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Abstract

A good traffic assignment model can be a powerful tool to describe the characteristics of traffic behavior in a road
network. The traffic assignment results often play an important role in transportation planning, e.g., an optimal and
economical network design. Many traditional traffic assignment models rely heavily on the travel cost function es-
tablished by Wardrop’s principles; however, the Wardrop’s travel cost function has been proven to be weak for ex-
plaining the uncertainty and interactivity of traffic among links. This study tries to construct a traffic assignment model
that is different from Wardrop’s in many aspects. First, it considers the cross-effect among the links. Second, a fuzzy
travel cost function is established based on the possibility concept instead of precise calculation of traffic volumes.
Third, the techniques of fuzzy measure and fuzzy integral are applied to calculate the subjectively perceived travel costs
during traffic assignment. Furthermore, in order to validate our model, a detailed network with 22 nodes and 36 links is
used to illustrate it. Study results show that our model explains more interactivity and uncertainty of traffic among links
when compared with the traditional model of Wardrop’s. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction to analyze the traffic flows in equilibrium of a
road-network (LeBlanc and Boyce, 1986; Nagur-

The traffic assignment skill, or the so-called ney, 1984, 1986, 1993). The traffic equilibrium is
network equilibrium technique, is popularly used generally achieved by the following steps: first, the
origin and destination (OD) of each driver for a
desired trip in a road-network is identified; second,
_ the optimal route (a combination of links) chosen
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in a used route. The aforementioned three steps
are iterated until the assigned traffic flow in each
link converges to a stable state. The predicted
convergent traffic flow in a road-network heavily
affects the design of traffic management strategies,
such as the road-network construction (Abdulaal
and LeBlanc, 1979; LeBlanc, 1975; LeBlanc et al.,
1975; Tzeng and Tsaur, 1997; Tzeng and Chen,
1998), traffic signal control, etc. Thus, it is very
important to develop a good traffic assignment
model in a transportation planning process (Roy,
1991; Chen, 1999).

Wardrop (1952) assumed that all drivers have
the same perception of network costs and pro-
posed Wardrop’s first principle: each driver se-
lects the route that minimizes his own trip cost.
Traditionally, it is the basis of most equilibrium
assignment procedures. Shortly after Wardrop,
based on the assumption of separable link cost
functions, Beckmann et al. (1956) constructed
the initial equilibrium assignment model by
mathematical programming. However, the strict
assumption of separable link cost functions is far
from the real traffic situation. Almost after
20 years, Dafermos (1980) proved that the
equilibrium assignment model could also be re-
solved by mathematical programming under the
condition that the Jacobian matrix of link cost
functions is symmetric. Aashtiani (1979) used the
nonlinear complementarity problem (NCP) to
formulate the network equilibrium prob-
lem, whereas Smith (1979, 1983) and Dafermos
(1980, 1984) introduced the concept of varia-
tional inequality problem (VIP) for the network
equilibrium problem. The valuable work of
Smith (1979, 1983) and Dafermos (1980, 1984)
discarded the assumption suggested by War-
drop’s so as to better describe the traffic char-
acteristic in the real world. Nagurney (1984,
1986, 1993) later made much effort for solving
the asymmetric Jacobian matrix of link cost
functions. In Nagurney’s work (1984), the link
costs are not separable, and each link cost is
related not only to the prevailing volume of the
corresponding link, but is also affected by the
volumes of other links, i.e., the cross-effects
among links are considered. Thus, Nagurney’s
model obviously reflects greater reality compared

with other traditional models. But Nagurney
(1984) did not provide a powerful and theoretic
support for the construction of the link costs in
his study.

The purpose of this paper is to construct the
link costs by fuzzy approach in an effort to catch
the vagueness in a real traffic situation. We also
found that our formulation does provide a
powerful and theoretic support for Nagurney’s
link costs with cross-effects among the links.
Many link cost functions in related research are
still established with a crisp concept, but the
perceived cost of any link by a driver is obvi-
ously subjective and vague at all times. This also
means the subjective vagueness inevitably com-
pounds the recognition of travel cost by the
drivers. Nevertheless, although sufficient traffic
information is available to drivers, they are not
able to perceive the exact and clear travel
cost for any link. Such subjectively perceived
costs can be appropriately formulated by fuzzy
concept. Moreover, the fuzzy cost of each link is
evaluated by fuzzy measure and fuzzy inte-
gral; the diagonalization method (Dafermos,
1980, 1984; Dafermos and Nagurney, 1984; Roy,
1991) is applied to find the convergent link
flows. Finally, in order to validate our model, a
detailed network with 22 nodes and 36 links is
used as a numerical example. Study results show
that our model explains more uncertainty of
traffic among the links compared with the tra-
ditional models derived only by Wardrop’s con-
cept. Furthermore, our fuzzy model provides a
general form for traffic assignment and can be
expanded.

This paper is organized as follows. In Section
2, the problem characteristics are described, and
the basic concepts of fuzzy measure, fuzzy inte-
gral and the diagonalization method for traffic
assignment are illustrated. In Section 3, the fuzzy
link cost and the traffic assignment model are
constructed, and the resolution steps of our
model are discussed. In Section 4, an assumed
network is used to validate our model, and our
model is compared with the non-fuzzy traffic
assignment model of Wardrop. Finally, the
conclusions and recommendations are presented
in Section 5.
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2. Problem characteristics and basic concepts for
fuzzy measure, fuzzy integral and diagonalization
method

In the well-known traffic assignment or traffic
equilibrium problem, a fixed travel demand is
prescribed for every OD pair of nodes in the
transportation network. The equilibrium property
is that, once determined, no traveler can decrease
his travel cost by making a unilateral decision to
change his route (Roy, 1991). The travel cost de-
pends in a prescribed way on the traffic pattern;
and cost functions construct the core of traffic
assignment.

Why the traffic assignment model should be
modified by a fuzzy approach? There are two main
reasons: first, a specified link cost is often uncer-
tainly affected by the costs of other links, e.g., the
low travel efficiency of the down-stream link al-
ways hampers the travel speed of the up-stream
link. Thus, the travel cost on a link does not de-
pend solely upon the certain flow on that link. This
also means that the travel cost of a specified link
should consider the uncertain cross-effects of other
links. Second, a driver always perceives the travel
cost subjectively, e.g., although a driver feels more
congested than the normal traffic in a link, the
driver cannot precisely tell how exactly the link
cost increases. Thus, even if sufficient traffic in-
formation is available to drivers, they are still not
able to perceive the exact and precise travel cost
for any link — this also leads to the fuzzy route
choice for drivers.

According to the aforementioned vagueness in
driver decision, using the relevant techniques for
evaluating a fuzzy link cost seems to be appro-
priate. The techniques implemented for evaluating
a fuzzy link cost in this study are: fuzzy measure,
fuzzy integral and the diagonalization method for
traffic assignment. These basic concepts of afore-
mentioned techniques are illustrated as follows.

2.1. Fuzzy measure
Fuzzy measure g is a set function defined on the

power set f(X) of X, and satisfies the following
properties (Lee and LeeKwang, 1995):

g: pX) — [0,1],

(a) g(¢) =0, g(X) =1,

(b)if 4,B € B(X) and 4 C B, then g(4) < g(B),

(c) if F; € p(X) for 1 <k < oo, and a sequence

{F,} is monotone (in the sense of inclusion),

then lim;_ . g(F,) = g(lim;_ . F}).

A J-fuzzy measure g; is a fuzzy measure with
the following property:

VA,B € f(X), ANB=¢,
2:/(AUB) = g;(4) + g:(B) + 4 g.(4)g;(B)
for — 1 <A< o0.

If X ={x1,x2,...,x,}, fuzzy density g; = g;({x:})
will have the following form:

n n—1 n
g/l({xlvxb"'axn}) :Zgl"’_/LZ Z 8i8in
i=1

il=12=il+1

4 +;“’Z_lglg27"'7gn

n

1
14 4g) —1
AH( + 28i)

i=1

for —1 <1< o0. (1)

If 72>0, theng;(4UB) > g;(4) +g;(B). This
means that the evaluation of the set {4, B} is
larger than the sum of evaluations for sets {4} and
{B}.If . =0, then g,(4 U B) = g,(4) + g:(B). This
means that the evaluation of the set {4, B} equals
the sum of evaluations for sets {4} and {B}. If
2. <0, then g;(4 UB) < g;(A4) + g1(B). This means
that the evaluation of the set {4, B} is smaller than
the sum of evaluations for sets {4} and {B}, i.e.,
the substitutive effect exists in {4, B}. If 1> 0,
then g,(4UB) > g,(4) + g,(B). This implies that
the evaluation of the set {4, B} is larger than the
sum of evaluations for sets {4} and {B}, i.c., the
multiplicative effect exists in {4, B}. The fuzzy
measure is often used with fuzzy integral for the
purpose of aggregating information evaluation.

2.2. Fuzzy integral

Let /1 be a measurable function from X to [0, 1].
Assuming that A(x;) = h(x,) = -+ = h(x,), then
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hx)
a(H1) } h(x1) — h(xz)

h(xz)

g(H:) } h(xz) — (x3)
h(xs)

h(xn-1) ]
9(Hn1) — } h(xr1) — h(x:)
h(x»)
|} hex)
Xt Xe Xo=1  Xn

Fig. 1. The basic concept for fuzzy integral.

the fuzzy integral is defined as follows (Sugeno,
1974; Ishii and Sugeno, 1985):

(C) / hdg = h(xn)g(Hﬂ) + [h(x”*l) - h(x,,)]g(anl)
oo [h(x) = h(x)]g(Hy)

= h(xa)[g(Hy) — g(Hy1)] + h(xy1) [g(Hu1)

—&(Hy )] + -+ hx)g(H),  (2)

where le{xl}, sz{xl,XZ},..., Hn:{xl,xz,...,x,,}
=X.

The basic concept of Eq. (2) can be illustrated
as shown in Fig. 1.

Furthermore, if A=0 and gy =g, =---=g,,
then i(x) = h(xy) = --- = h(x,) is not a neces-
sary condition.

2.3. Diagonalization method
An asymmetric traffic assignment problem can
be rewritten as a VIP as follows (Dafermos, 1980,
1984; Dafermos and Nagurney, 1984; Roy, 1991):
Find f* € Q, such that

D G120 Ve
Q= {f:fa_zéarhr:()vr;

> =Ty =0Vx,y; b =0 Vr},

Ca(f):Ca(ﬂ7f2a~~'7fav"') VfEQ, (3)

where f, is the flow in link a of the detailed net-
work during asymmetric traffic assignment; f* the
convergent flow in link @; /* the convergent flow in
network; C, the travel-cost of link « in the detailed
network during asymmetric traffic assignment, C,
is only related to [V f € Q; h, the traffic volume of
route r in a detailed network during traffic as-
signment; J,, is the dummy variable, if route r is
used and link «a is passed, then J, = 1; otherwise
04 = 0and T,, is the traffic demand between node
x and y in a physical network.

To solve Eq. (3) for convergent flows, the di-
agonalization method can be employed by the
following steps (Roy, 1991):

(a) Using all or nothing (AON) traffic assign-

ment skill to find an initial flow set f,;, let it

(iteration) = 0.

(b) Let Cois(f)=Coit (frits f2its- - s Suits---) Vf €Q.

(c) Find an optimal «;, by the bi-section method,

such that

) fait+0tie (fa,ie1 —faiit)
(d) If Max,|foir1 — foul/ foi <& Vf € Q, then
the convergent flows are obtained and the iteration
stops; otherwise, go to (b) and itr=it+ 1. ¢ is an ac-
ceptable error, which is given by the planner.

It is clear that if the flow set

f = {fl,itaﬁ,ih e 7fa,lta .. } vf S Q7

is a fuzzy set, then f will be similar to the set X in
Eq. (1). Nevertheless, the fuzzy measure and inte-
gral technique in Egs. (1) and (2) will be applied as
to evaluate such a fuzzy link cost:

Ca,it(,f) = Ca,it(fl,itaf‘Z,ih L >fa,iry ..

In the next section, the fuzzy link cost function, the
fuzzy measure, fuzzy integral and diagonalization
method will be combined to form our asymmetric
traffic assignment model based on subjectively
perceived travel costs.

) Vf € Q.

3. Model construction and resolution

To formulate the mathematical model for our
traffic assignment with fuzzy travel costs, which
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are subjectively perceived by drivers, a detailed
network shown in Fig. 2 from Nagurney (1984) is
used for illustration purposes. Assume a specified
link cost, for example, the travel cost of link 1; it is
affected by the volumes of link 1 and link 14. From
the definition of fuzzy measure in Section 2.1, let
ff. denote the fuzzy set of travel costs in link «
(a=1,2,...,36), and fc, represent the free flow
cost (a constant) for link a (a =1,2,...,36), our
fuzzy link costs can be defined.

Let ffi = {0.01f2 + fc1, fi4}, then the fuzzy
density, g; = g:({/f;}) in Eq. (1) can be rewritten in
the following form:

. =
2 ({0.0177 + fe1, fuu}) = 7 H(l +Ag;) — 1.
‘=1
(4)
Furthermore, let g;({0.01/2+ fc1,f14}) =1, A=0,
g1=g=---=gs and h be a measurable function

from f'to [0,1]; thus, the fuzzy travel cost evaluated
by the fuzzy integral can be defined as follows:

ci) = (©) [ hdg
= fulg(Hy) — g(H))] + (0.01f7 + fe1)g(Hr)
= fia x (1 = 0.5) + (0.01f2 + fc1) x 0.5
=0.005/7 +0.5f14 + 0.5fcy, (5)

where

H, ={0.01f2+ fe1}, Hy={0.01f2 + fe1, fia} = f1.

Fig. 2. Nagurney’s detailed network. (Source: Nagurney, 1984).

Thus, following similar steps in Egs. (4) and (5),
the fuzzy travel costs of all detailed links in Fig. 2
can be evaluated. Of course, each fuzzy set
ffa (@=1,2,...,36) is subjectively determined by
the experienced planner. When 4 changes, Eq. (5)
forms a basis for the diagonalization method of
Section 2.3, and each detailed link cost is contin-
uously evaluated by the fuzzy integral for traffic
assignment. Three cases: A=0, A=1land A=
—0.9999 (1 — —1) are used in this study for
comparison. The meaning of 1 values will be dis-
cussed in the next section.

After inputting the available data, e.g., OD
pattern of traffic demand of this model, which will
determine convergent flows, the convergent flows
are obtained through an asymmetric traffic as-
signment model. The fuzzy measure and integral
are used to evaluate fuzzy travel costs of the de-
tailed links. In the next section, a numerical ex-
ample from Fig. 2 will be used to illustrate Eqs.
(1)~(5). Furthermore, our model with two different
A values and a Wardrop’s model are compared and
discussed.

4. Numerical example and discussions

An assumed network in Fig. 2 is used to vali-
date our model, and the traffic demand of Fig. 2
expressed in an OD matrix, which is shown in
Table 1.

First, each fuzzy set of each detailed link cost in
Fig. 2 is subjectively defined by the experienced
planner. The fuzzy set of all detailed link costs
with different 1 values are given in Appendix A.
Second, the diagonalization method of Section 2.3
is applied to find a set of convergent flows. Finally,
the results of traffic assignments from our models

Table 1

The assumed traffic demand of network in Fig. 2
From To

5 6 7 8

1 0 235 230 220
2 240 0 235 225
3 230 220 0 235
4 235 225 240 0
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and Wardrop’s model (4 = —0.9999) are compared
in Table 2.

From Table 2 and our model of Section 3, we
found that our modeling concept is very similar to
Nagurney’s (1984) for the asymmetric assignment,
but our model explains more interactivity and
uncertainty because of varying the A values. The 4
can be regarded as an adjustment factor in our
model, and changing of A value dominates the

characteristics of our traffic assignment model. In
Section 3, if 2 — —1, then g(H,) — 1, and Eq. (5)
equals 0.005f7 + 0.5fc;. Thus, the link cost func-
tion is only related to the volume of link 1 when
A — —1, this is a Wardrop’s model. On the other
hand, if 2 — oo, then g(H;) — 0, and Eq. (5)
equals 0.5f14. The link cost function is only related
to the volume of link 14 when A — oo, this case is
an ultimate model of the cross-effects among de-

Table 2
The traffic assignment results of our models*
Link Assigned traffic volume
To node From node Our model Wardrop’s model
i=1 A=0 A=-0.9999 — —1
5 10 408 373 340
5 11 297 332 365
6 9 286 308 330
6 15 393 372 350
7 20 297 353 358
7 21 408 352 347
8 18 465 438 349
8 22 215 242 331
9 1 289 237 330
9 11 187 78 104
10 2 406 335 339
10 15 196 133 109
11 14 188 149 188
11 17 296 261 281
12 1 396 448 355
12 10 194 95 108
13 12 231 135 187
13 17 297 123 188
14 16 294 142 189
14 19 296 149 188
15 13 305 128 188
15 19 285 377 270
16 2 294 365 361
16 9 190 7 104
17 4 404 361 362
17 22 190 23 107
18 12 359 408 275
18 14 402 142 189
19 3 396 427 351
19 21 184 99 106
20 13 239 130 187
20 16 190 229 275
21 4 296 339 338
21 18 296 112 115
22 3 289 258 334
22 20 116 7 104

#The assigned traffic is rounded to its nearest integer.
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tailed links. For reflecting greater reality, A should
be chosen within the interval (—1,00); therefore,
the fuzzy link cost function will be established with
the cross-effects among links and the main volume
effect in a link.

Furthermore, it is clear that the output of our
model will change as the A value varies; thus, our
model includes interactivity and explains the un-
certainty. This also implies that our fuzzy for-
mulation in this study expands the scope of
traditional traffic assignment models, and / can
be regarded as an adjustment operator for de-
veloping different traffic assignment models in
order to meet the special need of a transportation
planner. The varying A values reflect the different
congestion degree of a road-network perceived by
the transportation planner — this interactive ap-
proach is seldom considered in traditional traffic
assignment models. For example, if a planner
predicts a less-congested traffic situation, e.g.,
designing a new network, then a lower 1 is sug-
gested, e.g., 2 = —0.9999 in Table 2. On the other
hand, if a planner forecasts an over-congested
traffic situation, e.g., simulating the reconstruc-
tion plan of a post-disaster network (Tzeng and
Chen, 1998), then a higher A is recommended
because the cross-effects are notable, e.g., 1 =1 in
Table 2. Thus, the transportation planner can use
the same traffic demand and network to draw
many traffic control plans by different levels of
traffic congestion. This also leads to a more
elastic and interactive strategy in traffic control.
Moreover, we suggest that the planner may use
genetic algorithms (Goldberg, 1989; Michalewicz,
1996) to find an optimal / value to minimize the
difference between the assigned traffic and the
observed traffic.

5. Conclusions and recommendations

In the well-known traffic assignment or traffic
equilibrium problem, the cost functions define the
core of the problem. The traffic assignment
technique is widely used in the resolution of
many problems, e.g., the optimal network design,
the optimal plan of traffic-signal control, the
optimal schedule of network restoration, the

network economics, the optimal pricing strategy
of network users, the dynamic network of intel-
ligent transportation systems (ITS),..., etc.
(Chen, 1999). The traditional cost functions
proposed by Wardrop are too precise and too
simple to catch the vagueness of driver’s decision,
because a specified link cost is often uncertainly
affected by the changing costs of other links and
subjectively perceived by a driver. Nevertheless,
this study successfully combines the fuzzy mea-
sure and fuzzy integral to expand the traffic as-
signment model so as to describe the vagueness in
the decision of drivers. The traffic assignment
technique implemented by our model is very in-
teractive and elastic. Our traffic assignment
model evaluated by the fuzzy measure and inte-
gral theoretically not only supports Nagurney’s
idea but is also more appropriate for predicting
the uncertain traffic in a real situation. Further-
more, the technique reasonably explains the fuzzy
traffic with different 1 values. The transportation
planner may use our model to develop many
scenarios of traffic prediction so as to promote
the elasticity of transportation planning, e.g., a
fuzzy network design.

With more precise data for our model in the
near future, this study can be regarded as a basis
of decision support system (DSS) on a geographic
information system (GIS) for fuzzy transporta-
tion planning, e.g., the network investment. Fur-
thermore, more topics may be taken into
consideration as to make our model reflect
greater reality, such as, how to construct an ap-
propriate fuzzy set for each link cost, using ge-
netic algorithms to find the optimal 4 values of
link costs (Goldberg, 1989; Michalewicz, 1996),
and so on.
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Appendix A

1. The fuzzy flow set and equal individual fuzzy

density for each link with 4 = 0.

fi=1{0.01/7 +100,f4}, g(H>) =1,

g(Hl) = 05,
= {001f22 + Soaf12af13af14}a
g(Hy) =1, g(H3) =075, g(H) =05,
ﬁ { Olf‘3 + 150 ﬁOaﬁlaﬁZ}
g(Hy) =1, g(H3) =0.75, g(H,) =0.5,
g(H) =0.
f4: {001f42+505fi0}a g(HZ) = 17
g(Hl) = 057
fs = {0.01/3 4 100, f5, fro, fr0, f34}
( ) a g(H4) = 087 g(H3) = 067
( ) 4 ’ g(Hl) = 027

f%! = {001&2 + 757]3527]335]%4}7

g(

g(H4) = 1; g(H3) = 0757

Hy) = 0.25,

g(H2) = 057

f7 = {OOlﬁz +755f‘36}7 g(HZ) = 17

g(

Js =
g(H.
g(H

g(

Hy) =0.5,
{0.0115 + 100, fo7, fos, f6 }
) a g(H3) = O75a g(Hz) = 057
1) =0.

= {0.01/ +100, o1}, g(Hr) =1,
Hy) = 0.5,

fio = {0.0115 + 50, /3, fa, fur }
g(H4) = 17 g(H3) = 0757 g(HZ) = 057
g(Hl) =0. 25)

f'll = {0'01f121 + 50af27fi37f14}7

fi2={0.01/% 4+ 50,2}, g(Hs) =1,
g(Hl) = 057

fi3={0.01/3+50,/11}, g(Hr) =1,
g(H) = 0.5,

fia = {0013 + 50, f1, />, fis }
g(H4) = 17 g(H3) = 0757 g(H2) = 05,

fis = {0.01f5 4+ 50, fr },  g(H>) =1,
g(Hy) =05,

f16 = {001f126 + 507f193f203f26}7
g(Hy) =1, g(Hs)=0.75 g(H,) =0.5,
g(H)) = 0.25,

f17 = {0'01f127 + 50,]30}7 g(HZ) = 17

g(Hl) = 057

fis = {0.0113% 4 50, fo3, fa, f30 }
g(Hy) = 0.25,

f19 = {0'01f129 =+ 507ﬁ63ﬁ5aﬁ6}7
g(H3) =0.75, g(H,) =0.5,



Y.-W. Chen, G.-H. Tzeng | European Journal of Operational Research 130 (2001) 653-664

f‘ZO = {001f220 + 507f16}> g(HZ) = 17
g(Hl) = 057

ﬁl = {001f221 + 507f37f‘97f10}>
g(H4) = 1) g(H3) = O75a g(Hz) = 057

ﬁl = {001f222 + 507f3}7 g(HZ) = 17
g(Hl) = 05,

fo3 = {0.01155 4 100, fi7, fis, f29, f30 }
g(Hs) =1, g(Hy) =08, g(H:)=0.6,
g(H) =04, g(H))=02,

f‘24: {001f224+1007f18}7 g(HZ): 1’
g(H) =05,

fos = {0.01/5 + 100, fio},  g(H) =1,
g(H) = 0.5,

féé = {001f226 + 757f157f16aﬁ9af20}7
g(HS) = 15 g(H4) = 085 g(H3) = 067
g(HZ) = 047 g(Hl) = 027

ﬁ7 = {001f227 + 757]%)]{.35)](.36})
g(H4) = 1; g(HS) = 0757 g(H2) = 057

fas = {00175 +50, fs}, (i) =1,
g(H]) = 05,

Sro ={0.01/5% + 50, f3},  g(H>) =1,
g(Hl) = 05,

f30 = {0.01 4 50, f17, fis, f23},
g(H4) = 15 g(H3) = O75a g(HZ) = 057

for = {0~01f32 + 75,f33}, g(Hy) =1,
g(Hl> :057

f32 = {0'01f322 + 757f‘57f6af‘33}7
g(H4> = 17 g<H3) = 075, g(Hz) = 057

S = {0~01f323 + 507f57f317f32}»
g(H4) = 17 g(H3) = 0757 g(Hz) = 05,
g(Hy) = 0.25,

~—

f'34 = {001f324 + 50,]%}; g(HZ) = la
g(Hl) :05,

f35 = {0'01f325 +40af27}a g(HZ) = 17
g(Hl) = 057

f36 = {O'Olf326 + 757ﬁ7f87ﬁ7}a
g(H4) = 17 g(H3) = O75a g(HZ) = 051
(

g(Hy) = 0.25.

661

2. The fuzzy flow set and equal individual fuzzy

density for each link with A = 1.

fl = {001f12 + 1007fl4}7
g(HZ):17 g(Hl):O417

f= {0-01f22 + 50,f12;f137f14},
g(Hy) =1, g(H;) =0.68,
g(H,) =041, g(H) =0.19,

S = {0.01f5 + 150, fio, fo1, f }
g(Hy) =1, g(Hs) = 0.68,
g(Hy) = 0.41, g(H)) =0.19,

ﬁ:{001ﬁ+50,f10}, g(Hz):L
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f5 = {001}(‘52 + 1007.f67f297f307f34}7 flS - {0~01f125 + 50’f‘26}7 g(HZ) - 17
g(Hs) =1, g(Hy) =074, g(H;) =051, g(H) = 041,
g(Hz):032, g(Hl):0157 ﬁﬁz{001f126+507ﬁ93ﬁ03ﬁ6}7

g(Hy) =1, g(H;)=0.68,

=1{0.01/2 +75
f% { f;, + 7f‘327f:’)37f34}7 g(Hz) _ 041, g(Hl) _ 019’

g(Hs) =1, g(Hs) =0.68,

g(H,) =041, g(H,)=0.19, fir ={0.011% +50, £}, g(H>) =1,
g(H) =041,

fr=1{0.01/7+75, f3}, g(H) =1,

g(Hy) = 0.41, fis = {0.0115% + 50, f>3, fos, fr0 }
g(Hy) =1, g(H;)=0.68,

fs = {0.01£7 + 100, f27, f5, f36 } g(H,) =041, g(H,)=0.19,

gHy) =1, g(H3) =0.68, g(H) =041,

g(Hy) =0.19, fio = {0.01155 + 50, fis, fos, fas }+
g(Hy) =1, g(H;) =0.68,

fo=1{0.01f5 +100, 1}, g(H>) =1, g(Hy) =041, g(H))=0.19,

g(Hy) = 0.41,

S = {00113 +50,fi6}, g(H:) =1,
fio = {00115 + 50, f3, fa, fr }., g(H,) =041,
g(Hy) =1, g(Hs)=0.68,

le = {001f221 + 507.f37f97ﬁO}7
g(H,) =041, g(H,)=0.19,

g(H4) = 17 g(H3) = 0687

H) =041, g(H)=0.19
ﬁl:{0'01f121+507f25ﬁ35ﬁ4}; g( 2) ) g( 1) )

g(Hy) =1, g(H;) =0.68,

fo={0.01/5+50,/3}, g(H) =1,

g(Hy) = 041,
_ 2 _
o= {O'Olflz + 50,f2}, g(H) =1, S = {0~01f223 + 1007f17’f187f297f30}7
g(H) =041, g(Hs) =1, g(Hy) =0.74g(H;) = 0.51,

g(Hy) =0.32, g(H,) =0.15,
fis = {0.01/2+50, 1}, g(H) =1, ’ 1

g(Hy) = 0.41, for = {0.01f2 + 100, fis}, g(H:) =1,

g(Hy) = 041,
f14 = {001f124 + 507f1;f27fl}7 }7

g(Hy) =1, g(H;)=0.68, fos = {0.01/% + 100, fio}, g(H>) =1,
g(Hy) =041, g(H,) = 0.19, g(Hy) = 0.41,
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fas = {00115 4 75, fis, f16, f19, f20 }
g(Hs) =1, g(Hy)=0.74, g(H;)=0.51,

ﬁ7 = {001f227 + 757f87ﬁ57ﬁ6}7
g(H4) = 1) g(H3) = O68a

fos = {00115 +50, s}, g(Ha) =1,

fr9 = {00175 4 50, 23}, g(Hh) =1,

g(H,) =041,

f30 = {001 + 507fl77.f187.f23}7

f‘31 = {001f32 + 757f33}7 g(HZ) = 17

J{32 = {0'01f322 + 757f55f67f33}7
g(H4) = 17 g(H3) = 0687

g(Hy) =041,

Sz = {0.01/55 4 50, f5, fa1, [},
g(H4) = 17 g(H3) = 0687

S = {O.Olf;4 + 50,f5}, g(Hy) =1,

f‘35 = {0'01f325 +407f27}7 g<H2) = 17

g(Hy) =041,

ﬁ6 = {0'01f326 + 757f7)fé7f27}7
g(H4) = 1; g(H3) = 0683

g(Hy) =041,

g(H,) =0.19.
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