
230 IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 5, MAY 2001

Performance Enhancement of IP Forwarding by
Reducing Routing Table Construction Time

Pi-Chung Wang, Chia-Tai Chan, and Yaw-Chung Chen

Abstract—In previous work, Lampson et al. proposed an IP
lookup algorithm which performs binary search on prefixes
(BSP) [3]. The algorithm is attractive for IPv6 because of its
bounded worst-case memory requirement. Although for the sake
of fast forwarding, the cost paid for the slowing down insertion
is reasonable, the performance of routing-table reconstruction in
BGP is too time-consuming to handle the frequent route updates.
In this letter, we propose a fast forwarding-table construction
algorithm which can handle more than 3600 route updates per
second. Moreover, it is simple enough to fulfill the need of fast
packet forwarding.

Index Terms—Gigabit networking, Internet, IP address lookup.

I. INTRODUCTION

T HERE has been a remarkable interest in the organization
of routing tables during the past few years. The proposals

include both hardware and software solutions [1]–[3], [6]. In
[3], the proposed IP lookup algorithm pre-computes both the
prefix corresponding to each region and that corresponding to
each exact match. By using additional pre-computation, it can
perform a prefix match through a binary search in a sorted array.
With the cache line alignment, it can achieve more than 2 MPPS
(million of packets per second) worst-case performance using
200-MHz CPU. This scheme is attractive for IPv6 because of
its bounded memory requirement. Although for the sake of fast
forwarding, its cost for the slowing down insertion is reasonable,
the performance of routing-table reconstruction is too time-con-
suming to handle the frequent route updates. For example, in the
worst case, the table construction may take 5.8 s. For prefixes
with length smaller than 16 bits, the worst-case update time is
about 1.25 ms, while the estimated worst and average update
time for prefixes with length larger than 16 bits are 352 and 20
ms, respectively [3]. Obviously, the routing table construction is
not fast enough to handle the rapid route update (i.e., 100 route
updates per second) in a backbone router with BGP implemen-
tation [7].

In this work, we aim at enhancing the BSP for prefixes longer
than 16 bits using a fast forwarding-table construction algo-
rithm. In BSP, the forwarding-table construction consists of two
phases: the sorting and the stack operation. By embedding the

Manuscript received September 6, 2000. The associate editor coordinating
the review of this letter and approving it for publication was Dr. I. Venieris.

P.-C. Wang and Y.-C. Chen are with the Department of Computer Science and
Information Engineering, National Chiao Tung University, Hsinchu, Taiwan,
R.O.C. (e-mail: {pcwang@csie.nctu.edu.tw; ycchen@csie.nctu.edu.tw).

C.-T. Chan was with the Department of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C. He is
now with the Telecommunication Laboratories, Chunghwa Telecom Company,
Ltd., Taipei, Taiwan, R.O.C. (e-mail: ctchan@cht.com.tw).

Publisher Item Identifier S 1089-7798(01)04501-X.

sorting into the stack operation, the proposed algorithm can
finish the table construction much faster than that of BSP. In ad-
dition, we can solve the duplicate-address entry problem easily
by solely processing the sorted prefixes. We evaluate the perfor-
mance of our proposed algorithm based on routing-table update
rate. Experimental results show that it handles more than 3600
route-updates per second, this indicates that our proposed algo-
rithm outperforms the BSP. The rest of this article is organized
as follows. Section II presents the proposed algorithm. The per-
formance evaluation is addressed in Section III. Section IV con-
cludes the work.

II. PROPOSEDIP FORWARDING TABLE CONSTRUCTION

ALGORITHM

The table construction of the BSP consists of two parts: the
pre-computation for the searchable entries and the multiway
search tree construction. One entry with starting address
(padded with 0’s) and another with ending address (padded
with 1s) for each route prefix are generated. In addition, two
fields are attached: “equal” and “large.” The former points
to the best matching prefix (BMP) for the destination address
equal to the entry, while the latter records the BMP for the IP
addresses falling between the current entry and the next one.
Accordingly, the pre-computation is used to find out the BMP
for each entry, that complicates table construction. Since the
major bottleneck ties to the pre-computation, we will focus on
its optimization.

We sort the route prefixes at first. Let , and be the
starting address, ending address and the length of the route
prefix , respectively, and assume (
is the number of route prefixes,). If ,
then if and only if . With the sorted prefixes, just
processing each route prefix sequentially can accomplish the
calculation of the BMP.

For the route prefix , both values ofequalandlarge fields
in the entry with starting address can be filled with, yet they
may not be the BMP. However, the longer matching prefix will
be processed after according to the rule of sorted prefixes.
Thus both values will be overwritten with the correct prefix
identifier. To process the entry with ending address, we have
to consider two problems: its relative location within the pro-
cessed entries and the values of bothequalandlarge fields. We
adopt two arrays, and , for computation. The first one is
used to store the generated entry. The other is implemented as a
stack which performspush andpop operation. The entry with
starting address will be inserted into directly, while the entry
with ending address will be pushed into at first. To place the
entry with ending address in correct position, we check whether

1089–7798/01$10.00 © 2001 IEEE

WANG et al.: PERFORMANCE ENHANCEMENT OF IP FORWARDING BY REDUCING ROUTING TABLE CONSTRUCTION TIME 231

Fig. 1. NHA construction example.

the address of the top entry in is smaller than . If so, we
pop the top element of and append it to . We repeat these
steps until there is no entry in smaller than . Then we must
check whether the address of the rear entry inis equal to
or not. If yes, it means there exists a longer prefix with same
starting address as described. Thus the rear entry inwill be
overwritten with the current one. Otherwise, the entry will be
appended.

Before an entry with ending address is added to, we check
whether the address of the top entry in is equal to or
not. If yes, we update theequal field of the top entry with
for a longer matching prefix as described above. Otherwise,

will be pushed into where the is the
equal field of the top entry in . This is because that the re-
gion indicated in thelarge field is occupied by a shorter prefix
which forms the top entry in . Consequently, the entry will
be pushed into . After processing all route prefixes, we pop
all entries stored in and append them to in sequence. The
detailed algorithm is shown as follows.

Entry Pre-Computation Algorithm
Input: routing prefixes.
Output: The array of the processed en-

tries.

The item and represent the ad-
dresses of the top and the rear entries
in and , respectively.

Let be the set of sorted
prefixes of an input segment.

Append the entry default route , default route

into and push another entry
default route into .

For to do

1. For the entry of th routing
prefix.
Check if larger than .

2. If yes, pop out the top entry from
and insert it into . Repeat step 1&2
until the result of the comparison is
false.

3. Check if ,
3.a If yes, overwrite the rear entry in

with .
3.b Otherwise, append into .

4. Check if the ,
4.a If yes, overwrite the “ equal ” field
of the top entry in with .
4.b Otherwise, push into ,
where is the “ equal ” field of the
top entry in .

Pop out all entries from and append
them into .
End.

After processing all prefixes, the ordered entries will be avail-
able in the array. The time complexity of the entry pre-computa-
tion algorithm without the prefix sorting is . In the worst
case, the number of entries is twice as the number of route pre-
fixes. However, since the entry merging is preformed in Steps
3.a and 4.a for the entries with duplicate address, the number
of entries is slightly reduced. Note that if we didn’t merge the
duplicate entry, it may cause ambiguous situation during the
lookup process, because it is unable to tell which entry indicates
the longer prefix.

In Fig. 1, we use an example to illustrate the algorithm. After
processing the route prefix , the top element of and rear el-
ements of are and , respectively.
For the route prefix , it firstly compares with . Since

is smaller than , will be popped out and ap-
pended to . Also, there is no smaller entry in , we further
check whether is equal to or not. Because
they are different, the entry will be appended to

. In addition, is not equal to , thus it pushes the
entry into .

232 IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 5, MAY 2001

TABLE I
PERFORMANCEEVALUATION WITH FIVE ROUTING TABLES

III. PERFORMANCEEVALUATION

We choose a 300-MHz Pentium II that has a 512-kbytes L2
cache and runs Windows NT for the experiment. Five routing
tables obtained from the IPMA project [4] on May 15, 2000 are
used. We will show the performance of the proposed scheme in
the aspects of construct/update time and storage. To show the
worst-case update cost, we choose the segment (first 16-bits of
IP address) with the maximum number of route prefixes. Then
we make 1024 copies of this segment and construct the for-
warding table for them. The total storage for building the for-
warding table is larger than 2 MB. This will ensure that each
acquired block is fetched from the main memory, which reflects
the real situation. The worst-case update time can be calculated
by dividing the total elapsed time by the number of iterations
(1024). We also showed the worst and the average case lookup
performance with the same methodology. Since the tree con-
struction and search algorithms are not listed in the literature,
thus there might be some bias between both implementations.
But we believe this would be small enough to be ignored.

The experimental results are shown in Table I. For conve-
nience, the available numerical results from [3] are listed in the
parentheses. Note that numbers measured on 200-MHz Pentium
Pro in [3] have been projected to 300 MHz. First of all, the
size of the forwarding table is in proportional to the size of the
routing table. Obviously, the total construction time is much less
than that in BSP scheme. Further, the more entries in the routing
table, the greater improvement can be achieved. The worst-case
lookup time in our implementation is slower than that in the

previous work. This is because there are much more entries in
the tested routing tables. And also, the projection of CPU speed
might over-estimate the performance since the memory speed
is not improved as well as the CPU speed. In [3], the authors
claimed that the average and worst case update time are 20 ms
and 350 ms, respectively. With our algorithm, the table update
time is less than 350sec, which shows a significant improve-
ment in performance.

IV. CONCLUSIONS

In this letter, we aim at enhancing the BSP for prefix longer
than 16 bits with a fast forwarding-table construction algorithm.
Since the update cost ties to the table construction process, we
propose a fast forwarding-table construction algorithm and re-
solve the ambiguous lookup problem caused by duplicate entry.
With the current 53 000-entry routing table of a backbone router,
our algorithm can achieve more than 3600 route updates per
second in the worst case. It is obvious that the proposed al-
gorithm improves the performance significantly. Moreover, it
is simple enough to fulfill the need of high-speed packet for-
warding.

REFERENCES

[1] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” inProc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 3–14.

[2] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” inProc. IEEE INFOCOM’98, San Francisco,
CA, Mar. 1998.

[3] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using mul-
tiway and multicolumn search,”IEEE/ACM Trans. Networking, vol. 7,
pp. 323–334, June 1999.

[4] Merit Networks, Inc.. Internet performance measurement and
analysis (IPMA) statistics and daily reports. [Online]. Available:
http://www.merit.edu/ipma/routingtable/

[5] Y. Rekhter and T. Li, “An architecture for IP address allocation with
CIDR,”, RFC 1518, Sept. 1993.

[6] M. Waldvogel, G. Vargnese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” inProc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 25–36.

[7] S. Bradner, “Next generation routers. Overview,”Proc. Networld In-
terop., 1997.

