented 
for raw video: the size of the frames is fixed, the position of each frame in the bit 
stream is known, and frames can be accessed and displayed independently from 
one another. For compressed video, implementing some of these controls can 
become challenging. Compressed frames have a variable size, and their position 
in the bit stream may not be readily available. Moreover, if predictive coding 
is used (such as motion compensation) a given frame may not be decodable 
independently of other frames in the sequence. 

Digital video enables several new features that may supersede some of the tra- 
ditional VCR controls. Automated video summarization techniques, for instance, 
provide a more practical method (than fast forward) for searching through a video 
sequence, by providing indexes to key frames [5]. Fast forward can still be useful 
for searching through long shots, however. 

There are two ways to produce a fast forward effect. The brute-force method is 
to decode and display a video clip faster than its natural rate. If a clip is encoded 
at 30 fps, but the decoder runs at, say, 60 fps, the user will see the clip at twice the 



366 PEJHAN, CHIANG, AND ZHANG 

natural speed. The advantage of  this method is that the decoder operates as before 
and on the same bit stream as that used in regular "pla}" mode. The disadvantages 
are twofold: to run the clip at rates significantly higher than the standard 30 fps, a 
powerful processor would be required, particularly for highe>resotution images. 
Moreover, in the case of streaming video, the bandwidth consumption would be 
increased. Running a 50 kbps clip at four times its natural frame rate would require 
200 kbps of bandwidth. A variation on this theme has been proposed in [3] for 
the case of large-scale servers. A portion of the bandu.idth is reserved for fast 
forward and fast backward operations. Fast forward and backward capabilities 
are provided with some probability. If the additional bandwidth required is not 
available, the service is either delayed or provided at a lower resolution. 

The other technique is to skip frames. Skipping frames, however, becomes 
problematic with interframe coding techniques as discussed in Section 2. An 
easy solution is to just transmit and display the I- (intracoded) frames. However. 
because of  their large size. these frames are few and far between (typically one or 
two out of 30 frames). The authors in [8] propose storing multiple versions of  a 
video clip: one at 30 fps and others at lower fxame rates. However, as pointed 
out in Section 2, this would significantly increase storage space. A 2-phase 
service model is proposed in [9] where nonadjacent portions of  the video are first 
downloaded (and can provide a fast forward effect) during an initialization phase. 
The missing fragments are then downloaded during the second pass to provide 
regular "play" mode. The technique provides a middle ground between streaming 
and downloading. For longer sequences, the download time could be long, and 
the local storage requirements for the first phase will become significant. In [6] 
and [1] the authors divide the video clip into independently decodable segments, 
usually corresponding to one or more groups of pictures (GoPs). A GoP consi ~ts 
of one I-frame at the beginning and multiple P- and B-frames. No informauon 
outside the GoP is required to decode any of  the frames in the GoR Fast forward 
is then implemented by sampling the segments: 3 • fast forward, for instance, is 
achieved by sending every third segment. Although, on the average, only one-third 
of the frames are transmitted and displayed, this scheme results in a nonuniform 
fast forward effect. Because there are few I-frames (as explained before), a GoP 
can be 10 or more frames long. In the 3x example above, frames 1 through 10 
will all be transmitted and displayed (assuming a GoP size of 10 frames 1. whereas 
frames 11 through 30 will all be dropped, instead of transmitting and displaying 
every third frame (frame 1, frame 4, frame 7. etc. 1. 

The online frame-rate-control scheme described above lends itself naturally to 
the frame-sMpping technique for implementing fast forward control. If  the server 
re-encodes a 30 fps clip at. say, 15 fps (by skipping every other frame), but the 
decoder decodes and displays it at 30 fps, the user will see the clip at r wme its 
natural speed. The bandwidth reqmrements will be slightly more than that needed 
for regular "play" mode (the 15 fps clip will be slightly more than half ~he size of 
the 30 fps clip, but it needs to be sent twice as fasO. and the decoder will still be 



ONLINE RATE CONTROL FOR VIDEO STREAMS 367 

operating at 30 fps. Similarly, if the user wants to see the clip at three times the 
natural speed, the server can re-encode the clip at 10 fps, and so forth. 

4. Implementation and performance results 

4.1. Codec software 

The H.263 software codec that we used is the earlier H.263 V3.0 codec, not the 
H.263+ version which is developed by Telenor and currently maintained by the 
University of British Columbia. 

Two modified versions of the encoder were created. One was the offline encoder 
which was used to create a high-quality coded bit stream at 30 fps. It was also used 
to produce the motion files for 15 fps, 10 fps, and 6 fps streams using a full-search 
algorithm to achieve the best results. A variable-length code representing the COD 
and MB type was used for the motion files (see the discussion in Section 2). 

The other encoder was the online version, which was created by integrating 
the decoder with the encoder. The 30-fps-encoded bit stream could thus be 
decoded and re-encoded at lower frame rates (using the motion files). Also, the 
encoder was modified so as to transmit the encoded bit stream over the network 
instead of saving to disk. In addition, a bit-rate-control mechanism developed in- 
house [2] was integrated with the online encoder. A constant bit-rate stream could 
optionally be produced at a target specified by the user. The original Telenor codec 
includes two different rate-control mechanisms, one of them offline. A number of 
other minor optimizations were also made to improve performance. Overall, the 
complexity of the online encoder was vastly reduced by removing the motion 
estimation functions. It was slightly increased because an additional decoder 
module had to be added. However, the decoder, is less complex than the encoder. 
Furthermore, the decoder module integrated with the encoder was stripped of the 
image dithering and display modules (including YUV to RGB conversions), as 
well as the logic required to display frames at their correct rate. According to our 
profiler, these components consumed 50% of the original decoder's time. 

On the decoder (client) side, the only modification made was to read the bit 
stream from the network instead of a local file. 

4.2. Test bed 

The tests had two main goals. One was to quantify the savings in terms of storage 
space of the proposed scheme as compared to storing several bit streams coded 
at different frame rates. The other was to compare the performance of the online 
encoder with that of the original H.263 encoder, and also to see if the former could 
be used for real-time streaming applications. The test platform was a 300-MHz 
Sun UltraSparc-2 workstation for the server (encoder) and a slower (200-MHz) 



368 PEJHAN, CHIANG, AND ZHANG 

version for the client. The server and client were linked over a moderately loaded 
internal local area network (LANI (100 Mbits/s Ethernet), and no errors or packet 
losses were deliberately introduced. No other applications were being ran on the 
server during the tests (except for the regular operating system-related daemons). 

Three video sequences were used for our tests: Akiyo, News. and Coastguardo 
These are three of  the sequences used in the MPEG-4 test suite. These are all 
10-second. 300-frame sequences. Akiyo is a typical talking-head sequence (fixed 
camera and background, single talking person with small movement, no scene 
cuts. panning, or zooming) with minimal motion. The News sequence includes 
two news anchors (talking heads) with moderate motion and a high-motion 
ballet scene as background which also has scene cuts. The camera is fixed. The 
Coastguard sequence includes multiple objects (two boats) with high motion. The 
camera initially tracks one object and then the other. As such, the background is 
also changing. This sequence has very high motion content. Two versions of  each 
sequence, at QCIF (176 x 144) and CIF (352 x 288) resolutions, were used for 
the tests. 

4.3. Performance results 

In all of our tests, the encoders were run without any of the H.263 options being 
turned on. Also, the same quantization parameters were used throughout. 

4.3.]. Storage space 

Table 1 shows the file size comparison between compressed bit streams at 30, 
15, 10, and 6 fps and the corresponding motion files. As can be seen, the 
motion files are between !4 and 28%, 8 and 15%, and 8 and 11% of the size of  
their corresponding bit streams for the Akiyo, News, and Coastguard sequences, 
respectively. 

Table 2 shows the reduction in required storage space for the proposed scheme 
(i.e., storing the 30 fps bit stream and only the motion files for lower frame rates) 
as compared to storing all four compressed bit streams. The storage space is 
reduced by more than 50% in general. 

Note that, for all six sequences, the savings in storage increases as the frame 
rate drops. Moreover, the savings in storage is higher the greater the motion 
content of  the sequence is. As the temporal difference between consecutive frames 
increases, more and more MBs would need to be encoded, because they are more 
likely to differ significantly from the closest-match MB in the previous frame. 
Motion vectors are also more likely to be nonzero and larger in general. However, 
overall, the ratio of  the coded motion vectors to the rest of  the bit stream falls with 
decreasing frame rates. The same explanation holds for sequences with higher 
motion content: there is more motion information, but more MBs need to be 
encoded, too. 



ONLINE RATE CONTROL FOR VIDEO STREAMS 369 

Table 1. File size comparisons 

File Bitstream Motion file Ratio 
Size (bytes) Size (bytes) (%) 

Akiyo QCIF 30 fps 28,375 6,509 22.9 
Akiyo QCIF 15 fps 19,088 3,590 18.8 
Akiyo QCIF 10 fps 15,575 2,567 16.5 
Akiyo QCIF 6 fps 12,419 t,707 13.8 

Akiyo CIF 30 fps 91,627 25,197 27.5 
Akiyo CIF 15 fps 59,793 14,282 23.9 
Akiyo CIF 10 fps 48,767 10,364 21.3 
Akiyo CIF 6 fps 38,170 7,009 18.4 

News QCIF 30 fps ?8,503 9,155 11.7 
News QCIF 15 fps 53,975 5,469 10.1 
News QCIF 10 fps 44,092 4,023 9.1 
News QCIF 6 fps 33,853 2,705 8.0 

News CIF 30 fps 226,320 35,993 15.9 
News CIF 15 fps 154,180 21,866 14.2 
News CIF 10 fps 126,377 16,291 12.9 
News CIF 6 fps 97,096 10,934 11.3 

Coastguard QCIF 30 fps 184,078 19,462 10.6 
Coastguard QCIF 15 fps 117,151 11,570 9.9 
Coastguard QCIF 10 fps 96,099 8,752 9.1 
Coastguard QCIF 6 fps 79,766 6,273 7.9 

Coastguard CIF 30 fps 840,910 90,158 10.7 
Coastguard CIF 15 fps 537,076 57,399 10.7 
Coastguard CIF 10 fps 477,733 45,127 9.5 
Coastguard CIF 6 fps 381,319 28,915 7.6 

Table 2. Savings in storage for proposed scheme 

File 4 Bit Streams 1 Bit Stream +3 Motion Files Ratio (%) 

Akiyo QCIF 75,457 36,239 48.0 
Akiyo CIF 238,357 123,282 51.7 

News QCIF 210,423 90,700 43.1 
News CIF 603,496 275,411 45.6 

Coastguard QCIF 477,094 210,673 44.2 
Coastguard CIF 2,237,038 972,351 43.5 



370 PEJHAN, CH[ANG. AND ZHANG 

Note also that. in practice, the savings in storage would be even more than 
that shown in Table 2. The reason for this is that in our tests, all sequences 
were encoded such that the first frame was an I-frame and all the rest were P- 
frames. The frequency of I-frames is not specified by the standard and is up 
to the implementors. This achieved maximum compression, and it is how the 
H.263 original software was implemented. However. in practice, I-frames need 
to be inserted regularly (particularly if the streams are to be transmitted over 
noisy and/or congested lines) to prevent error propagation. I-frames are larger 
(several times on the average) than P-frames. so the compressed file sizes would 
be larger than those reported in Table 1. For the News CIF resolution sequence, for 
instance, inserting an I-frame every 30 frames increased the file size (of the 30 fps 
sequence) by about one-third. There is no motion information associated with an 
I-frame. however, so the motion file sizes reported in Table 1 would remain the 
same. Hence. the ratio of  motion file size m compressed bit stream size would be 
lower. 

The value of the trade-off between storage space and server side processing 
could vary depending on the application, lengths of the clips to be streamed, 
and usage of the server. In scenarios where the clips are relatively short and the 
number of  clients accessing them is high (e.g., news clips on a popular news site 
the savings m storage may not be worth the increase in processing. If  the clips are 
really short, video streaming itself may not be needed because downloading the 
files and then playing them back locally would be feasible. On the other hand. it" 
very long sequences are to be stored on the server, but few clients are expected to 
access the server concurrently, then the trade-off might be worth it. The four QCIF 
resolution Coastguard sequences take up 477 kB of space, even though they are 
only 10 second clips with a single I-frame. Two-hour (7.200-second) versions of  
these clips would likely take up 343 MB of space. A server with a database of 100 
such clips would require 34 GB of storage. The 56% reduction in storage achieved 
by using the proposed scheme might be an attractive option in this scenario. 

4.3.2. Encoding speed 

Table 3 provides a comparison between the encoding speeds of  the online encoder 
and the H.263 V3.0 encoder. Data for the V2.0 encoder, which, like the online 
encoder, uses full search motion estimation, is also included. The data shown is 
for encoding the six test sequences at 15 fps. For the two original encoders, the 
input data is the raw file and the output bit stream is written to a local disk. For 
the online encoder, the input data is the 30-fps-encoded bit stream and the output 
is sent to the client, which decodes and displays the stream, We have provided the 
actual time taken to encode each 10-second sequence: The numbers in parentheses 
indicate the speed in frames per second. 

It is observed that the online encoder performs between three to seven times 
faster than the V3.0 encoder, with the added benefit of  using more accurate motion 



ONLINE RATE CONTROL FOR VIDEO STREAMS 371 

Table 3. Encoding time comparisons 

File Online encoder H.263 V3.0 H.263 V2.0 

Akiyo QCIF 15 fps 5.5 s (55.0 fps) 31.6 s (9.5 fps) 68.2s (4.4 fps) 
Akiyo CIF 15 fps 18.6 s (16.1 fps) 125.0 s (2.4 fps) 333.0 s (0.9 fps) 

News QCIF 15 fps 7.5 s (40.0 fps) 34.1 s (8.8 fps) 78.9 s (3.8 fps) 
News CIF 15 fps 25.0 s (12.0 fps) 136.0 s (2.2 fps) >300.0 s (< 1.0 fps) 

Coastguard QCIF 15 fps 13.0 s (23.0 fps) 42.3 s (7.1 fps) 103.0 s (2.9 fps) 
Coastguard CIF 15 fps 47.6 s (6.3 fps) 176.0 s (1.7 fps) 500.0 s (0.6 fps) 

vectors. The V3.0 encoder is itself some two to three times faster than the V2.0 
encoder. The performance for the original H.263 encoders would be even slower 
if one had to decode a 30 fps bit stream and re-encode it at a different frame 
rate. As one might expect, the performance improvement achieved for the online 
encoder is greatest for the Akiyo sequence (factor of 5.8 and 6.7 over the V3.0 
for QCIF and CIF resolutions, respectively), which has little motion, and least 
for the Coastguard sequence (factor of 3.2 and 3.7 for QCIF and CIF resolutions 
respectively), where the motion is high. 

These data show that the original H.263 encoders cannot encode the raw video 
fast enough (on the platform used) for real-time purposes (let alone decode a 
compressed stream and re-encode it at lower frame rates). 

The online encoder, on the other hand, encoded the 15-fps QCIF sequences at 
55, 40, and 23 fps for the Akiyo, News, and Coastguard sequences, respectively. 
This meant that not only were we able to decode a 30-fps bit stream and re-encode 
it at 15 fps (and of course lower rates) in real time, but we were also able to 
implement the fast forward control by re-encoding, transmitting, and displaying 
the lower frame rates at 30 fps (for Akiyo and News, 23 fps for Coastguard). Re- 
encoding the sequence at 15 fps and displaying it at 30 fps provided a 2x fast 
forward effect, while re-encoding the sequence at 10 fps and displaying it at 30 
fps achieved a 3 x fast forward effect and so forth. 

However, for the CIF sequences, the online encoder did not exceed 16 fps for 
any of the three sequences. This meant that only frame rates of 16, 12, and 6 fps 
and lower could be re-encoded in real time (for the three sequences respectively). 
By the same token, fast forward control could only be achieved for frame rates 
less than 16, 12, and 6 fps. 

4.4. Limitations 

Although real-time operation for CIF sequences is achievable for the current top- 
of-the-line 1-GHz, or multiprocessor, PCs and workstations, it is clear that the 
scheme proposed here is not scalable to a server with a large number of concurrent 
clients, unless very powerful machines (and/or special-purpose hardware) are 



372 PEJHAN, CHIANG, AND ZHANG 

used. On the other hand, the CIF resolution sequences, are not tikely to be used 
for streaming video over the Inter_net because they require very high bandwidths 
that are likely to be used on high-speed col]aorate Intranets. The three 15-fps C!F 
sequences used here, for instance, require 94, 123, and 430 kbpS, respectively. 
Most video clips streamed on the Internet today are coded at 160 x 120 resolution 
(even smaller than QCIF) and in the 20-56 kbps range. 

Having said this, even at QCIF resolutions, the proposed scheme cannot scale 
to very large numbers of  concmTent users. As such, it would be more appropriate 
for moderately used servers (such as those with restricted access). 

5. Conclusions  

We have proposed a scheme to vary the frame race of pre-encoded video citps 
online, particularly in a video streaming application. According to this scheme, a 
video clip is encoded at high quality and 30 fps and stored on a server. In addition, 
motion vectors for encoding that same clip at lower frame rates are computed 
offline and stored on the server. During video streaming, an online encoder can 
decode the high-quality stream and re-encode it at a lower frame rate in real nine 
(for QCIF and lower resolutions). The additional storage requirements for the 

motion files are relatively small. 
Varying the frame rate provides greater control  over the video stream. B y 

reducing the frame rate of  the clip, the bandwidth witl be reduced without further 
loss in the spatial quality (temporal quality will be reduced instead). The scheme 
can also be used to implement a fast forward control: the encoder re-encodes the 
stream at a lower frame rate, but the decoder plays it back at the natural frame 
rate. The fast forward effect is thus achieved without increasing the bandwidth 
consumption significantly or requiring additional buffering at the cliem side. This 
technique for providing fast forward control is a compromise between storing 
multiple versions of  the bit stream on one extreme and completely re-encodh~g 
the bit stream on the other. It achieves more than 50~  savings on storage space 
compared m the first but is not as scalable in terms of  the number of clients 
supported. It also provides about four or five times improvement in performance 

over the second, but requires 15 20% more storage. 

References 

[1] M.-S. Chen, D. Kandlur, and R Yu, Support for fully interactive playout in a disk-array-based 
video server, in Proceedings of ACMMultimedia '94, San Francisco, CA, pp. 391-398; October 
1994. 

[2] Ti-Hao Chiang, A rate control scheme using a new rate distortion mode, ISO/IEC 
JTCI/SC29/WG11 MPEG95/N0436; November 1995. 

[3] J. Dey, J. Salehi, J. Kurose, and D. Towseley, Providing VCR capabilities in large-scale vid.eo 



ONLINE RATE CONTROL FOR VIDEO STREAMS 373 

servers, in Proceedings of ACMMultimedia '94, San Francisco, CA, pp. 25-32, October t994. 
[4] A. Eleftheriadis, Dynamic rate shaping of compressed digital video, Ph.D Thesis, Columbia 

University, New YorK, NY, 1995. 
[5] L. He, E. Sanocki, A. Gupta, and J. Gmdin, Auto-summarization of audio-video presentations, 

in Proceedings of ACM Multimedia '99, Orlando, FL, pp. 489498, November 1999. 
[6] T.-G. Kwon, Y. Choi, and S. Lee, Disk placement for arbitrary-rate playback in an interactive 

video server, Multimedia Syst. J., 5,271-281, t997. 
[7] D. LeGall, MPEG: A video compression standard for multimedia applications, Commun. ACM, 

34, (4), 46-58, April 199l. 
[8] A. Srivastava, A. Kumar, and A. Singru, Design and analysis of a video-on-demand server, 

Multimedia Syst. J., 5, (4), 238-254, 1997. 
[9] W. Tavanapong, K. Hua, and J. Wang, A framework for supporting previewing and vcr eperations 

in a low bandwidth environment, in Proceedings of ACM Multimedia '97, Seattle, WA, pp. 303- 
312, November 1997. 

[i0] Video coding for low bitrate communication ITU recommendation H.263, February 1998. 
[11] G. K. Wallace, The JPEG still picture compression standard, Commun. ACM, 34, (4), 30-44, 

April 1991. 


