
A simple recursive method for converting a chain code into a quadtree
with a lookup table

Z. Chen*, I.-P. Chen

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 7 December 1999; revised 17 July 2000; accepted 4 September 2000

Abstract

We present a simple recursive method for converting a chain code into a quadtree. We generate the quadtree black nodes level by level,

starting from the ®nest resolution (i.e. the bottom) level toward the coarsest resolution (i.e. the top) level. Meanwhile, at each resolution level

a new object border is revealed after the removal of the black nodes. The chain code elements for this new object border can be easily

generated. Thus, the quadtree black nodes and the chain code elements of the new object border are generated side by side and their

generations constitute a basic cycle of the conversion process. We show the generations can be done with the aid of a lookup table. Finally,

we compare our method with the existing two-phase methods exempli®ed by Samet's method in terms of the total numbers of major

operations including node allocations, node color ®lling, and node pointer linking. It indicates that our method is conceptually simpler and

runs faster. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Chain code; Quadtree; Node allocation; Node linking; Color ®lling; Table lookup

1. Introduction

Chain code and quadtree are two widely used data struc-

tures useful for the hierarchical or multi-resolution object

shape representation and image compression [1±16]. The

former is a boundary (or edge-based) representation, while

the latter is a region-based representation. They can be

derived from each other. Here, we address the conversion

from the chain code to the quadtree one.

Consider an object in Fig. 1(a) whose chain code consists

of a sequence of grid segments (or code elements) of equal

length along the object boundary. The code elements have

four possible pointing directions: 0(right), 1(up), 2(left) and

3(down). The quadtree representation is given in Fig. 1(e) in

which four child nodes, indicated by 0, 1, 2, and 3, are

linked to a parent node. The quadtree has different levels

of resolutions, ranging from the ®nest to the coarsest. By

convention, the self-intersection of the chain code is

assumed not allowed unless the intersection occurs between

the starting point and the ending point of the chain code, and

also assume that the grid cell located on the right-hand side

of a code element lies inside the object. The grid cells of size

1 p 1 along the object border, which are encompassed by the

chain code, are not necessarily the legal black nodes in the

quadtree representation. Any quadtree black node must be a

maximal square block inside the object derived from a

recursive partition of the square image. A quadtree node

can only have an area of 40, 41, 42,¼, or 4N, where 4N �
2N p 2N is the size of the square image. The conversion of

the quadtree nodes from the chain code has drawn the atten-

tion of many researchers [17±20]. There are four popular

methods: Samet [17], Mark and Abel [18], Webber [19], and

Lattanzi and Shaffer [20]. The inputs of these methods are in

the form of a chain code or polygon. Their outputs are

pointer-based quadtree or linear quadtree. These methods

are essentially a two-phase method, which was originally

proposed by Samet. Samet's method is ®rst brie¯y described

below.

Phase One (initiating color ®lling and generating the

tentative quadtree): in this phase, the chain code is traced

to get the border cells, which are colored in black (the

shaded cells 1, 2, 3, etc., in Fig. 2(a)). A tentative or inter-

mediate quadtree corresponding to border cells are

constructed, as shown in Fig. 2(b). In the tentative quadtree,

the border pixel nodes are colored in black. The parents or

ancestors of any black node or gray node are colored in gray.

All other nodes without having any black or gray descen-

dants are called ªindeterminateº nodes whose color is to be

determined in the next phase. To construct the quadtree,

Image and Vision Computing 19 (2001) 413±426

0262-8856/00/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0262-8856(00)00080-9

www.elsevier.com/locate/imavis

* Corresponding author. Tel.: 1886-3-5731875; fax: 1886-3-5723148.

E-mail address: zchen@csie.nctu.edu.tw (Z. Chen).

memory spaces have to be allocated to accommodate the

above black, gray and indeterminate nodes and pointer links

between parent and child nodes must be established.

Phase Two (completing the node coloring and the ®nal

quadtree): those ªindeterminateº nodes right inside the

object border are colored in black and those right outside

the object border are in white. Similarly, through the new

object borders the colors of all other ªindeterminateº nodes

are gradually determined as black or white. In addition to

the color ®lling of ªindeterminateº nodes, a node that was

initially in a gray color is re-colored as black if its four son

nodes are expanded and found all black; namely, a node

merge takes place. After merge, the four son nodes are

deleted and their memory allocations are freed.

The other three methods are basically similar to Samet's

method. In Mark and Abel's method, the chain code repre-

sentation is derived from a vector representation of the

polygonal shape of the object. After the method traces

the chain code to get the border grid cells, it uses the loca-

tion code of each border grid cell to infer the colors of the

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426414

Fig. 1. (a) An object with a chain code, CC4 � 10101110300330003030003333222222333322221111221111: The code element marked with S is the starting

element. (b) The shaded area is the pixel-level black node of QN4. The center points in the parent nodes are marked as solid dots. The dash-lined arrows

indicate the new code elements generated. (c) The chain code CC3 and the quadtree nodes QN3 all at level 3. (d) The chain code CC2 and the quadtree nodes

QN2 all at level 2. (e) The ®nal quadtree representation.

ªindeterminateº nodes. Webber's method also ®rst

constructs the initial tentative quadtree and, then infers the

colors of ªindeterminateº nodes which is similar to Samet's

method. But Webber's method shifts the chain code repre-

sentation to a certain optimal position to help the color ®ll-

ing operation. Lattanzi and Shaffer's method gets the

locational code of border grid cells which is similar to

Mark and Abel's method. Then the border grid cells are

sorted according to Morton order. The colors of ªindetermi-

nateº nodes are determined in a way similar to Samet's

method.

The major drawback in the above two-phase methods is

the need of merging four child nodes into a parent node.

This is due to the lack of some mechanisms for judging

whether the border grid cells are legal black nodes in the

®nal quadtree? In Fig. 2 the border grid cells 1, 2, 3 are the

®nal legal quadtree black nodes, but the border grid cells 4

and 5 are not, because they are contained in some other

larger quadtree black nodes. It is not dif®cult to ®nd out,

during the chain code tracing, that the parent node contain-

ing the border grid cells 1, 2, 3 is pierced through by the

chain code, so the three grid cells are the maximal black

nodes of the quadtree. However, it is not so trivial to see

immediately that the border grid cell 4 or 5 is contained in

some larger quadtree black node, so neither of them is quali-

®ed as a quadtree black node.

We shall present a simple method to determine which

border grid cells should be outputted as the legal quadtree

black nodes during tracing the chain code. We then remove

these black nodes to reveal the new object border. The new

object border is associated with a new chain code whose

element length is doubled. Quadtree black nodes are gener-

ated recursively and at the same time the chain code

elements of the new object border are also generated to be

used in the next pass or run. The process is repeated until

the quadtree black nodes at all levels are generated.

Fig. 1(b)±(d) illustrates the result of this recursive genera-

tion process, where the solid lines are the chain code

elements at the current resolution level, the dashed lines

are the chain code elements at the next coarser level.

Furthermore, we point out it is possible to design a lookup

table to speed up the conversion process. Comparisons with

the existing methods indicate a better performance of the

proposed method.

The rest of the paper is organized as follows. Section 2

describes the lemmas for validating a border grid cell as a

legal quadtree black node at each resolution level. And the

generation of the chain code elements for the new object

border is given. Section 3 describes the table lookup method

for generating the quadtree black nodes and the new chain

code elements. Section 4 provides a performance compar-

ison between the proposed method and the existing two-phase

methods. Section 5 is the concluding remarks.

2. Generation of quadtree black nodes and new chain
code elements

Let the notations of quadtree nodes and chain codes at

various resolution levels be de®ned ®rst. Let QNi, i �
N;N 2 1;¼; 0; be the set of quadtree black nodes at the

ith level. (Here the Nth level is the ®nest resolution level.)

Let CCi denote the chain code of the object at the ith resolu-

tion level and CCN is the given object chain code. We shall

generate all sets of black nodes of QNi, i � N;N 2 1;¼; 0;

from the ®nest resolution level �i � N� to the coarsest reso-

lution level �i � 0�: First of all, refer to the grid points of the

square image at the various resolution level in Fig. 1. We

classify the grid points at each resolution level into three

types, depending on: (1) if it is a grid point at the next

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426 415

Fig. 2. (a) The border grid cells used in Samet's method. (b) Part of the tentative quadtree generated in Samet's method, the nodes a to j are labeled

ªindeterminateº, i.e. their colors are to be decided later.

coarser level (i.e. a grid point of a parent block); or (2) if it is

the center point of a parent block; or (3) if it is a midpoint of

the chain code element of the parent block (or simply the

edge midpoint of a parent block).

We can choose to generate all quadtree black nodes at a

given level ®rst and then obtain the new chain code at a

coarser level after the removal of all black nodes at the

current level. Here the new chain code is obtained by tracing

the new object border. However, the sequential generation

of the quadtree black nodes and the new chain code is a

waste of time. Instead, we will generate the quadtree black

nodes and the new chain code elements side by side. We

observe that if a parent node is pierced through by the chain

code, then the black son nodes are the legal quadtree black

nodes. And the new code elements associated with the new

object border after removal of the generated black nodes can

be immediately determined. In addition, it must be pointed

out that only the four son nodes belonging to a common

parent node are involved in the decision about whether

they are the legal quadtree black nodes or not? Therefore,

four consecutive code elements at a time are scanned in a

basic cycle of the generation process. On the other hand, the

starting point of the chain code is chosen to be a grid point at

the parent level because the chain code at the next coarser

level is de®ned over such grid points.

The following are two important lemmas for determining

the legal quadtree black nodes during the chain code scan-

ning.

Lemma 1. If and only if any code element of CCi enters

the center point of a parent node, then there will be one to

three black nodes of QNi at the current level. The exact

number of black nodes depends on the actual pattern of

the succeeding code elements.

Proof. (1) The `if ' part. In Fig. 3(a) assume a code

element of CCi at the current level enters the center point

of a parent node from the north direction (for the other

directions the proof proceeds similarly). Since the right-

hand-side grid cell of the code element is inside the object,

so the color of child node 0 is black and the color of child

node 1 is white. The colors of child nodes 2 and 3 depend on

the types of the succeeding code elements, as shown in

Fig. 3(a). Therefore, there is one or up to three current-

level black nodes.

(2) The `only if ' part. There are four grid cells or son

nodes around the center point of a parent node. If these four

nodes are all white (black), then the center point of the

parent node is outside (inside) the object. So the center

point of the parent node is not passed through by the

chain code. On the other hand, if one to three black grid

cells are around the center point of the parent node, then the

center point of the parent node is located on the boundary of

object and it will be reached by a code element. A

Lemma 2. If two consecutive code elements of CCi, i �
N;N 2 1;¼; 1; at the current level are in the same direction

and lie on the border of a common parent node, then there

will be two to four black grid cells of QNi at the current

level. The exact number of quadtree black nodes depends on

the actual pattern of the succeeding code elements.

Proof. Consider the two code elements lying on the north

border of a parent node (the proof works similarly for other

borders), as shown in Fig. 3(b). Since the right-hand side

grid cell of the code element is inside the object, so the

colors of grid cell 0 and grid cell 1 are black.

The colors of grid cell 2 and grid cell 3 are determined by

whether there is any succeeding code element cutting

through the center point of the parent node:

1. If there is a code element entering the center point of the

parent node, then at least one of grid cell 2 or grid cell 3

will be white (Fig. 3(b)). So there are two to three black

grid cells at the current level.

2. If not, then these four grid cells are all black, and these

four cells should not be outputted as the current level

black nodes, since they are included in the black parent

node at the next coarser level. The output of the black

parent node will be handled at the next coarser level. A

As shall be seen, the output of the black quadtree nodes

will be taken care of by the following-up chain code tracing.

So the two code elements are replaced with a code element

of a double length in the same direction to be used at the

next coarser level.

We now describe how to scan the chain code CCi at the

current level by starting from the grid point at the next

coarser level, and fetch at most 4 code elements at one

time. We then generate the quadtree black nodes of QNi at

the current level and the next coarser level chain code CCi21

in the following way.

When starting from a grid point at the next coarser level,

the ®rst code element must move to a midpoint of a parent

node. Fig. 4 illustrates the 19 possible code element patterns

when the initial code element goes in the upward direction;

for the other cases of the initial code direction the analysis

works similar. With respect to the ®rst code direction, the

second code element has two possible directions: (1) it will

go to a second grid point at the next coarser level; or (2) it

will go to the center point of the parent node.

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426416

Fig. 3. Chain code sequences considered in Lemma 1 (a) and Lemma 2 (b).

For the ®rst case, these two code elements are in the same

direction and, thus, satisfying Lemma 2. So we simply

replace these two code elements by a code element of a

double length at the next coarser level. And the next conver-

sion cycle is to start from the second grid point.

For the second case the third code element must go to a

midpoint of the parent node. Then the second and third code

elements satisfy Lemma 1, so one to three black nodes of

QNi at the current level will be produced, depending on the

direction of the fourth code element. Meanwhile, which grid

point to start within the next conversion cycle depends on

the fourth code element type. There are two possibilities:

First, if the fourth code element moves to a grid point at

the next coarser level (refer to Fig. 4(b)), then this grid point

is chosen to be the new starting point. Second, if the fourth

code element ends at a center point of a neighboring parent

node (refer to Fig. 4(c)), then the grid point at the next

coarser level located on the right-hand-side of the third

and fourth code elements is the new starting point. In this

case, we insert, after the third code element, a code element

from the end point of the third code element to the new

starting grid point. In this way, this pattern of four code

elements falls in the same category of the preceding one.

After adding an extra code element after the third code

element, we need to balance off by adding another code

element in the reverse direction. This new code element is

inserted before the fourth code element, so the inserted one

and the original fourth one will become the ®rst two code

elements in the next conversion cycle.

When the above black nodes of QNi are outputted, then a

new object border is exposed which can be represented by

some (or none when ®nished) new code element(s) at the

next coarser level, each with a double length. It should be

noticed that the new chain code may contain pairs of code

elements in opposite directions and these pairs of elements

cancel out by themselves (see examples in Section 3). So we

need a post-processing stage to remove such code element

to make sure that the processed chain code will satisfy our

assumption of no self-intersection.

Next, consider the selection of an appropriate starting

point. If the starting point of the chain code of CCi at the

current level is not a grid point of its parent node, then there

are two ways to adjust the code element sequence. One way

is to shift along the chain code until we come across a grid

point at the next coarser level, and this grid point is chosen

to be the new starting point. But even if such a grid point

exists, it is sometimes a waste of time to ®nd it, so we will

not do so. Instead, we choose the second way, which works

as follows:

1. If the starting code element goes from a midpoint to a

grid point (Fig. 5(a)), then the grid point is chosen as the

new starting point and the chain code is shifted by one

element.

2. If the starting code element goes from a midpoint to a

center point (Fig. 5(b)), then a pair of code elements with

the opposite directions is inserted between the starting

middle point and a grid point on the right-hand-side of

the starting code element. The grid point chosen is the

new starting point and the chain code is modi®ed accord-

ingly.

3. If the starting code element goes from a center point to a

midpoint (Fig. 5(c)), then by shifting to the second code

element, the chain code now starts from a midpoint. We

can apply one of the above two ways to choose a new

starting point.

Once we choose a grid point as the starting point for

scanning the chain code, we can fetch four succeeding

code elements to analyze. Notice that there are only a ®nite

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426 417

Fig. 4. (a) The 19 possible patterns of a code sequence consisting of four consecutive code elements, assuming the starting code element (labeled by s) is in the

upward direction. (b) The cases in which the fourth code element stops at a grid point at the next coarser level. (c) The cases in which the fourth code element

stops at a center point of a neighboring coarser node.

Fig. 5. The three cases for the adjustment of the starting point. The square

indicates the midpoint; the circle indicates the grid point at the next coarser

level.

number of patterns that these code elements can form, we

shall propose a table lookup method for the generation tasks

we have described above.

3. The table lookup method

In this section a table lookup method for generating black

quadtree nodes and the new chain code elements is

presented. We know that the total number of possible

combinations of four code elements is 256 � 44
: Among

these 256 combinations, some are illegal under the assump-

tion that the self-intersection of the chain code is prohibited.

There are totally 108 legal patterns, as described below.

First, when the ®rst two code elements are in the same

direction, there are four categories denoted as 00XX,

11XX, 22XX, and 33XX, where XX may be from {00,

01,¼,33}. Each of these four categories has only 3 p 3

legal patterns. Secondly, when the ®rst two code elements

are not in the same direction, the number of legal patterns of

four code elements is 72 � 4 p 2 p 3 p 3: Totally there are

108 � 4 p 9 1 72 legal patterns.

Now consider a typical code element pattern. Fig. 4(a)

shows all the possible combinations of at most four code

elements, assuming a starting code element (marked by s) is

in direction 1. Fig. 6 shows the generated black nodes

(shown by shaded areas), the generated code elements at

the next coarser level (shown by long arrows), and the possi-

ble adjusted code elements at the current level (shown by

short arrows). They are collected in a lookup table given in

Table 1(a). Using input code pattern 0100 as an example

(refer to Fig. 6). There is an output code element of CCi21,

which is direction 0 (the long arrow pointing rightward in

the right side of Fig. 6). There is a black quadtree node of

QNi, which is quadrant 3 (the lower right shaded region).

Also there are two adjusted code elements of CCi, which are

directions 1 and 0 (the short arrows in the right side). Simi-

larly, we can rotate all the patterns in Fig. 6 counterclock-

wise by 90, 180, and 2708 to derive the results shown in

Table 1(b)±(d).

The chain code in Fig. 1(a) is used as an illustrative

example to show how to use the lookup table for creating

the possible black quadtree nodes and the new chain code

elements. The initial chain code is given by

CC4 � 10101110300330003030003333

222222333322221111221111:

The letter ªsº indicates the starting point. The scanning of

the chain code is performed as follows:

1. The starting point ªsº of CC4 is a grid point at the next

coarser level. Fetch four code elements CC4 (1) to CC4

(4) whose code pattern is 1010. From the lookup table,

we output three black nodes with Morton orders of 0231,

0232, and 0233 and two new code elements CC3 (1) and

CC3 (2) at the next coarser level, whose pattern is 01.

These results are shown in Fig. 1(b).

2. Since there are no output of the adjusted code elements at

the current level, fetch the next four code elements from

the remaining chain code whose code pattern is 1110.

3. From the lookup table corresponding to the input pattern

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426418

Fig. 6. The typical 19 patterns in the table lookup operation. The input is the four code elements. The shaded blocks are the output black quadtree nodes. The

long arrowheads are the output new chain code elements of CCi21 and the short arrowheads are the output adjusted code elements of CCi.

Z
.

C
h

en
,

I.-P
.

C
h

en
/

Im
a
g
e

a
n
d

V
isio

n
C

o
m

p
u
tin

g
1
9

(2
0
0
1
)

4
1
3

±
4
2
6

4
1
9

Table 1

The lookup table for generating the new chain code element(s) of CCi21 at the next coarser level, the quadtree black node(s) of QNi, and the adjusted code elements of CCi for all 44 possible input code patterns of

CCi. The input code element marked as X is an arbitrary element

(a) (b) (c) (d)

Input

code

pattern

of CCi

New code

element(s)

of CCi21

Adjusted

code

elements

of CCi

Black

quadtree

nodes of

QNi

Input

code

pattern

of CCi

New code

element(s)

of CCi21

Adjusted

code

elements

of CCi

Black

quadtree

nodes of

QNi

Input

code

pattern

of CCi

New code

element(s)

of CCi21

Adjusted

code

elements

of CCi

Black

quadtree

nodes

of QNi

Input

code

pattern

of CCi

New code

element(s)

of

CCi21

Adjusted

code

elements

of

CCi

Black

quadtree

nodes of

QNi

00XX 0 XX ± 1000 0 10 2,3 20XX 3000 30 10 32

0100 0 10 3 1001 01 ± 2,3 2100 2 10 3 3001 301 ± 32

0101 01 ± 3 1002 2101 1 ± 3 3002

0102 1003 0 ± 2,3 2102 3003 30 ± 32

0103 0 ± 3 1010 01 ± 1,2,3 2103 ± ± 3 3010 301 ± 1,2,3

0110 01 ± 1,3 1011 01 21 1,2,3 2110 1 ± 1,3 3011 301 21 1,2,3

0111 01 21 1,3 1012 012 ± 1,2,3 2111 1 21 1,3 3012 3012 ± 1,2,3

0112 012 ± 1,3 1013 2112 12 ± 1,3 3013

0113 102X 2113 302X

0120 1030 0 ± 2 2120 3030 30 ± 2

0121 012 ± 0,1,3 1031 2121 12 ± 0,1,3 3031

0122 012 32 0,1,3 1032 ± ± 2 2122 12 32 0,1,3 3032 3 ± 2

0123 0123 ± 0,1,3 1033 1 03 2 2123 123 ± 0,1,3 3033 3 03 2

013X 11XX 1 XX ± 213X 31XX

02XX 120X 22XX 2 XX ± 320X

0300 30 10 0,2,3 1210 1 ± 1 2300 230 10 0,2,3 3210 ± ± 1

0301 301 ± 0,2,3 1211 1 21 1 2301 2301 ± 0,2,3 3211 3 21 1

0302 1212 12 ± 1 2302 3212 2 ± 1

0303 30 ± 0,2,3 1213 2303 230 ± 0,2,3 3213

031X 1220 231X 3220

0320 1221 12 ± 0,1 2320 3221 2 ± 0,1

0321 ± ± 0 1222 12 32 0,1 2321 2 ± 0 3222 2 32 0,1

0322 0 32 0 1223 123 ± 0,1 2322 2 32 0 3223 23 ± 0,1

0323 3 ± 0 1230 1230 ± 0,1,2 2323 23 ± 0 3230 230 ± 0,1,2

0330 30 ± 0,2 1231 2330 230 ± 0,2 3231

0331 1232 123 ± 0,1,2 2331 3232 23 ± 0,1,2

0332 3 ± 0,2 1233 123 03 0,1,2 2332 23 ± 0,2 3233 23 03 0,1,2

0333 3 03 0,2 13XX 2333 23 03 0,2 33XX 3 XX ±

1110, we obtain the output of a new code element of

CCi21 (i.e. ª1º in this case). There are no outputs of

black quadtree nodes, but two adjusted code elements:

10. We fetch two more code elements from the remaining

chain code CCi.

4. In this way, the remaining code elements are scanned

four at a time. The outputted black nodes are 0122,

0310, 0312, and 1232. At the end of the ®rst pass of

the chain code scanning, we obtain a new chain code at

the next coarser level which is CC3 �
011030030033222332211211: Since the initial starting

point of CC3 is not a grid point at the next coarser

level so it is adjusted to start at the second position,

resulting in the modi®ed chain code being

110300300332223322112110 (see Fig. 1(c)).

5. For the second pass of scanning, the chain code CC3 is

scanned to construct QN3, resulting the black nodes 030,

032, 033, 122, 310, 312, 201, and 203 in order (refer to

Fig. 1(c)). The new chain code at the next coarser level

CC2 is 1300323211. Since there is a self-intersection in

the ®rst two code elements 13, they are cancelled out.

The new starting point of CC2 is not a grid point at the

next coarser level, so the chain code is adjusted to

03232110.

6. For the third pass, the new chain code CC2 is scanned

to construct QN2, producing the nodes 21, 23, and 30

(refer to Fig. 1(d)). The resultant chain code at the

next coarser level is CC1 � 31: After the cancellation

of pairs of opposite code elements, CC1 becomes

empty, and so is CC0. No black nodes of QN1 and QN0

are generated.

7. The ®nal quadtree is shown in Fig. 1(e).

An overall description of the above table lookup algo-

rithm for the conversion process is given below.

Algorithm:

Input: The chain code of the object, CCN, placed in

NextCC[].

Output:

(1) The output of black quadtree nodes QNi placed in

OutputNode[] and the output of new chain code CCi21

at the next coarser level placed in OutputCode[] for i �
N; N 2 1;¼; 1:

(2) The ®nal quadtree representation of the object.

The data structures used in the algorithm are described

below.

(a) short Morton[N];//2N p 2N is the size of square

image.

(b) short CurCC [M], NextCC[M];//M is a suf®cient

large number.

(c) short InputPattern[4], OutputNode[3], Output-

Code[4], AdjustedCode[2];

(d) int indexCurCC, indexNextCC;//index of CurCC

[], NextCC[].

(e) struct node {

short color;

struct node p parent, p son[4]

}

The array Morton [] stores the Morton order of the black

node(s) listed in the data OutputNode []. The array Input-

Pattern [] stores the input code pattern used for table

lookup. The arrays OutputNode [], OutputCode [], and

AdjustedCode [] store the outputs of the table lookup opera-

tion.

Next, the functions called are described below.

(a) PointerWrite (P,j,S) {P.son [j]� S; S.parent� P;}

(b) AdjustInputPattern () {

InputPattern[0]� AdjustedCode[0];InputPattern[1]�
AdjustedCode[1];

InputPattern[2]� CurCC[indexCurCC 1 1];

InputPattern[3]� CurCC[indexCurCC 1 2];

IndexCurCC 1 � 2;}

(c) AppendNextCCWithOutputCode () {

for �i � 0; i , Length(OutputCode); i11)

NextCC[indexNextCC 1 i]� OutputCode[i];

indexNextCC 1 � Length(OutputCode);}

(d) GenerateQTNode () {

int i;

struct node p CurNode, p NextNode;

CurNode� ROOT;//Start from ROOT;

for �i � 0; i , Length(Morton); i11) {

If (CurNode.son[Morton[i]]� nil) {

NextNode� Allocate ();

PointerWrite(CurNode, Morton[i], NextNode);

Coloring(NextNode, `Gray');

}

CurNode� CurNode.son[Morton[i]];

}

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426420

Table 2

The comparison of major operations between Samet's method and our

method

Operation Method Samet's method Our methoda

Phase 1 Phase 2

Node allocation Black node Yes No Yes

Gray node Yes No Yes

Indeterminate node Yes No No

Node coloring Black Yes Yes Yes

Gray Yes No Yes

White No Yes No

Pointer writing Yes No Yes

Node merge Node deallocation No Yes No

Node recoloring No Yes No

Pointer rewriting No Yes No

Chain code Reading Yes No Yes

Updating No No Yes

Depth-®rst tree traversal No Yes No

a Only the black nodes and gray nodes are constructed in our method. To

produce the complete quadtree, the child nodes, which are not colored

black, are taken as white by default.

for �i � 0; i , Length(OutputNode); i11) {

NextNode� Allocate();

PointerWrite(CurNode, OutputNode[i], NextNode);

Coloring(NextNode, `Black');

}

}

There are other minor functions. The function FetchFour-

InputPattern() fetches four code elements from

CurCC[].The function NotEndOfCurCC() checks whether

the end of CurCC is reached. The function Cancellation(-

NextCC) performs any possible cancellations between pairs

of opposite code elements to eliminate the self-intersection

of code elements in CCi21.

Next, the main procedure of the algorithm is given:

Main() {

While (Length(NextCC)!� 0) {//Start a new pass of

the algorithm.//

CurCC� NextCC; indexCurCC� 0;

indexNextCC� 0;

SelectStartingPoint(CurCC);//Select a grid point at

the next coarser level.//

while (NotEndOfCurCC()) {

if (Length(AdjustedCode)� � 0) {

FetchFourInputPattern();//

//Fetch 4 code elements from CurCC[].

}

else {

AdjustInputPattern();//Fetch 2 code elements

from

//AdjustedCode[] and 2 code elements from

CurCC[].

}

TableLookup(InputPattern, OutputNode, Output-

Code, AdjustedCode);

GenerateQTNode();//Generate QNi at the current

level//

AppendNextCCWithOutputCode();

//Generate CCi21 at the next coarser level.

}

Cancellation(NextCC);//Eliminate any possible self-

intersection of chain code in CCi21.//

}

}

4. Performance comparison

It is dif®cult to give an exact comparison between our

method and the two-phase methods, because they contain

some different operations. But we shall give a gross esti-

mate of their computation times. For comparison purpose,

major operations of our method and the two-phase

methods represented by Samet's method are listed in

Table 2. To gain some insight into the comparison, we

show the more detailed results of the quadtree generation

by the two methods in Figs. 8 and 9 for two representative

objects shown in Fig. 7(a) and (b). We summarized the

execution numbers of major operations for all objects in

Fig. 7 in Table 3. From these examples, we conclude:

1. The two-phase method allocates more nodes than

required in the ®nal quadtree representation, while

our method only generates the black nodes in the

®nal quadtree representation.

2. The two-phase method invokes a coloring process

utilizing a local, single code element to decide the

color of its corresponding quadtree node, while our

method uses a look-ahead or global process to deter-

mine any possible black nodes in the ®nalized quad-

tree. As a consequence, the two-phase method may

produce a temporary black node, resulting in a later

node merge; our method does not produce any tempor-

ary black nodes.

3. The two-phase method has to check the color of nodes

which are white in phase 2; our method only concerns

with the black nodes. The white nodes in the ®nal

quadtree are by default.

4. The color determination mechanism in the two-phase

method is by checking the spatial relation between the

particular node and the object boundary location; while

a predetermined table is lookedup in our method.

5. The order of node expansion (i.e. its construction) in

phase 2 of the two-phase method is decided by the

depth-®rst traversal of the tentative quadtree, while in

our method, it is always by the chain code tracing at

the various resolution levels.

Based on the above observation, we can compare the

computation time required by these two methods as

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426 421

Fig. 7. Six object images used in the performance evaluation.

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426422

Fig. 8. The quadtree generation for Object 1 by the two methods. (a)±(e) The intermediate results of Samet's method. The numbers indicate the sequence of the

operations taking place. (f)±(i) The intermediate results of our method. The numbers in brackets indicate the Morton code of the generated black nodes.

follows. The main common operations executed by both

the methods are: (1) memory allocation for node

constructions and memory deallocation after node

merging; (2) write/rewrite of the color ®eld in the

node data structure; (3) write/rewrite of the ®ve pointers

in the node data structure; and (4) read of the chain

code element(s). We shall examine the execution of

the ®rst three operations. The reading time of the

chain code element(s) in the last operation is negligible.

Overall speaking, the dominant time is the memory

allocation time for node constructions. The main differ-

ences between these two methods are: (1) the decision

on the next node(s) to be expanded; and (2) the color

determination process used by two methods, as already

described above. In regard to the node expansion order

phase 2 of the two-phase method does the depth-®rst traversal

of the tentative quadtree. Our method traces the chain code

elements to get the black node(s) for expansion. Furthermore,

the table lookup operation also produces the new chain code

elements and/or the adjustment in the current chain code.

Generally speaking, it takes more time to implement the

depth-®rst tree traversal than the table lookup operation.

For simplicity, we ignore these different operations required

by the individual methods. We shall concentrate on the

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426 423

Fig. 8. (continued)

execution time of the common operations taking place in

both methods. Lemmas 3±5 summarize the differences in

the total operation numbers of: (i) node allocation/dealloca-

tion; (ii) node coloring; and (iii) node pointer linking.

Lemma 3. The total number of nodes expanded (or gener-

ated) by Samet's method is larger than that of the regular

quadtree by a number that is equal to the total number of

nodes that are deleted due to any node merges taking place.

The total number of nodes expanded by our method is equal

to that of the regular quadtree.

Lemma 4. The total number of color ®lling operations in

Samet's method is larger than that of our method by a

number that is equal to the total number of merged nodes

times 1.25 (i.e. the total number of black nodes deleted plus

their re-colored parent nodes).

Lemma 5. The total number of pointer links constructed

in Samet's method is larger than that of our method by a

number that is equal to the total number of merged nodes

times 3 (i.e. the total number of pointer links constructed

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426424

Fig. 9. The quadtree generation for Object 2 by the two methods. (a) and (b) The generation results obtained by Phase 1 and Phase 2 of Samet's method. (c)±(e)

The generation results obtained by our method.

between the parent nodes and their child nodes before and

after node merges).

The computational time required by each of the two

methods is roughly equal to the summation of products of

the average execution time per operation and the total

operation number of each operation over the three main

operations. From Lemmas 3±5, the computational time

difference between the two methods is approximately

equal to

Computational Time Difference � Ave_Time_of_Node_Allocation

p NDEL 1 Ave_Time_of_Node_Coloring p NDEL p 1:25

1 Ave_Time_of_Pointer_Writing p NDEL p 3:

where NDEL is the total number of nodes deleted in

Phase 2 of Samet's method.The overhead of our method

is the need of generating the chain code for each level.

The new chain code is generated by using the lookup

table, so the generation is fast. The total number of

table lookup operations is to be calculated below. Recall

that four code elements are fetched at a time. The

length of the new chain code at the next coarser level

is roughly one half of that of the current level, that is,

Bi21 < 0.5 p Bi, where Bi is the length of chain code at

the ith level. Therefore, the total number of table

lookup operations is approximately equal to

�BN 1 BN21 1 BN22 1 ¼ 1 B0�=4
< �BN 1 BN =2 1 BN =4 1 ¼ 1 1�=4 < �1=2� p BN ;

where BN is the length of the original chain code, that

is, the boundary length of the object. So this number is

bounded and its operation time is minor, compared to

other operation times.

5. Conclusion

In this paper we have presented a simple recursive

method for converting a chain code representation into a

quadtree one. Lemmas for the determination of the quadtree

black nodes are derived. We generate the quadtree black

nodes level by level from the ®nest one to the coarsest

one. Meanwhile, at each resolution level a new object

border is revealed after the removal of the black nodes at

that level. The chain code for this new object border can be

easily generated. Thus, the generation of the quadtree black

nodes and the chain code of the new object border consti-

tutes a basic cycle of the conversion process. We show the

generation can be done with a table lookup. Our conversion

method runs faster than Samet's method in terms of the total

execution time of major operations, as indicated by the

lemmas. Some representative examples are given to illus-

trate the better performance of our method.

References

[1] H. Freeman, Computer processing of line-drawing images, ACM

Computing Survey 6 (1) (1974) 57±97.

[2] P. Zingaretti, M. Gasparroni, L. Vecci, Fast chain coding of region

boundaries, IEEE Transactions on Pattern Analysis and Machine

Intelligence 20 (1998) 407±416.

[3] H. Samet, Applications of Spatial Data Structures, Addison-Wesley,

New York, 1989.

[4] H. Samet, The Design and Analysis of Spatial Data Structures,

Addison-Wesley, New York, 1989.

[5] H. Samet, The quadtrees and related hierarchical data structures,

ACM Computing Survey 16 (1984) 187±260.

[6] J. Koplowitz, J. DeLeone, Multilevel resolution of digital binary

images, Proceedings of the IEEE International Symposium on

Information Theory, 1995, p. 361.

[7] P. Nunes, F. Pereira, F. Marques, Multi-grid chain coding of binary

shapes, Proceedings of the IEEE International Conference on Image

Processing, 1997, pp. 114±117.

[8] G.R. Martin, R.A. Packwood, M.K. Steliaros, Scalable description of

shape and motion for object-based coding, Proceedings of the IEEE

International Conference on Image Processing and its Applications,

1999, pp. 157±161.

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426 425

Table 3

The comparison of the numbers of operations used by Samet's method and our method

Method Operation Objects

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

Samet's method Node allocation 61 65 85 29 69 69

Node coloring 70 80 85 29 83 86

Pointer writing 156 188 168 56 192 204

Node deallocation 36 60 0 0 56 68

Our methoda Node allocation 25 5 85 29 13 1

Node coloring 25 5 85 29 13 1

Pointer writing 48 8 168 56 24 0

Node deallocation ± ± ± ± ± ±

a Refer to Lemmas 3±5.

[9] W. Li, W. Li, A fast fractal image coding technique, Proceedings of the

International Conference on Signal Processing, 1998, pp. 775±778.

[10] R.A. Packwood, M.K. Steliaros, G.R. Martin, Variable size block

matching motion compensation for object-based video coding,

Proceedings of the International Conference on Image Processing

and Its Applications, 1997, pp. 56±60.

[11] Y.-C. Chang, B.-K. Shyu, J.-S. Wang, Region-based fractal image

compression with quadtree segmentation, Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal, 1997, pp.

3125±3128.

[12] I. Gargantini, H.H. Atkinson, Linear quadtrees; a blocking technique

for contour ®lling, Pattern Recognition 17 (1984) 285±293.

[13] H.H. Atkinson, I. Gargantini, T.R.S. Walsh, Filling by quadrants or

octrants, Computer Vision, Graphics, and Image Processing 33 (1986)

138±155.

[14] G.M. Hunter, K. Steiglitz, Operations on images using quad trees,

IEEE Transactions on Pattern Analysis and Machine Intelligence 1

(1979) 145±153.

[15] G.M. Hunter, K. Steiglitz, Linear transformation of pictures repre-

sented by quad trees, Computer Graphics and Image Processing 10

(1979) 289±296.

[16] H. Samet, R.E. Webber, On encoding boundaries with quadtrees,

IEEE Transactions on Pattern Analysis and Machine Intelligence 6

(1984) 365±369.

[17] H. Samet, Region representation: quadtree from chain codes,

Communications of ACM 23 (1980) 163±170.

[18] D.M. Mark, D.J. Abel, Linear quadtrees from vector representations

of polygons, IEEE Transactions on Pattern Analysis and Machine

Intelligence 7 (1985) 344±349.

[19] R.E. Webber, Analysis of Quadtree Algorithms, PhD dissertation,

Computer Science Department, University of Maryland, College

Park, MD, 1984.

[20] M.R. Lattanzi, C.A. Shaffer, An optimal boundary to quadtree

conversion algorithm, CVGIP: Image Understanding 53 (1991)

303±312.

Z. Chen, I.-P. Chen / Image and Vision Computing 19 (2001) 413±426426

