
598 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

High-Order MS_CMAC Neural Network
J. C. Jan and Shih-Lin Hung

Abstract—A macro structure cerebellar model articulation
controller (CMAC) or MS_CMAC was developed by connecting
several one-dimensional (1-D) CMACs as a tree structure, which
decomposes a multidimensional problem into a set of 1-D subprob-
lems, to reduce the computational complexity in multidimensional
CMAC. Additionally, a trapezium scheme is proposed to assist
MS_CMAC to model nonlinear systems. However, this trapezium
scheme cannot perform a real smooth interpolation, and its
working parameters are obtained through cross-validation. A
quadratic splines scheme is developed herein to replace the
trapezium scheme in MS_CMAC, named high-order MS_CMAC
(HMS_CMAC). The quadratic splines scheme systematically
transforms the stepwise weight contents of CMACs in MS_CMAC
into smooth weight contents to perform the smooth outputs. Test
results affirm that the HMS_CMAC has acceptable generalization
in continuous function-mapping problems for nonoverlapping
association in training instances. Nonoverlapping association in
training instances not only significantly reduces the number of
training instances needed, but also requires only one learning
cycle in the learning stage.

Index Terms—Cerebellar model articulation controller
(CMAC), high-order MS_CMAC, macro structure cerebellar
model articulation controller (MS_CMAC), quadratic splines.

I. INTRODUCTION

T HE CEREBELLAR model articulation controller
(CMAC), a supervised neural-network learning model

developed by Albus [1], [2], is employed mainly in the
control domain [3]–[5]. The original Albus CMAC (or the
simple CMAC as it will be subsequently termed) produces
a linear interpolation by using the binary basis function as a
generalization scheme. Consequently, the output is constant
within each quantized state and the derivative information is
not preserved. For precisely modeling continuous functions,
Moody [6] proposed using the graded neighborhood response
functions (linear basis functions) in CMAC to perform con-
tinuous interpolation. Meanwhile, Laneet al. [7] developed a
higher order CMAC neural network which uses the B-spline
functions to replace the binary basis functions. In employing
these functions, the method of updating weights distributes
errors among the assigned weights according to the intensity
of the B-spline functions. Additionally, Chiang and Lin [8]
employed Gaussian basis functions as a generalization scheme.
The Gaussuan basis function CMAC has been affirmed to be
capable of learning both functions and function derivatives.

Generally, the CMAC requires extensive memory for map-
ping multidimensional functions. Lin and Li [9] proposed a
CMAC structure comprising numerous small CMACs to learn a

Manuscript received September 3, 1999; revised May 25, 2000 and December
18, 2000.

The authors are with the Department of Civil Engineering, National Chiao
Tung University, Hsinchu, Taiwan 300, R.O.C.

Publisher Item Identifier S 1045-9227(01)03715-8.

multi-dimensional function-mapping problem. In doing so, they
intended to solve the fast size-growing problem and the learning
difficulty in currently available types of neural networks. In
their work, the network structure is always a three-layer tree
structure. The root is the sum of the outputs of the nodes in
the second level, called the submodules. Submodules are the
multiplication of the outputs from the third level, which is
a set of combinative small CMACs. Recently, Hung and Jan
[10] developed a macro structure CMAC (MS_CMAC) neural
network in structural engineering. The MS_CMAC represents a
tree-based aggregate of one-dimensional (1-D) simple CMACs,
where the ensemble is trained with a simplified time inversion
technique borrowed from Albus’ work [2]. The topology of
the tree structure depends on a set of combinative training
instances. Rather than employing a high-order basis function
to enhance the prediction accuracy of MS_CMAC in nonlinear
systems, a trapezium scheme is proposed in MS_CMAC.
The trapezium scheme modifies the stepwise weight contents
of CMACs in MS_CMAC into the trapezium-wise weight
contents once each CMACs linear optimization process is
complete. The trapezium scheme has been demonstrated to be
able to provide pseudosmooth outputs in mapping continuous
functions [10]. However, their scheme is limited to a cross-val-
idation working parameter.

This work presents a quadratic splines scheme to upgrade
the MS_CMAC, and called the high-order MS_CMAC
(HMS_CMAC) neural-network model. The proposed scheme
systematically alters the stepwise weight contents of CMACs
in MS_CMAC into the smooth weight contents. The aim
is not only to obtain smooth outputs but also to use a few
training instances to achieve acceptable training. An illus-
trative example, three-variable functional mapping problem,
demonstrates the effectiveness of the learning performance
of the HMS_CMAC models. The HMS_CMAC model is
implemented with MATLAB [11] on a personal computer.

II. SIMPLE CMAC AND TIME INVERSION CMAC

A. Simple CMAC

The simple CMAC learning algorithm is implemented
mainly via three sequential mappings in four multidimensional
spaces: input state space, association memory space, phys-
ical memory space , and output space . The learning stage
in a simple CMAC progresses via three sequential mappings
as follows. The first mapping is between input spaceand
association memory space. In this step, the vector in space

is mapped to an association vectorin space . The vector
contains elements, where is termed generalization size.

The next mapping is between association memory spaceand
physical memory space . Any vector in is mapped to
an active physical memory . The third mapping is between

1045–9227/01$10.00 © 2001 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001 599

physical memory space and output space . In a simple
CMAC neural network, a function of linear combinations of
the physically addressed memory inis used in this mapping.
Therefore, the output is calculated by summing the physically
addressed memory in as follows:

(1)

where denotes the th vector of . Similar to other su-
pervised neural network learning models, the computed output

is compared to the desired output . If the difference be-
tween the computed and desired outputs exceeds a predefined
threshold, the in (1) is updated [1]. The learning phase is
terminated when the predefined stopping criterion is satisfied.
After the learning stage is completed, the outputof any given
instance is directly computed via (1).

The simple CMAC produces a nonsmooth response owing to
its binary basis function. High-order basis functions, such as the
B-spline function [7], have been used in generalization schemes
to obtain smoother weight contents. This approach attempts to
find a smooth weight content in physical memory which pro-
vides a superior generalization in continuous functional map-
ping problems.

B. Time Inversion CMAC

Albus [2] proposed a time inversion technique to optimize
the simple CMAC in multidimensional problems. Herein,
the time inversion CMAC is developed using a simplified
time inversion technique borrowed from Albus’ work [2]. For
example, given a set of instances with the six input variables

and corresponding output , plus
an unsolved instance (verification instance) with the input

, then the time inversion CMAC, combined
by sequentially connecting two simple CMACs, can be briefly
described as follows. 1) and are
used to train the first simple CMAC of the time inversion
CMAC according to the aforementioned three sequential
mappings. The weight of the first simple CMAC is then
obtained after the CMAC is successfully trained. 2) Compute
the outputs corresponding to some specific instances of
input through the first CMAC with
weight . Herein, the instances
are termed transition instances. 3) These transition instances,

, are then used for training the second
simple CMAC in the time inversion CMAC. Consequently, the
weight of the second simple CMAC is obtained. Finally,
the output corresponding to can be
computed through the second CMAC with weight.

III. HMS_CMAC

A. MS_CMAC

The underlying notion of MS_CMAC is to decompose
a multidimensional problem into a set of 1-D subproblems
[10]. The MS_CMAC learning algorithm is briefly reviewed
below. Assume a set of combinative training instances is
given. denotes the input, and the

corresponding output comprises-data. Each input element
where

and the subscript represents the number of elements in the
combination of . According to these training instances, the
topology of the MS_CMAC neural network, an-level tree
structure, is then determined [10]. To further depict the tree
structure, a three-input combinative example is utilized to
illustrate how to construct the MS_CMAC tree structure. In
this example, represents a training instance. The
following combinations of three elements for, , and ,
respectively, are considered as training instances:

where

and

where

and

where

and

Now, an MS_CMAC with a three-level tree structure is em-
ployed for the case, and is illustrated in Fig. 1. Thee nodes
(, and) exist in the second level and nine nodes
() in the third level. Once the tree structure
is set, the corresponding output of any new instance

can be solved via the MS_CMAC
neural network through the following steps:

Step 1) Instance is used as a verification instance in the
node (root). The training instances are divided

into groups and fed to nodes (leaves).
Herein, denotes the
th training instance chosen from the training in-

stance base for node . The input element
for is defined as:

for to for to

The subscript is determined as follows:

for downto

if then

else

if

else

(2)

In Fig. 1, the three training instances ,
and are assigned to

, the three training instances ,
and are assigned to

, and so on. Notably, the and elements are
identical in leaves. Consequently, the leaves are
practically to solve a one-dimensional problem
(-element). Herein, the-element is defined as the
active parameterin the third level.

Step 2) Generate transition instances for the nodes from
levels to 2. Each node in the tree has a transition
instance, except for the root. The transition instance

600 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

Fig. 1. The topology of a three-level MS_CMAC neural-network model.

is used to verify and train the node and the node’s
parent, respectively. The transition instance of
(for to 2) is defined as follows:

(3)

where
identity matrix;

input of any training instance of node ;
input of the verification instance of the root;
input of the transition instance of node .

The and variables of the transition instance corre-
sponding to are the same as those of the training
instances in , and the variables of the tran-
sition and verification instances are also the same.
Similarly, the variables of the transition instance
and the training instances corresponding to are
identical, and the and variables of the transition
instance are the same as those of the verification in-
stance. Consequently, theactive parametersfor the
first and second levels are the-element and -ele-
ment, respectively.

Step 3) Perform the learning and verification stages for all
CMACs (nodes) from leaves to root, sequentially.

B. Quadratic Splines Scheme for Smoothing Weight Contents

Our previous work [10] adopted a trapezium scheme to
assist MS_CMAC to model nonlinear systems instead of using
high-order basis functions. The trapezium scheme attempts to
modify stepwise weight content of CMACs in MS_CMAC after

the linear optimization processes of CMACs are completed.
The trapezium scheme has been confirmed to be effective in
enhancing the prediction accuracy of MS_CMAC in nonlinear
function-mapping problems [10]. However, obtaining proper
working parameters for all 1-D CMACs in MS_CMAC is very
difficult. Additionally, the trapezium scheme is only an approx-
imate method and does not produce truly smooth outputs.

Accordingly, a quadratic splines scheme is developed to re-
place the trapezium scheme. Assume that the value of modi-
fied physical memory is defined as a quadratic spline

in the interval and . The constants ,
, and in any quadratic spline could be determined via the

following conditions.
For to , the boundary conditions for each quadratic

spline are as follows:

1) The areas between the interval of and must be
equal for both the quadratic spline and the step function:

.
2) The function must be continuous across each spline

boundary; that is, the function values at(for to
) must be equal: .

3) The function must be smooth at the boundary of two con-
junct splines; that is, the first derivatives at(for
to) must be equal: .

Hence, boundary conditions are derived. The linear
system has unknowns, but only independent equa-
tions are available. Two more boundary conditions are required
to solve the linear system of equations. Herein, and
are assumed to be equal to zero. Consequently, the physical
memory is now modified as a set of quadratic spline functions.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001 601

(a) (b)

(c) (d)

Fig. 2. (a) The plots ofF (0:5; x ; x). (b) The computed output ofF (0:5; x ; x) in MS_CMAC (= 0). (c) The computed output ofF (0:5; x ; x) in
MS_CMAC (= 0:8). (d) The computed output ofF (0:5; x ; x) in HMS_CMAC.

Since the weight content is transformed from a discrete-type
into a continuous type, the output is computed via the following
equation:

(4)

C. Flow of HMS_CMAC

Herein, the HMS_CMAC is constructed via a tree-based
structure CMAC with a quadratic splines scheme. Assume that
one input set of combinative training data is given and defined
as , then the set is transformed
into the integer space as . Where
term is the generalization size. Notably, the value ofcan
be arbitrarily defined () in an HMS_CMAC. Moreover,
nonoverlapping association memory exists between training
instances.

The computation in HMS_CMAC progresses from leaves to
root and includes two stages in each node, the learning stage
and the operation stage (1-D simple CMAC). The learning stage
involves two steps. First, perform linear optimization. Second,
after the linear optimization process is complete, smooth step-
wise weight content via the quadratic splines scheme. Mean-
while, the operation stage involves calculating outputs using (4).
The flow of HMS_CMAC for mapping an -variable function
is listed as follows.

1) Construct an -level tree-based structure CMAC ac-
cording to a set of combinative training instances.

2) Divide training instances into several groups for the
leaves using (2).

3) Generate transition instances via (3).
4) Perform learning stages in leaves off-line.
5) Execute the operation stage in leaves on-line.
6) Perform learning and operation stages from level to

root on-line.

602 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

TABLE I
COMPARISON OFCMAC MODELS

IV. I LLUSTRATIVE EXAMPLE

An illustrative example, mapping a three-variable nonlinear
function, is employed to demonstrate the effectiveness of the
learning performance of the HMS_CMAC model. The three-
variable function is defined as follows:

for

Assume that the values of the three elements, , and are
in the interval 0 to 1, respectively, and are linearly transformed
into the inputs , , and in the integer interval 0 to 100.
Consequently, a total of 1 030 301 () distinct data exist in
the learning domain. To train the neural network, the following
combinations of three inputs are selected as training instances:

The 216 () training instances are used to train the
HMS_CMAC for mapping the function .
Additionally, a set of 200 instances is randomly selected for
verification. According to the combinative training instances,
the topology of the HMS_CMAC neural network is a three-level
tree structure including one node in level 1 (root), six nodes
in level 2, and 36 nodes in level 3. Theactive parametersfor
levels 1 to 3 are set as , , and , respectively.

For comparison, two MS_CMAC with trapezium scheme
(and) are also used to map the function. Herein,
the learning performance of HMS_CMAC is measured using
the root mean square (rms) error and the ratio of computation
time. The ratio of time for two CMAC models is defined
as the ratio of computing time required by simple CMAC
or MS_CMAC with trapezium scheme to that required by
HMS_CMAC. Fig. 2(a) presents the plots of the function

with . Fig. 2(b)–(d) show the plots
corresponding to the computed output for the MS_CMAC (with

), MS_CMAC (with), and HMS_CMAC, respec-
tively. The HMS_CMAC clearly achieves the best prediction
in this example. The output of HMS_CMAC is completely
smooth. In addition, Table I compares the computational time
of the various models. The HMS_CMAC requires much more
computational time than a simple CMAC in multidimensional
function-mappings given an identical number of training
instances and generalization size. The ratio of computational

time is around 0.35. However, the prediction accuracy of
HMS_CMAC is significantly exceeds that of other models.
To improve the prediction accuracy, an additional set of 200
training instances are randomly selected to train the simple
CMAC. Thus, the number of training instances is increased to
416. Consequently, the learning time is exponentially increased,
but the prediction accuracy remains poorer than that of the
HMS_CMAC.

V. CONCLUSION

The work presents a novel CMAC model, named the
HMS_CMAC, by utilizing a quadratic spline scheme to en-
hance the prediction accuracy after the weights are updated.
The quadratic splines scheme systematically alters the stepwise
weight contents of CMACs in MS_CMAC into smooth weight
contents to perform smooth outputs. Based on the testing
results in this study, we conclude the following:

1) The quadratic splines scheme provides a novel approach
to obtain the smooth weight content in a one-dimensional
CMAC. The quadratic splines scheme is directly used to
modify stepwise weight content, which is yielded after the
simple CMAC is successfully trained, into a set of splines.

2) The linear optimization process can be completed in just
one-iteration in each node of an HMS_CMAC, due to
the situation of no association overlap in the learning
stage. Testing results indicate that the HMS_CMAC is
confirmed to have a good capacity for generalization
in continuous function-mapping problems when the
situation of no association memory overlap is set in the
learning stage.

3) The proposed scheme reduces the number of instances re-
quired for training an HMS_CMAC. Consequently, the
total computational time can be significantly reduced, al-
though the tree structure CMAC and splines quadratic
scheme may increase computational time.

REFERENCES

[1] J. S. Albus, “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),”J. Dyn. Syst., Measurement,
Contr., vol. 97, no. 3, pp. 220–227, 1975.

[2] , “Data storage in the cerebellar model articulation controller,”J.
Dyn. Syst., Measurement, Contr., vol. 97, no. 3, pp. 228–233, 1975.

[3] C. S. Lin and K. Hyongsuk, “CMAC-based adaptive critic self-organized
control,” IEEE Trans. Neural Networks, vol. 2, pp. 530–533, May 1991.

[4] T. W. Miller, R. P. Hewes, F. J. Glanz, and L. G. Kraft, “Real-time dy-
namic control of an industrial manipulator using a neural-network-based
learning controller,”IEEE Trans. Robot. Automat., vol. 6, pp. 1–9, 1990.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001 603

[5] P. C. Parks and J. Militzer, “A comparison of five algorithm for the
training of CMAC memories for learning control systems,”Automat.
Remote Contr., vol. 50, pp. 254–286, 1989.

[6] J. Moody, “Fast learning in multiresolution hierarchies,”Advances
Neural Inform. Processing Syst. I, pp. 29–39, 1989.

[7] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and develop-
ment of higher-order CMAC neural networks,”IEEE Contr. Syst. Mag.,
vol. 12, no. 2, pp. 23–30, 1992.

[8] C. T. Chiang and C. S. Lin, “CMAC with general basis functions,”
Neural Networks, vol. 9, no. 7, pp. 1199–1211, 1996.

[9] C. S. Lin and C. K. Li, “A new neural structure composed of small
CMACs,” in Proc. ICNN, vol. 3, Washington, DC, Jun. 1996, pp.
1777–1783.

[10] S. L. Hung and J. C. Jan, “MS_CMAC neural-network learning model
in structural engineering,”J. Computing in Civil Engrg., ASCE, vol. 13,
no. 1, pp. 1–11, 1999.

[11] MATLAB User’s Guide. Natick, MA: The MATH WORKS, 1996.

