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Abstract-A mathematical model of the circular-cut hypoid gear set has been developed herein to 
represent the tooth surface geometry of hypoid gears. It can be applied to simulate the tooth profiles 
manufactured by the Duplex Method, Helical Duplex Method, and Formate Method. By applying 
the computer graphics and the proposed mathematical model, the profile of the hypoid gear and 
the precision coordinates of any tooth surface point can be obtained. The coordinates of the tooth 
surface can be considered ss the standard for checking the profile precision of the actual products. 
The proposed mathematical model of the hypoid gear can also be applied to the computer numerical 
controlled (CNC) machining, tooth contact analysis (TCA), and finite element stress analysis. 
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Auxiliary function defined in 
equation (33) 
Auxiliary function defined in 
equation (14) (i = 1,. ,3, 
j=1,...,3) 
Auxiliary function defined in 
equation (22) (i = 1,. ,3, 
j = 1,...,4) 

Work head setting, increment of 
machine center to back, as shown 
in Figure 4b 

Sliding base movement, EB is equal 
to the sliding base setting minus 
helical motion movement, as shown 
in Figure 4c 

Vertical offset of the work head 
with respect to the machine center, 
as shown in Figure 4c 

Machine eccentric constant. L = 3 
inches for Gleason #106 hypoid 
generator, and L = 4.875 inches for 
Gleason #122 hypoid generator 

Helical motion of the sliding base 
per radian 
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od 

02 
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sb 

Surface unit normal vector 

Machine center, as shoxn in 
Figure 4b 

Crossing point of the vertical pro- 
jection of the axes of two mating 
gears, as shown in Figure 4b 

Pitch apex, as shown in Figure 4b 

Distance measured from the 
crossing point of the vertical 
projection of the axes of mating 
gears to the pitch apex of the gear 

Basic cradle angle, as shown in 
Figure 2 

Nominal cutter radius, as shown in 
Figure la 
Coordinate system rigidly attached 
to the face mill cutter with axis Z, 
coincides with the rotational axis 
of the face mill cutter, as shown in 

Figure lb 

Coordinate system rigidly attached 
to the fixed frame of the machine 
base (cradle housing), as shown in 
Figure 4a 
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Coordinate system rigidly attached 
to the work spindle housing (gear 
blank housing), as shown in 
Figure 4b 

Coordinate system rigidly attached 
to the workpiece (gear blank), as 
shown in Figure 4b 

Coordinate system rigidly at- 
tached to the cradle, ss shown in 
Figure 4a 

Coordinate system rigidly attached 
to the cutter blade, as shown in 
Figure la 

Roll ratio of change gear 
(i = a, b, c, d) 

Helical motion of change gear 

(j = e, f, 9, h) 

Surface coordinates of the normal 
section of the straight-edged cutter 
blade, as shown in Figure lb 

Velocity vector 

Point width of the face mill cutter, 
as shown in Figure la 

Sliding base setting 

Surface coordinate of the face mill 
cutter, as shown in Figure lb 

Surface coordinates of the tip fillet 
of cutter blade normal section, as 
shown in Figure lb 

Wedge angle, as shown in Figure 3; 
e = 15’ for the Gleason #106 and 
#122 hypoid generators 
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Ratio of roll angles for the cradle 
and gear blank during generation 
process 

Cradle rotation angle of the gear 
blank during generation process, as 
shown in Figure 4a 

Work head rotation angle during 
generation process, as shown in 
Figure 4b 

Tip fillet radii of the cutter blade 
normal section, as shown in 
Figure lb 

Pressure angle of the cutter blade, 
as shown in Figure lb 

Angular velocity of the cradle in 
cutting process 

Angular velocity of the work piece 
in cutting process 

Cradle angle setting, as shown in 
Figure 2 

Eccentric angle setting, as shown in 
Figure 2 

Swivel angle setting, as shown in 
Figure 3 

Cutter spindle rotation angle 
setting, as shown in Figure 3 

Machine root angle setting, as 
shown in Figure 4c 

Auxiliary function defined in 
equation (14) 

1. INTRODUCTION 

Hypoid gear set is a primary element widely used by the industry to transmit the torque between 
crossed axes. In the past, since the precision coordinates of the hypoid gear profile had not been 
well developed, experimental testing was the only method used by the industry for the tooth 
contact analysis (TCA) and stress analysis. The experimental testing was time consuming and 
expensive. In this paper, a mathematical model for the complete hypoid gear profile is developed. 
It can be applied to the computer-aided tooth contact analysis (TCA), kinematic error analysis, 
stress analysis, dynamics analysis, and tooth geometry optimization of the hypoid gear. 

Hypoid gears are similar to bevel gears, but with a shaft offset. Some important investigations 
related to the spiral bevel gear have been studied in recent years. Litvin and Gutman [l] proposed 
a method of synthesis and analysis for the “Formate” and “Helixform” hypoid gear in 1981. 
Wilcox [2] developed a method to calculate the stresses of the bevel and hypoid gear teeth 
in 1982. Huston et al. [3] made a tooth profile analysis of circular-cut spiral bevel gears in 1983. 
Litvin et al. [4] proposed a method for generation of spiral bevel gears based on the parallel 
motion of a straight line that slides along two mating ellipses in 1987. Litvin et al. [5] also 
presented the determination of tool settings of a tilted head cutter for the generation of hypoid 
and spiral bevel gears in 1988. Fong [6] presented the TCA and optimization of spiral bevel 
gears in 1990. Fong and Tsay [7,8] proposed a mathematical model for the tooth geometry of 
circular-cut spiral bevel gears in 1991. 

In this paper, based on the theory of gearing 191, a mathematical model of the circular-cut 
hypoid gear set has been developed to simulate the widely used Gleason type circular-cut hypoid 
gear generators. The complete tooth geometry of the circular-cut hypoid gear has been mathe- 
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matically modeled. The mathematical model of the hypoid gear proposed herein can also cover 

the model of the spiral bevel gear developed by Fong and Tsay (741. The proposed mathematical 

model includes the active tooth surfaces, fillet surfaces, bottom land, top land, face cone, and 

back cone of the hypoid gear tooth surfaces. It can be applied to simulate both the generated 

and nongenerated manufacturing methods, and can also be applied to the computer-aided TCA 

and finite element stress analysis. 

2. EQUATIONS FOR THE HYPOID GEAR TOOTH PROFILES 

Derivation of the equations for the hypoid gear tooth profiles can be divided into four main 

modules as follows: 

0) 

(2) 

(3) 

(4 

Equations for the face mill cutter blade. Generally, at the normal section of the head 

cutter blade, there are two straight-edged and two circular-arc as shown in Figure 1. For 

any other types of cutter blades, one can modify the corresponding equations of the cutter 

blade in this module. 

Equations for the cradle set-up. If four angles on the cradle including the cradle angle T,!+, 

eccentric angle &, swivel angle qs and cutter spindle rotation angle $t are set-up, the 

tilted mechanism of the imaginary generating hypoid gear can be simulated to generate 

the hypoid gear that is located at the work head. 

Equations of the spatial relations between the cradle and gear blank. The geometric mech- 

anism of the cradle and work head can be established in this module. Some different 

generating methods investigated herein include: (a) Formate (nongenerated) and Duplex 

(generated) methods, (b) helical motion of the work head during cutting process. 

Equation of meshing. Based on the theory of gearing, this module is needed for the 

generating process. If nongenerated method is adopted, this module is omitted. 

(b) 

a-a sectlon 

Figure 1. Normal section of the head cutter blade. 

For simplicity, the following assumptions are made during the derivation process of the math- 

ematical model: 

(1) No elastic deformation is considered. In other words, rigid body motion is assumed during 

the cutting process. 

(2) Neither dynamics loading nor temperature effect is considered. 

(3) All the machine settings are precisely set-up. The tolerances and clearances of the hypoid 

gear generator are ignored. 

3. THE GLEASON FACE MILL CUTTER 

The normal section of the head cutter blade is represented in Figure la, and the enlarged 

section of the cutter blade is shown in Figure lb. The normal section of the cutter blade consists 
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of two circular-arc and two straight-edged. Parameters Bi and B0 are the surface coordinates of 
the inside and outside circular-arc of the cutter blade, respectively. Parameters t~i and U, are 
the surface coordinates of the inside and outside straight-edged of the cutter blade, respectively. 
According to these four parameters, the equations of the cutter blade at the normal section can 
be represented in the coordinate system S, (X, , Y, , Z,) as follows. 

(a) Equations of the inside and outside circular-arc portions are 

x+R,-$+pi (’ ofGte) -piSinBi 

yfi =o 

Z:i = -pi(l - COS 0,)~ 

and 
X’“=R,+!& 

s 2 

Y,f”=O 

z,ro = -p&l - cos&). 

(b) Equations of the inside and outside straight-edged portion are 

Y, = 0 

Zg = -pi(l - sinGi) - UiCOS$ll,, 

(1) 

(2) 

(3) 

and 

X;=R,+F+p, sin q0 + U, sin I+!I, 

r; = 0 (4 

Z,O = -pO( 1 - sin $J~) - U, cos $I,. 

where superscripts “fi” and “f 0” indicate the inside and outside circular-arc, respectively, super- 
scripts ‘7” and “0” indicate the inside and outside straight-edged, respectively, and subscript “s” 
indicates that the equations are represented in coordinate system S, (X,, Y,, Z,). Parameters $i 
and &, indicate the pressure angles of the inside and outside straight-edged, respectively, while 
pi and p0 indicate the radii of the inside and outside circular-arc, respectively, R, is the cutter 
radius, and W is the point width of the cutter blade as shown in Figure 1. 

The equations of the head cutter can be represented in coordinate system S, (Xa, Y,, Za) by 
rotating the normal section of the cutter blade along the axis Z, through a rotation angle p 
as shown in Figure lb. By applying the transformation matrix equation, the equations of the 
cutter blade represented in coordinate system S, (X,, Y,, Z,) can be transformed into coordinate 
system S, (X,,Y,, Za) as follows: 

(1) and (2) into equation (5), the inside and outside profiles of the head 
cutter for the circular-arc portion can be obtained as follows: 

X,‘i={R,-~+pi(l~~~z~) -p,sinBi}sinS 

Y,fi = R, - 7 + pi (’ ~of$~) - piSill*i} COSP 
(6) 
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and 

Similarly, by substituting equations (3) and (4) into equation (5), the inside and outside profiles 
of the head cutter of the straight-edged portion can be obtained as follows: 

Y~={R,-~-pi(‘~~~*~)sin~i--C:sin~i}cosa 

2: = -pi(l - sin$i) - U+,COS$a, 

and 

sin $J~ + U, sin $, } sinp 

sin & + U, sin & } cosp 

(8) 

(9) 

Z,O = -p,(l -sin@,) - UOcos~O. 

The surface unit normal vector of the head cutter is required for the derivation of the equation 
of meshing. Therefore, derivation of the surface unit normal vector of the head cutter should be 
performed herein. Based on equations (6) and (7), the surface unit normal vectors of inside and 
outside profiles of the head cutter circular-arc portion can be obtained as follows: 

n56 = sin & sin fl 

n:i = sin Qi COS /3 

,fi = 
*a -COSei, 

(10) 

and 
72:: = - sin 8, sin p 

n{z = - sin B0 cos fl 

n$ = - cos e,. 

(11) 

Similarly, based on equations (8) and (9), the surface unit normal vectors of the inside and outside 
profiles of the head cutter straight-edged portion can also be obtained as follows : 

4x3 = COS $i sin fl 

n& = cos $Ji cos p 

nka = -Sin&, 

(12) 

and 
n& = - cos & sin p 

n& = - cos $0 cos p (13) 
n& = -sin+,. 

The notations of superscripts and subscripts represented in equations (lo)-(13) are the same as 
those represented in equations (6)-(g). 
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4. THE GLEASON TILTED HEAD CUTTER 

For the Gleason hypoid gear generator, the head cutter has to satisfy the specified tilted and 
declination during the tool setting process. Therefore, four adjustable angles at the cradle mech- 
anism including cradle angle tic, eccentric angle v&, swivel angle $J, and cutter spindle rotation 
angle J& are needed. The tilted cradle mechanism of the Gleason hypoid gear generator was an- 
alyzed by Litvin [5] in 1988. The relations of coordinate systems of the tilted cradle mechanism 
are shown in Figures 2 and 3. The corresponding homogeneous coordinate transformation matrix 
equation is shown below to transform the locus of the head cutter from coordinate system S, to 
coordinate system S,. 

(14) 

where 

al r = cos 7 (C0s2 e cos +t + sin2 6) - sin 7 cos E sin tit 

a12 = cosr case sin& + sin7 cos tit 

a13 = 0.5 (1 - cos $Q) cos r sin 26 + sin 7 sin c sin Gt 

a14 = L [cos& - cos(~c + A)] 

a21 = - sin 7 (co? 6 cos +t + sin2 E) - cos 7 cost sin tit 

a22 = - sin 7 cos E sin $Q + cos 7 cos $Q 

a23 = -0.5 (1 - COS $,) sin T sin 2e + cos 7 sin 6 sin $t 

a24 = -L [sin $c - sh(‘& + ‘$!&)I 

a31 = 0.5 (1 - cos 7&) sin 2e 

a32 = - sin E sin 7+!+ 

a33 = sin2 E cos $Q + cos2 E 

r=$k+&+$%. 

Figure 2. Eccentric equipment assembly. Figure 3. Tilted equipment assembly. 

Similarly, the surface unit normal vector of the head cutter can also be represented in coordinate 
system S, by applying the transformation matrix equation as follows: 
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5. MECHANISM OF THE GLEASON HYPOID 
GEAR GENERATOR 

The geometric mechanism of the Gleason hypoid gear generator [lo] is shown in Figure 4. 

The generator is available to both the generated and nongenerated hypoid gear manufacturing 

methods. As shown in Figure 4a, coordinate systems Sb and S, are attached to the cradle housing 

and cradle, respectively. The angle CC is the rotation angle of the cradle with respect to the cradle 

housing. In Figure 4b, coordinate systems Sd and S, are attached to the gear blank housing and 

gear blank, respectively. The angle &, is the rotation angle of the gear blank with respect to the 

gear blank housing. The geometric relation between the cradle housing and gear blank housing 

is shown in Figure 4c. The relation between rotation angles CC and &, is related by: 

where Tar Tb, T,, and Td are the Nc/50 ratio gears, and they should follow the data given by 

the Gleason hypoid gear generator (Refer to Table l), and T, represents the teeth number of the 

generated gear. 

Figure 4. Coordinate systems for the mechanism of Gleason hypoid generator. 

Based on the relation of the coordinate systems shown in Figure 3, the locus of the head cutter 

can be represented in the coordinate system S,. The homogeneous coordinate transformation 

xd 

yd I[ 
cm %I 0 sin-f, -E, sin ym 

0 1 0 -&I = 
zd - sin 7m 0 cos em -E, cos -y,n 
1 0 0 0 1 I 

matrix equations are obtained as follows: 

(17) 

(18) 
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& 1 0 0 PAB X; 

K II [ 0 cos& -sin<, 0 
2, = 

% 
0 sin<, cos CIJI 0 

I[ 1, 
2: 

(20) 

1 0 0 0 1 1 

In order to present a completed tooth profile of the hypoid gear, a new coordinate system SA 
is needed as shown in Figure 4b. Symbol Od is the machine center, O& is the crossing point of 
the axes of mating gears on the vertical projection, and 0, is the pitch apex. Parameter E, is 
the sliding base movement and can be expressed by 

(21) 

where xb is the initial position of the sliding base, and (k) is the linear translation of the work 
head (i.e., helical motion) per radian of the cradle roll. The value of (k) is given by 

L 
- = 0.083075889 * 
2lr [ 1 5 x 2 inches for the Gleason #lOS 

Tf Th 
hypoid gear generator 

L 
- = 0.313803110 * 

[ 1 5 x 2 
2n Tf Th 

inches for the Gleason #I22 

hypoid gear generator, 

where T,, Tf, T,, and Th are the helical motion gears, and they should follow the data given by the 
Gleason hypoid gear generator (refer to Table 1). Other types of Gleason hypoid gear generators 
have different values of k. Parameter E, is the blank offset, D, is the increment of the machine 
center to the back, PAB is the distance measured from the crossing point of the axes of mating 
gears on the vertical projection to the pitch apex of the gear, and “in is the machine root angle. 

When the distance lOhOd is set to zero (PAB = 0), the proposed mathematical model of 
hypoid gears becomes a mathematical model of spiral bevel gears. In other words, the mathe- 
matical model of spiral bevel gears is a special case of the herein proposed mathematical model 
of hypoid gears. 

Equations (17)-( 20) can be rearranged and simplified as follows: 

bll = cos -fm cos cc 

blz = cos 7m sin CC 

b13 = sin-y, 

b14=-(lb-~6)sinym-(D,-PAB) 

bar = sin G sin ^~nz cos & - cos G sin cc 

b22 = sin Cw sin y,,, sin cc + cos I,,, cos C, 

(22) 
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b23 = - sin &, cos y,,, 

b21=-EueosC,+(ss-~G)sin(,cosy, 

b31 = - cos <,,, sin 3;n cos Cc - sin cu sin Cc 

b32 = - cos &, sin ym sin cc + sin & cos cc 

b33 = cos&, cosy, 

bad=-Evsin<,- (za-gCc)cos&,,cosy,. 

Equation (22) expresses the locus of the head cutter represented in coordinate system &., and 

coordinates of X, ,Y,, and Z, are given and expressed in equation (14). 

6. EQUATION OF MESHING 

During the generating process, the generating surface of the head cutter tool and the generated 

surface of the gear blank are alws,ys in tangency, and the relative velocity of these two surfaces 

is lain on the common tangent plane. Since at the line of common contact, the surface common 

unit normal vector is perpendicular to the common tangent plane, the following equation must 

be satisfied [9]: 

nb . vkg = 0, (23) 

where nb is the unit normal vector of the generating surface, and VEg is the relative velocity of the 

generating tool surface with respect to the generated gear blank surface. Subscript “b” indicates 

that both vectors nb and Vig are represented in the coordinate system sb. Equation (23) is 

the so-called “equation of meshing” in the theory of gearing. It relates the rotation angle of the 

cradle CC to the surface coordinates ui and /3 (or 2~~ and ,B) of generating cutter at the straight- 

edged portion, and 0i and p (or 0, and p) at the circular-arc portion. The relative velocity Vi9 

can be obtained as follows: 
VCS =Vc-Vg 

b b by (24 

where 

V,c = f12, x R, i j k 
= 

[ 1 0 0 -WC =wcYbi-&Xbj, 

xb yb zb 

(25) 

and 

V;=n,xR,+gw,k 

i j k 
= 

[ 

-wg cos -fm 0 -w,siny, 

xb yb - & zb - Es 1 + &wCk (26) 
=w,(Yb-&,)siny,i-[wg&,siny,-wg(Zb-E8)cosym]j 

+ (Yb - E,) cos ,ym + g w, 1 k. 

Let 

%(CC) = p = Q, (27) 
C 

and substituting equations (25)-(27) into equation (24), the relative velocity Vig becomes 

(yb - Ev) %z Sin7, - yb 

Xb(l-77aSin?;n)+(Zb--E,)77,COSym 1 , (28) -Pi - J%) ~a COSY, - & 
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where Xb, Yb, and Zb are the surface coordinates of the head cutter represented in coordinate 
system &, and they can be obtained by applying the coordinate transformation matrix equation 
(Figure 4a): 

Xb 

[I[ 
COS <c sin Cc 0 X, 

Yb = -sin& cos& 0 
0 0 1 I[ I Y0 = 

zb 2, [ 
X, cos Cc + Y, sin & 

-X0 sin & + Y, cos & 

& 1 , (29) 
where X,, YO, and Z, are the position coordinates represented in equation (14). 

The unit normal vector nb can also be obtained by applying the similar transformation matrix 
equation: 

nxb 

[ I [ 

COS 5‘c sin<, 0 nxo 
-sin<, cos(, 0 I[ 1 

cos CC -t- nyo sin & 

nyb nyo = -nxO sin& + nyO COS<~ 

%b 0 0 1 nzo [ nzo 
(30) 

where nzo, nyo, and n,, are the components of the surface unit normal vector of the head cutter 
represented in equation (15). 

By substituting equations (28)-(30) into equation (23), the equation of meshing is thus obtained 
as follows: 

nb . vi9 = (nzo ~0s Cc + my0 sin Cc) [(G sin ym - 1)Yb - qa & Sin rm] 

-t (-%o sin cc + nyo cos cc) [(I - % sin ym)xb - qa (zb - Es) COs ym] 

- 
%o %(Yb - &) COS “lm - %o k 

ZZ 0. 

(31) 

If both sides of equation (31) are divided by Q, and let K = sin ^Im - &) , then equation (31) 

becomes 

(nzo cos <= + nyo sin Cc) [K (-X0 sin cc + Y, cos &) - E, sin rm] 

+ (nzo sin Cc - nyo cos 6) [K (X 0 cm cc -k % Sin cc) - (zb - Es) COS rm] 

(32) 

zz 0. 

Equation (32) can also be simplied as follows: 

A+BsinC,+Ccos&=O, (33) 

where 

A= (siny,-~)(YOn,,-XOn,,)+nzO&,cos~~-~~ 

B = -E, nyo sin 7m - [n,,( Z, - E,) - X0 nzo] cos ?;n 

C = -E, nzo sin ^(m + [nyO(Zo - Es) - Y, nZo] cos T~. 

It is noticed that X0, Y,, and Z, are expressed in equation (14), and nzo, nyo, and n,, are 
represented in equation (15). Equation (33) is the equation of meshing for the hypoid gears. The 
gear tooth surfaces of the generated hypoid gear can be obtained by considering the equation 
of meshing and the locus of the head cutter simultaneously. Therefore, equations (22) and (33) 
define the tooth surface of the hypoid gear. The data of the right-hand hypoid pinion and left- 
hand hypoid gear given by the Gleason Works are listed in Table 1. By applying the computer 
graphics and proposed mathematical model represented by equations (22) and (33), the tooth 
profiles of the hypoid pinion and gear can be plotted and shown in Figures 5 and 6, respectively. 
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Table 1. Data for Example 1. 

N-c/50 ratio gears 53/42+48/76 

Helical motion gears 52/66*82/49 

Cutter diameter 9.075 in. 9.000 mm 

Outside blade angle 170 00’ 17O 00’ 

Inside blade angle 280 00’ 18’ 00’ 

Blade edge radius 0.060 in. 0.000 in. 

Point width 0.124 in. 0.160 in. 

Figure 5. Tooth profile of hypoid pinion 

\ I I 

Figure. 6. Tooth profile of hypoid gear. 
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7. CONCLUSION 

The proposed mathematical model of the hypoid gear can be applied to simulate many different 
manufacturing methods for both spiral bevel gears and hypoid gears. It can also be applied to 
both the generated and nongenerated methods. There are four independent modules in the 
proposed mathematical model that benefit the coding of the computer program. 

Based on the proposed mathematical model, the profile and surface coordinates of the hypoid 
pinion and gear can be obtained. In addition, the tooth contact analysis, kinematic error analysis, 
dynamic analysis and tooth geometry optimization can also be investigated. 
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