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There are many methods for nested loop partitioning exist; however, most of them
perform poorly when they partition loops with non-uniform dependences. This paper
proposes a generalized and optimized loop partitioning mechanism which can exploit
parallelism in nested loops with non-uniform dependences. Our approach based on the
region partitioning technique divides the loop into variable size partitions. Furthermore,
the proposed algorithm partitions a nested loop using the copy-renaming and optimized
partitioning techniques so as to minimize the serial part of the iteration space. Thus, it
out performs previous partition mechanisms for nested loops with non-uniform depend-
ences. Compared with other popular techniques, our scheme shows dramatic improve-
ment in preliminary performance results.
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1. INTRODUCTION

The dependence of loops can be divided into two categories: one is uniform de-
pendences and the other, non-uniform dependences [8]. When a pattern of dependence
vectors, namely, distance vectors, is expressed by some constants, it will be called uni-
form dependence. While other dependence vectors in a regular pattern can not be ex-
pressed by constants, they belong to non-uniform dependences. Example 1 below ex-
plicates a non-uniform dependence loop, which has non-uniform dependence in the itera-
tion space (See Fig. 1).

Example 1: A non-uniform dependence loop:
for I = 1, 10

for J = 1, 10
A (2*I + 3, J + 1) = …..

….. = A (2*J + I + 1, I + J + 3)
endfor

endfor
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Fig. 1. Iteration space of Example 1.

Because rich parallelism in loops exists in scientific programs, current parallelizing
compilers have been developed in an effort to exploit this parallelism [8]. However,
most of them fail to parallize nested loops with non-uniform dependences because of
irregular and complex dependence constraints. Although many studies have tried to
identify the cross-iteration dependences in nested loops, most of them have failed when
analysis was conducted using coupled subscripts [9].

According to an empirical study on array subscripts and data dependences [1],
nearly 45 % of two-dimensional array references are coupled, and most of them generate
non-uniform dependences. In this paper, we will focus on the parallelization of nested
loops with non-uniform dependences. Loop partitions are an important optimization
issue requiring exact and effective data dependence analysis [3]. However, irregularity
in a dependence pattern makes dependence analysis of nested loops very difficult. A
number of techniques based on convex hull theory have been proposed, such as depend-
ence uniformization [2, 11, 16], minimum dependence distance tiling [4, 10, 12, 14, 15],
three region partitioning [5], unique set oriented partitioning [6], and ITRP (Improved
Three Region Partitioning) [7]. However, none of them can extract all of the parallel-
ism from non-uniform dependence loops.

We employ a mechanism called OTRP (Optimized Three Region Partitioning),
which divides the iteration space into two parallel regions and one serial region. The
serial region can be further parallelized into parallel tiles using general non-uniform par-
allelization techniques, such as minimum dependence distance tiling [4, 10, 12, 14, 15],
or variable size partitioning techniques [7]. In our preliminary performance evaluation,
this method performed 1.25 to 1.5 times better than the currently most effective method,
called ITRP, when we ran a simulation on the system with 8 processors. On the other
hand, in order to fully determine the parallelism obtained by our method, we ran our
scheme on a simulation environment with up to 128 processors. We also found that our
method performed 1.1 to 1.3 times better than the ITRP method. When we increased
the loop bound of the benchmark from 10 to 100 and 1000 to simulate the property of
real scientific benchmarks, our technique always performed better than the currently
popular mechanisms.

The rest of this paper is organized as follows. Section 2 describes our program
model and reviews the concepts of the dependence convex hull, unique head and tail sets
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as will as several related works. Section 3 presents the concept and principle behind
our new partitioning mechanism, the OTRP scheme. Section 4 compares our scheme
with previously proposed schemes. The preliminary performance results are presented
in section 5. Finally, we give some conclusions along with future work in section 6.

2. PRELIMINARIES AND RELATED WORK

Most loops with complex array subscripts are two dimensional loops [1]. To sim-
plify, explanation, the program under consideration in this paper is a doubly nested loop
with coupled subscripts. Solutions for multilevel nested loops can be obtained by en-
hancing our mechanisms. The model of a doubly nested loop is depicted in Fig. 2,
where f1(I, J), f2(I, J), f3(I, J), and f4(I, J) are all linear functions of loop variables. The
dimension of the nested loop is equal to the number of nested loops in it. In loop I(J),
LI(LJ) and UI(UJ) indicate the lower and upper bounds, respectively. Both the lower and
upper bounds for indices should be known at compiler time.

for I = LI, UI

for J = LJ, UJ

………
Sd: A(f1(I, J), f2(I, J)) = ….
Su: …... = A(f3(I, J), f4(I, J))

………
endfor

endfor

Fig. 2. A doubly nested loop program model.

Usually, an iteration denoting a series of statements in the loop body is a unit of
work assigned to a processor. Therefore, the dependence constraints inside the iteration
can be ignored when parallelizing a nested loop. The dependence constraints among
different iterations, called cross-iteration dependences, are our major concern. In our
program model shown in Fig. 2, statement Sd defines the elements of array A, and state-
ment Su uses them. Dependence exists between Sd and Su whenever both refer to the
same element in array A. If the element defined by Sd is used by Su in a subsequent
iteration, a cross-iteration flow dependence exists between Sd and Su and will be denoted
by Sd �

f Su. On the other hand, if the element used in Su is defined by Sd at a later
iteration, the dependence is called a cross-iteration anti-dependence and will be denoted
also by Su �

a Sd.
The most common method for computing data dependences involves solving a set

of linear Diophantine Eqs. with a set of constraints formed by the iteration boundaries.
The loop shown in Fig. 2 carries cross-iteration dependences if and only if there exist
four integers i1, j1, i2 and j2 satisfying the system of linear Diophantine Eqs. given by (1)
and the system of inequalities given by (2). The formal expression of Eq. (1) is shown
in Eq. (1-1):
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f1(i1, j1) = f3(i2, j2) and f2(i1, j1) = f4(i2, j2), ((i1, j1) and (i2, j2) ∈ (I, J)), (1)

a11i1 + a12j1 + b1 = a31i2 + a32j2 + b3 and a21i1 + a22j1 + b2

= a41i2 + a42j2 + b4, ((i1, j1) and (i2, j2) ∈ (I, J)), (1-1)

L1 � i1, i2 � U1 and L2 � j1, j2 � U2 . (2)

The Dependence Convex Hull (DCH) [2] is a convex polyhedron and a subspace of
the solution space. There are two ways to solve the system of Diophantine Eqs. in (1).
One way is to set i1 to x1, set j1 to y1, and solve i2 and j2. Then, i1, j1, i2, j2 and its ine-
qualities can be represented as (3), which forms DCH, denoted DCH1. The formal
expression of Eq. (3) is shown in Eq. (3-1):

(i1, j1, i2, j2) = (x1, y1, g1(x1, y1), g2(x1, y1)),

L1 � x1, g1(x1, y1) � U1 and L2 � y1, g2(x1, y1) � U2 , (3)

g1(x1, y1) = ((a42a11 - a32a21)x1 + (a42a12 - a32a22)y1 +
(a42b1 - a32b2 - a42b3 + a32b4)) / ( a42a31- a32a41),

g2(x1, y1) = ((a41a11 - a31a21)x1 + (a41a12 - a31a22)y1 +
(a41b1 - a31b2 - a41b3 + a31b4)) / ( a41a32 - a31a42),

L1 � x1, g1(x1, y1) � U1 and L2 � y1, g2(x1, y1) � U2 . (3-1)

The other way is to set i2 to x2, set j2 to y2 and solve i1 and j1. Then, (i1, j1, i2, j2)
and its inequalities can be represented as in (4), which forms a DCH denoted by DCH2.
The formal expression of Eq. (4) is shown in Eq. (4-1):

(i1, j1, i2, j2) = (g3(x2, y2), g4(x2, y2), x2, y2),

L1 �g3(x2, y2), x2 � U1 and L2�g4(x2, y2), y2 � U2 , (4)

g3(x2, y2) = ((a22a31 - a12a41)x2 + (a22a32 - a12a42)y2 +
(a22b3 - a12b4 - a22b1 + a12b2)) / ( a22a11 - a12a21),

g4(x2, y2) = ((a21a31 - a11a41)x2 + (a21a32 - a11a42)y2 +
(a11b3 - a11b4 - a21b1 + a11b2)) / ( a21a12 - a11a22),

L1 �g3(x2, y2), x2 � U1 and L2�g4(x2, y2), y2 � U2 . (4-1)

Clearly, if we have a solution i1, j1 in DCH1, then we will have a solution i2, j2 in
DCH2 because both of them are derived from the same set of Eqs.. The union of DCH1
and DCH2 is called the Complete DCH (CDCH), and all the dependences lie within
CDCH. If iteration (i2, j2) is dependent on iteration (i1, j1), then we will have a depend-
ence vector D(x, y) with di(x, y) = i2 – i1 and dj(x, y) = j2 – j1. Therefore, for DCH1, we
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have

di(i1, j1) = g1(i1, j1) - i1 and dj(i1, j1) = g2(i1, j1) – j1. (5)

The formal expression of Eq. (5) is shown in Eq. (5-1):

di(i1, j1) = ((a42a11 - a32a21 - a42a31 + a32a41)i1 + (a42a12 - a32a22)j1 +
(a42b1 - a32b2 - a42b3 + a32b4)) / (a42a31 - a32a41),

dj(i1, j1) = ((a41a11 - a31a21)i1 + (a41a12 - a31a22 - a41a32 + a31a42)j1 +
(a41b1 - a31b2 - a41b3 + a31b4)) / (a41a32 - a31a42). (5-1)

For DCH2, we have

di(i2, j2) = i2 - g3(i2, j2) and dj(i2, j2) = j2 – g4(i2, j2). (6)

The formal expression of Eq. (6) is shown in Eq. (6-1):

di(i2, j2) = ((a22a11 - a12a21 - a22a31 - a12a41)i2 - (a22a32 - a12a42)j2 +
(a22b3 - a12b4 - a22b1 + a12b2)) / ( a22a11 - a12a21),

dj(i2, j2) = ((a11a41 - a21a31)i2 + (a21a12 - a11a22 - a12a32 + a11a42)j2 +
(a11b4 + a21b1 - a21b3 - a11b2)) / ( a21a12 - a11a22). (6-1)

Here, we briefly describe some techniques for solving non-uniform dependence
problems. The dependence uniformization scheme [2] constructs two basic dependence
vector sets based on the dependence slope theory and adds them to every iteration in the
iteration space. The loop can then be parallelized current parallel compilation tech-
niques for uniform dependence loops. It can be parallelized according to the two uni-
form dependence vectors, resulting in a doacross type of loop execution. However, this
mechanism always imposes many additional dependences on the iteration space.

The minimum dependence distance tiling method [4, 15] exploits the available par-
allelism using minimum distances computed from the dependence vectors of the IDCH
(Integer DCH) extreme points. The minimum distances are used to partition the itera-
tion space into tiles of regular size and shape, but the irregularity of non-uniform de-
pendence distances is ignored.

The three-region partitioning technique [5] divides the iteration space into two par-
allel regions and one serial region. The first region represents the part of the iteration
space in which anti-dependence exists. Hence, iterations in this area can be fully exe-
cuted in parallel provided that copy-renaming is performed. The second region repre-
sents the part of the iteration space having flow dependence heads whose corresponding
tails exist in the first region. Iterations in the second region are executed in parallel
after the those in the first region are executed. Then, the serial region represents the rest
of the iteration space to which the dependence uniformization scheme can be applied.
However, if this serial region increases, the performance of the loop will be significantly
degraded.
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The unique set oriented partitioning mechanism [6] divides the iteration space into
the dependence unique head and tail sets. In this partitioning method, there exist vari-
ous combinations of overlaps of these sets, and the execution order of the partitioned
regions depends on these combinations. The iterations within the unique set can be
executed in parallel, but the unique tail sets must be executed before the unique head sets.
This technique provides more accurate information for the iteration space. However, it
also has several disadvantages. First, it does not present an exact partitioning scheme,
so it is difficult to know which is the best scheme at compile time. Second, it inevitably
leaves some parallelism unexplored since the method of minimum dependence distance
is applied to parallelize the rest of the iteration space which contains both dependence
tails and heads. Increasing the number of iterations in this region will reduce the
speedup of the loop.

The Improved Three Region Partition (ITRP) scheme [7] is similar to the three re-
gion partitioning scheme in the sense that the iteration space is divided into two parallel
regions and one serial region. The size of the parallel region in ITRP is not less than
that in the three-region partitioning scheme mentioned above. On the other hand, it is
simple to divide the iteration space into three regions. The execution order of partitions
will always be the same. However, this still leaves some parallelism unexplored in the
partitioned serial region. Moreover, variable size partitioning in the serial region also
suffers from high time complexity.

3. OPTIMIZED THREE REGION PARTITIONING

In the previous section, we briefly discussed the advantages and disadvantages of
conventional techniques. Here, we will present an effective technique, called OTRP
(Optimized Three Region Partitioning), which can improve the drawbacks of those
methods.

We use an arrow to represent dependences in the iteration space. We call the ar-
row’s Head the dependence head and the arrow’s Tail the dependence tail. Definition 1
defines the unique head (tail) set. If any region belongs to the unique set, the iterations
in it can be executed in parallel [6].

Definition 1[6]: (Unique Head (Tail) Set) The unique head (tail) set is a set of integer
points in the iteration space that satisfies the following conditions:

(1)It is the subset of one of the DCHs (or is the DCH itself).
(2)It contains all the dependence arrows’ heads (tails) but does not contain any other de-

pendence arrows’ tails (heads).

We will first examine the concepts of DCH1 and DCH2.

Lemma 1: DCH1 contains all flow dependence tails and all anti-dependence heads (if
they exist), and DCH2 contains all anti-dependence tails and all flow dependence heads
(if they exist).
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Proof: From Eqs. (3) and (4), the iterations in DCH1 and DCH2 can be determined. In
addition, from Eqs. (5) and (6), the dependence vectors of DCH1 and DCH2 can also be
calculated. The iterations inside DCH1 can be constructed by means of the functions
g1(i1, j1) and g2(i1, j1). Thus, if there is any iteration inside DCH1, and if its corre-
sponding array reference is a write reference, then the array reference of the iteration
must become a flow dependence tail. Otherwise, if there is any iteration inside DCH1,
and if its corresponding array reference is a read reference, then the array reference of the
iteration must become an anti-dependence head. Hence, DCH1 contains all flow de-
pendence tails and all anti-dependence heads (if they exist). Similarly, DCH2 contains
all anti-dependence tails and flow dependence heads (if they exist). �

The above lemma tells us that DCH1 and DCH2 may contain more than one unique
set. Two kinds of unique sets in DCH1 and DCH2 are also given by Lemma 1. We
can use this property to further partition the iteration space inside DCH1 and DCH2 into
sub-iteration spaces to be executed in parallel. The following lemma states the condi-
tion for DCH1 and DCH2 to be unique sets.

Lemma 2: If di(x, y) = 0 does not pass through any DCH, then there will be only one
kind of dependence, either flow or anti-dependence, and DCH itself will be the unique
head set or the unique tail set.

Proof: If di(x, y) = 0 does not pass through any DCH, then DCH is on the side of either
di(x, y) < 0 or di(x, y) > 0. If DCH1 and DCH2 are on the side of di(x, y) > 0, then
DCH1 and DCH2 contain a flow dependence unique tail set and a flow dependence
unique head set, respectively, because the iterations in DCH1 and DCH2 are derived
from Eqs. (5) and (6), respectively, and are based on Lemma 1. If DCH1 and DCH2 are
on the side of di(x, y) < 0, then DCH1 and DCH2 contain an anti-dependence unique
head set and an anti-dependence unique tail set, respectively, because the iterations in
DCH1 and DCH2 are derived from Eqs. (5) and (6), respectively, and are based on
Lemma 1. Thus, if di(x, y) = 0 does not pass through any DCH, then there will be only
one kind of dependence, either flow or anti-dependence, and DCH itself will be the
unique head set or the unique tail set. �

DCH1 and DCH2 are constructed based on the same system of linear Diophantine
Eqs. and inequalities. Lemma 3 highlights their common attributes.

Lemma 3: If di(x1, y1) = 0 does not pass through DCH1, then di(x2, y2) = 0 will not pass
through DCH2.

Proof: If di(x1, y1) = 0 does not pass through DCH1, then there is only one kind of de-
pendence, either flow or anti-dependence, according to Lemma 2. Now, assume that
di(x2, y2) = 0 passes through DCH2; then, DCH2 contains both a flow dependence head
set and an anti-dependence tail set. Thus, there must be a corresponding flow depend-
ence tail set and an anti-dependence head set inside DCH1 due to Lemma 1. However,
this means that di(x1, y1) = 0 does pass through DCH1 according to Lemma 2. Hence-
forth, if di(x1, y1) = 0 does not pass through DCH1, then di(x2, y2) = 0 will not pass
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through DCH2. �

Lemma 4: If di(x1, y1) = 0 (di(x2, y2) = 0) does not pass through DCH1(DCH2), and if
DCH1(DCH2) is on the side of di(x1, y1) > 0 (di(x2, y2) > 0), then DCH1(DCH2) is a flow
dependence unique tail (head) set. Otherwise, if DCH1 (DCH2) is on the side of di(x1,
y1) < 0 (di(x2, y2) < 0), then DCH1(DCH2) is an anti-dependence unique head (tail) set.

Proof: If di(x1, y1) = 0 (di(x2, y2) = 0) does not pass through DCH1 (DCH2), and if DCH1
(DCH2) is on the side of di(x1, y1) > 0 (di(x2, y2) > 0), then DCH1 will be a flow depend-
ence unique tail set according to Lemma 1 and Lemma 2. On the other hand, DCH2
will be a flow dependence unique head set due to Lemma 3. Otherwise, if DCH1
(DCH2) is on the side of di(x1, y1) < 0 (di(x2, y2) < 0), then DCH1 will be an
anti-dependence unique head set based on Lemma 1 and Lemma 2. On the other hand,
DCH2 will be an anti-dependence unique tail set due to Lemma 3. �

We have now established that if di(x1, y1) = 0 does not pass through DCH1, then
both DCH1 and DCH2 are unique sets and the points in them have the same property.
When di(x1, y1) = 0 (di(x2, y2) = 0) passes through DCH1(DCH2), DCH1(DCH2) may
contain both dependence heads and tails. This makes it harder to find the unique head
and tail sets. We now will propose an effective mechanism for exploiting parallelism
under such conditions. Lemmas 5 and 6 show some common attributes when di(x1, y1)
= 0 passes through DCH1(DCH2).

Lemma 5: If di(x, y) = 0 passes through a DCH, then it will divide the DCH into a
unique tail set and a unique head set. Furthermore, dj(x, y) = 0 will determine the in-
clusion of di(x, y) = 0 in one of the sets.

Proof: If di(x, y) = 0 passes through DCH1(DCH2), then DCH1(DCH2) will contain
both a flow dependence tail(head) set and an anti-dependence head(tail) set, and the sets
will be divided by the line di(x, y) = 0, according to Eqs. (3), (4), (5), and (6). The
points in the line di(x, y) = 0 can be further categorized into different sets according to
the line dj(x, y) = 0. If these points are on the side of dj(x, y) > 0, then they belong to a
flow dependence unique tail set (flow dependence unique head set) in DCH1(DCH2).
Otherwise, if these points are on the side of dj(x, y) < 0, then they belong to an
anti-dependence unique head set (anti-dependence unique tail set) in DCH1(DCH2) ac-
cording to the calculation results of Eqs. (5) and (6). Furthermore, if the point is in the
di(x, y) = 0 and dj(x, y) = 0, it will have no cross-iteration dependence. Thus, dj(x, y) =
0 will determine the inclusion of di(x,y) = 0 in one of the sets. �

Lemma 6: If di(x1, y1) = 0 passes through DCH1(DCH2), then DCH1(DCH2) is the un-
ion of a flow dependence unique tail(head) set and an anti-dependence unique head (tail)
set.

Proof: If di(x, y) = 0 passes through DCH1(DCH2), then DCH1(DCH2) contains both a
flow dependence unique tail(head) set and an anti-dependence unique head(tail) set, and
the sets are divided by the line di(x, y) = 0, according to Lemmas 1 and 5. Thus, if di(x1,
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y1) = 0 passes through DCH1(DCH2), then DCH1(DCH2) is the union of a flow de-
pendence unique tail(head) set and an anti-dependence unique head (tail) set. �

Based on the properties described above, there exist various combinations of over-
laps of these unique sets. We will explain these properties using the following example:

Example 2: An example of a doubly nested loop:
for I = 1, 10

for J = 1, 10
A (2*J + 3, I + J + 5) = …..

….. = A (2*I + J - 1, 3*I - 1)
endfor

endfor

The set of inequalities and dependence distances of the loop in Example 2 is com-
puted as follows:

DCH1: (7)

.

DCH2: (8)

.

Fig. 3 DCHs and the unique head (tail) sets of the loop in Example 1. Clearly,
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(a)

Flow dependence unique tail set

Flow dependence
unique head set

di(x1,y1)=0

di(x2,y2)=0

I

J

(b)

di (x1,y1)=0

Anti dependence
unique head set

di(x2,y2)=0

Anti dependence
unique tail set

I

J

di(x1, y1) = 0 divides DCH1 into two areas. The area on the side of di(x1, y1) < 0 is the
anti-dependence unique head set, and the set is on the right side of di(x1, y1) = 0 as shown
in Fig. 3(b). The area on the side of di(x1, y1) > 0 is the flow dependence unique tail set,
and the set is on the left side of di(x1, y1) = 0 as shown in Fig. 3(a). di(x2, y2) = 0 also
divides DCH2 into two areas. The area on the side of di(x2, y2) < 0 is the
anti-dependence unique tail set, and the set is on the left side of di(x2, y2) = 0 as shown in
Fig. 3(b). The area on the side of di(x2, y2) > 0 is the flow dependence unique head set,
and the set is on the right side of di(x2, y2) = 0 as shown in Fig. 3(a).

Fig. 3. Unique head sets and unique tail sets of (a) flow dependence and (b) anti-dependence.

Our approach is based on the convex hull theory [2]. We use lines di(i, j) = 0 and
dj(i, j) = 0 to partition the iteration space into two parallel regions and one serial region.
All the various kinds of possible sets partitioned by di(i, j) and dj(i, j) are summarized in
Table 1 according to the above lemmas. Table 1(b) shows various sets, each of which is
part of the line segment corresponding to partitioning according to the sign of dj(i1, j1)
and dj(i2, j2).

Table 1. (a) The different sets partitioned by di(i, j) and dj(i, j).
(b) The case of di(i1, j1) =0 or di(i2, j2) = 0.

First, we use memory space to exploit the benefits of parallel execution because
anti-dependence can be avoided based on the concept of copy-renaming [3]. Lemma 7

di(i1, j1)

> 0 < 0 = 0

di(i2, j2)

> 0

< 0

= 0

FT, FH FH , AH

FT , AT AT , AH
Refer
to (b)

Refer to (b)

(a)

DCH1,DCH2 DCH2,DCH1

DCH1,DCH2
DCH2,DCH1

dj(i2, j2)

> 0 < 0 = 0> 0 < 0 = 0

FT ATFHAH

(b)

dj(i1, j1)

No cross-
iteration
dependence

No cross-
iteration
dependence

FT : Flow dependence Tail set
FH : Flow dependence Head set
AT : Anti dependence Tail set
AH : Anti dependence Head set

DCH1 DCH1
DCH2

DCH2

DCH1 and DCH2 are regions they belong to
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introduces the condition under which copy-renaming can be used.

Lemma 7: If there exists an anti-dependence between two statements Sd and Su, denoted
as Sd �

a Su, in the iteration space, then these two statements can be executed in parallel
after copy-renaming is performed.

Proof: If Sd �
a Su , then we can assume that there are two accesses Ad ∈ Sd and Au ∈ Su

referencing the same memory location. By means of copy-renaming, we copy Ad into
another memory location A′

d the iteration is executed. Therefore, access Au in statement
Su can be changed to A′

u. Thus, the two accesses Ad ∈ Sd and A′
u ∈ Su will not access

the same memory location, and the two statements Sd and Su can be executed in paral-
lel.�

Our proposed mechanism, called OTRP (Optimized Three Region Partitioning), can
divide the iteration spaces into three regions: Area1, Area2, and Area3. In the following,
we explain Area1, Area2, and Area3:

1) Area1: This region may include anti-dependence heads and flow dependence tails, but
should not include flow dependence heads. As shown in Table 1, the case of (di(i2, j2)
< 0) and (di(i2, j2) = 0 and dj(i2, j2) < 0) are included. The case of (di(i2, j2) = 0 and
dj(i2, j2) < 0) is included because the case (di(i2, j2) < 0) is included. On the other
hand, the area in the case of (di(i1, j1) > 0 and di(i2, j2) > 0 ) subtracting DCH2 is also
included. The definition of Area1 is given as follows:

Area1 = Area11 � Area12 � Area13 (9)

where Area11 = {(i2, j2) | di(i2, j2) < 0},

Area12 = {(i2, j2) | di(i2, j2) = 0 and dj(i2, j2) < 0},

Area13 = {(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0} –
{{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH2}.

Because there may be anti-dependence heads and tails in different areas,
copy-renaming is applied to remove anti-dependences based on Lemma 7. Then, the
iterations in Area1 can be fully executed in parallel as shown in Theorem 1.

Theorem 1: If a region Area1 contains the following set: Area11 = {(i2, j2) | di(i2, j2) < 0},
Area12 = {(i2, j2) | di(i2, j2) = 0 and dj(i2, j2) < 0}, and Area13 = {(i1, j1) | di(i1, j1) > 0}�{(i2,
j2) | di(i2, j2) > 0} – {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH2}, then the
iterations in it are a unique flow dependence tail set and can be executed in parallel after
copy-renaming is performed.

Proof: Area11 contains a flow dependence tail set, an anti-dependence head set and an
anti-dependence tail set as shown in Table 1. The anti-dependence head and tail set can
be resolved by means of copy-renaming as proved in Lemma 7. Area12 contains an
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anti-dependence tail set as shown in Table 1 and can also be resolved by means of
Lemma 7. The set {(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0} contains both flow
dependence head and tail sets. The set {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}
�{DCH2}} contains all the flow dependence head sets in the set {(i1, j1) | di(i1, j1) > 0}
�{(i2, j2) | di(i2, j2) > 0} because all the flow dependence sets must exist in DCH2 as
presented in Lemma 1. Thus, Area13 will contain only flow dependence tail sets. In
conclusion, Area1 will contain only the flow dependence tail sets and can be executed in
parallel. �

2) Area2: In this region, the flow dependence and anti-dependence heads should be in-
cluded. As shown in Table 1, the case of (di(i1, j1) < 0 and di(i2, j2) > 0), (di(i1, j1) = 0
and dj(i1, j1) < 0) and (di(i2, j2) = 0 and dj(i2, j2) > 0) is included. The case of (di(i1, j1)
= 0 and dj(i1, j1) < 0) and (di(i2, j2) = 0 and dj(i2, j2) > 0) is included because the case of
(di(i1, j1) < 0 and di(i2, j2) > 0) is included. The definition of Area2 is given by the
following set:

Area2 = Area21� Area22� Area23� Area24 (10)

where Area21 = {(i1, j1) | di(i1, j1) < 0}�{(i2, j2) | di(i2, j2) > 0},

Area22 = {(i1, j1) | di(i1, j1) = 0 and dj(i1, j1) < 0},

Area23 = {(i2, j2) | di(i2, j2) = 0 and dj(i2, j2) > 0},

Area24 = {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH2} –
{{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH1� DCH2}.

This Area2 contains anti-dependence heads and flow dependence heads whose cor-
responding tails exist in Area1 as shown in Theorem 2. Once Area1 and Area3 are exe-
cuted, the iterations in Area2 can be fully executed in parallel.

Theorem 2: If a region Area2 contains the following set: Area21 = {(i1, j1) | di(i1, j1) < 0}
�{(i2, j2) | di(i2, j2) > 0}, Area22 = {(i1, j1) | di(i1, j1) = 0 and dj(i1, j1) < 0}, Area23 = {(i2, j2)
| di(i2, j2) = 0 & dj(i2, j2) > 0}, and Area24 = {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}
� DCH2}–{{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH1� DCH2}, then
there only exists a flow dependence unique head set in it, and it can be executed in paral-
lel after copy-renaming is performed.

Proof: Area21 contains both flow dependence head and anti-dependence head sets as
shown in Table 1. The anti-dependence head set can be resolved by means of
copy-renaming as proved in Lemma 7. Area22 contains anti-dependence head sets as
shown in Table 1, so the dependence can be avoided by Lemma 7. Area23 contains flow
dependence head sets as shown in Table 1. The set {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) |
di(i2, j2) > 0}� DCH2} contains all the flow dependence head sets in the set {(i1, j1) |
di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0} because all the flow dependence sets must exist in
DCH2 as presented in Lemma 1. On the other hand, {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) |
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di(i2, j2) > 0}� DCH1� DCH2} contains flow dependence tails in the set {{(i1, j1) | di(i1,
j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH2} while DCH1 overlaps with DCH2. Area24

contains only flow dependence head sets. In conclusion, Area2 contains only flow de-
pendence unique head sets and can be executed in parallel. �

3) Area3: This region is the rest of the iteration space excluding Area1 and Area2. In this
region, flow dependence heads and tails are included. As shown in Table 1, the case
of ((di(i1, j1) > 0 and di(i2, j2) > 0)� DCH1� DCH2) and (di(i1, j1) = 0 and dj(i1, j1) > 0)
is included. The case of (di(i1, j1) = 0 and dj(i1, j1) > 0) is included because the case of
((di(i1, j1) > 0 and di(i2, j2) > 0)� DCH1� DCH2) is included. The definition of
Area3 is given by the following set:

Area3 = Area31 � Area32 (11)

where Area31 = {(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH1� DCH2,

Area32 = {(i1, j1) | di(i1, j1) = 0 and dj(i1, j1) > 0}.

Theorem 3: If a region Area3 contains the following set: Area31 ={(i1, j1) | di(i1, j1) > 0}
�{(i2, j2) | di(i2, j2) > 0}� DCH1� DCH2, and Area32 = {(i1, j1) | di(i1, j1) = 0 and dj(i1,
j1) > 0}, then the iterations in it must be executed in serial.

Proof: Area31 = {{(i1, j1) | di(i1, j1) > 0}�{(i2, j2) | di(i2, j2) > 0}� DCH1� DCH2}}
contains flow dependence tail and flow dependence head sets while DCH1 overlaps with
DCH2. Area32 contains only flow dependence tail sets. Area3 contains both flow de-
pendence head and tail sets and must be executed in serial. �

Because Area1 contains only flow dependence tail sets after copy-renaming is per-
formed as presented in Theorem 1, and since Area2 contains only flow dependence head
sets after copy-renaming is performed as proposed in Theorem 2, they can be executed in
parallel, respectively. On the other hand, Area3 contains both flow dependence head
and tail sets, so the iterations in it must be executed in a serial manner as shown in Theo-
rem 3. The execution order as follows: first flow dependence tail sets, are executed,
followed by the set containing both flow dependence head and tail sets, followed by flow
dependence head sets. In other words, partitioning is carried out according to the
following sequence Area1 � Area3 � Area2. Iterations in Area1 and Area2 can be
executed in parallel, and Area3 must be executed in serial.

Area3 is an inherently serial region. We can apply the minimum dependence dis-
tance tiling or dependence uniformization method to parallelize Area3. When our
scheme is used, the serial region will be smaller than is the case with other mechanisms.
We will compare our scheme with other mechanisms in the next subsection. As shown
in Fig. 4(a), the OTRP partitions the iteration space into three regions. Execution of
iterations based on three regions can be conducted by transforming the iteration space
into three regions (a loop for each region). The upper and lower bounds of the trans-
formed loop can be the lines di(i2, j2) = 0, di(i1, j1) = 0 and the boundary of DCH1 and
DCH2, respectively. Fig. 4 illustrates the result of applying the OTRP method to the
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loop in Example 2. Area1 is the region satisfying the relation ((J � 2I - 8)� ((2I-8 <
J � 2I-6)� (J > 24-2I))), Area3 is ((2I-8 < J � 2I-6)� (J > 24-2I)� (J > (3 + 2I) /
4)), and Area2 is ((J > 2I-6)� ((2I-8 < J � 2I-6)� (J < (3 + 2I) / 4)). Fig. 4(a) shows
the iteration space partitioned into three regions. Fig. 4(b) shows the loops transformed
from the loop in Example 2.

(a) Regions of the loop partitioned by the OTRP.

/*Area1: region which can be executed in parallel */
Copy A into A′′′′
DOALL I = l1, u1

DOALL J = l2, min(2I-6, u2 )
IF((J < 2I-8) | ( J > 24-2I))
A(2J+3, I+J+5) = …

… = A′ (2I+J-1, 3I+1)
ENDDOALL

ENDDOALL
/*Area3: region which must be executed serially */
DO I = l1, u1

DO J = max(2I-8, l2), min(2I-6, u2 )
IF ((2I-J-8�0 & 2I-J-6�0)) & (( ( J<24-2I)) & (J>(3+2I)/4)) then
A(2J+3, I+J+5) = …

… = A(2I+J-1,3I+1)
ENDDO

ENDDO
/*Area2: region which can be executed in parallel */
DOALL I = l1, u1

DOALL J = max(l2, 2I-8), u2

IF((J < 2I-6) | ( J < (3+2I) / 4))
A(2J+3, I+J+5) = …

… = A(2I + J - 1, 3I + 1)
ENDDOALL

ENDDOALL
(b) Transformed loop after the OTRP mechanism.

Fig. 4. Partitioning a loop of Example 2.
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Array A elements in the first loop may be used before they are defined due to the
presence of an anti-dependence. We rename array A by copying array A into array A′ to
remove anti-dependences based on Lemma 7. Hence, the loop can be executed in par-
allel. In Area3, there will be both flow dependence head and tail sets. The loop in this
Area should be executed in serial. Because all the flow dependence tails have been
executed in Area2, which is a flow dependence unique head set, the loop can be executed
in parallel according Theorem 2. To summarize, we give a formal algorithm for the
OTRP mechanism in Fig. 5 and show how our proposed OTRP region partitioning tech-
nique and nested loop transformation algorithm are applied to the original loop to obtain
a transformed loop. On the other hand, the OTRP mechanism can also be applied to an
n-nested loop when there exists a k-dimensional array, where n < k. If n < k, then all
the information needed by the OTRP mechanism can be obtained since the number of
variables is less than the number of diophantine Eqs. However, if n > k, then OTRP can
be applied only when there are fewer than k variables in the diophantine Eqs.

Algorithm Optimized Three Region Partitioning
(Transformation of a two-level nested loop with non-uniform dependences)
Input: a two-level nested loop with non-uniform dependences.
(1) Partitioning

Step 1: Find the linear Diophantine Eq. in the two-level nested loop with
non- uniform depen dences according to the formal expressions
in Eqs. (1) and (2).

Step 2: Solve the linear Diophantine Eq. and use the inequalities of the
nested loop before conducting transformation to find the de-
pendence convex hull DCH1 and DCH2 according to the formal
expressions of Eqs. (3) and (4), respectively.

Step 3: Find the dependence vector sets of DCH1 and DCH2 according to
the formal expressions of Eqs. (5) and (6), respectively

Step 4: Partition the iteration space into three areas according to Theorems
1, 2, and 3 with DCH1, DCH2, di(x, y) = 0 and dj(x, y) = 0.

(2) Loop Transformation
Step 1: Perform copy-renaming if there exists anti-dependence in the area.
Step 2: Extract inequalities according to the edge of DCH1 and DCH2 and

the line of di(x, y) = 0 and dj(x, y) = 0.
Step 3: Find the absolute maximum and minimum for each loop index.
Step 4: Transform the indices.
Step 5: Calculate the nested loop bounds.
Step 6: Replace the arrays with renamed one if copy-renaming is applied.

Fig. 5. Algorithm of the OTRP mechanism.

4. COMPARISON WITH PREVIOUS WORK

The OTRP scheme is similar to the ITRP and the three region partitioning methods
in the sense that the iteration space is divided into two parallel regions and one serial
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region. The size of the parallel region in the OTRP technique is not less than that in the
three region partitioning or the ITRP mechanism. To show the differences among
OTRP, ITRP, and unique set oriented partitioning, we add unique set oriented partitioning
as a reference tool. Both the OTRP and ITRP mechanisms divide the iteration space
into three regions, and the execution order for the partitions is always the same(Area1 �

Area3 � Area2). However, the serial region of the ITRP scheme is much larger than
that of the OTRP scheme. We will compare the advantages and disadvantages of the
four mechanisms based on five cases of the unique set oriented partitioning.

Case 1: There is only one kind of dependence, and DCH1 does not overlap with
DCH2(Fig. 6).

Fig. 6. In the case with one kind of dependence, DCH1 does not overlap with DCH2: (a) Two re-
gions divided by unique set oriented partitioning. (b) One region divided by ITRP or OTRP.

In unique set oriented partitioning, any line drawn between DCH1 and DCH2 di-
vides the iteration space into two areas. As shown in Fig. 6(a), the iterations within
each area can be executed in parallel. However, the execution sequence for Area1 and
Area2 is Area1 � Area2. As shown in Fig. 6(b), because the copy-renaming technique
is used in both the ITRP and OTRP schemes, only one area is partitioned, and only it can
be executed in parallel. Thus, the parallelism degree for both the OTRP and ITRP
mechanisms is twice that for the unique set oriented partitioning technique in this case.

Case 2: There is only one kind of dependence, and DCH1 overlaps with DCH2.

As illustrated in Fig. 7(a), DCH1 and DCH2 overlap, producing three distinct areas
denoted by Area1, Area2 and Area3, respectively. In unique set oriented partitioning,
Area3 contains both tail and heads of dependences, so iterations in this area must be exe-
cuted in serial. Area1 and Area2 can be executed in parallel, and the execution order is
Area1 � Area3 � Area2. By means of copy-renaming, the total iteration space can be
executed in parallel in both ITRP and OTRP schemes as shown in Fig. 7(b). Thus, the
degree of parallelism in both the OTRP and ITRP schemes is much higher than that in the
unique set oriented partitioning technique.
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Fig. 7. In the case with one kind of dependence, DCH1 overlaps with DCH2: (a) Three regions
divided by unique set oriented partitioning. (b) Only one region divided by ITRP or
OTRP.

Case 3: There are two kinds of dependences and DCH1 does not overlap with DCH2.

As shown in Fig. 8(a), the iteration space is divided into four areas by unique set
oriented partitioning. Because the unique head sets must be executed after the unique
tail sets are executed, one probable order is Area1 � Area2 � Area3 � Area4. The
iterations in these four areas partitioned by this scheme can be executed in parallel. By
implementing copy-renaming, the iteration space can be partitioned into two areas and
executed in parallel in both ITRP and OTRP schemes as shown in Fig. 8(b). Also, as
the flow dependence head sets have to be executed after the flow dependence tail sets are
executed, the execution order has to be Area1 � Area2. Thus, the degree of parallelism
in both the ITRP and OTRP mechanisms is twice that in unique set oriented partitioning
in this case.

Fig. 8. In the case with two kinds of dependences, DCH1 does not overlap with DCH2: (a) Four
regions divided by unique set oriented partitioning. (b) Two regions divided by ITRP or
OTRP.
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Case 4: There are two kinds of dependences, DCH1 overlaps with DCH2, and there is at
least one isolated unique set.

As shown in Fig. 9(a), the iteration space is divided into six areas by unique set ori-
ented partitioning. Because the unique head sets must be executed after the unique tail
sets are executed, one probable order is Area1 � Area2 � Area5 � Area4 � Area6

� Area3. The iterations in areas 1, 2, 3 and 4 partitioned by this scheme can be exe-
cuted in parallel, and the iterations in areas 5 and 6 contain both tail and heads, so they
must be executed in a serial manner. By implementing copy-renaming, the iteration
space can be partitioned into three areas in the ITRP and OTRP schemes as shown in
Figs. 9(b) and (c), respectively.

Fig. 9. With two kinds of dependences, DCH1 overlaps with DCH2, and there is at least one iso-
lated unique set. (a) Six regions divided by unique set oriented partitioning. (b) Three re-
gions divided by ITRP. (c) Three regions divided by OTRP.

Further more, as the flow dependence head sets must be executed after flow de-
pendence tail sets are executed, the execution order must be Area2 � Area3 � Area1.
In Fig. 9(a), the iterations in Area2 and Area1 contain only unique sets, so they can be
executed in parallel. However, the iterations in Area3 contain both tail and heads; they
have to be executed in a serial manner as shown in Fig. 9(b) and Fig. 9(c). Also, as
Area3 must be executed in serial in both the ITRP and OTRP mechanisms, the parallelism
has to be bounded by the number of iterations in Area3. From Figs. 9(b) and (c), we can
conclude that the OTRP scheme is more effective than the ITRP mechanism due to the
smaller size of the serial region Area3.

Case 5: There are two kinds of dependences, and all the unique sets overlay each other.
As shown in Fig. 10(a), the iteration space is divided into four areas by unique set ori-
ented partitioning. As the unique head sets must be executed after the unique tail sets
are executed, one probable order is Area1 � Area3 � Area4 � Area2. The iterations
in areas 1 and 2 partitioned by this scheme can be executed in parallel. Since the itera-
tions in areas 3 and 4 contain both tail and heads, they have to be executed in a serial
manner. By implementing copy-renaming, the iteration space can be partitioned into
three areas in the ITRP and OTRP schemes as shown in Figs. 10(b) and (c), respectively.
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Fig. 10. There are two kinds of dependences, and all unique sets overlay each other. (a) Four
regions divided by unique set oriented partitioning. (b) Three regions divided by ITRP.
(c) Three regions divided by OTRP.

Because the flow dependence head sets must be executed after flow dependence tail
sets are executed, the execution order has to be Area1 � Area3 � Area2. In Fig. 10(a),
the iterations in Area2 and Area1 contain only unique sets, so they will be executed in
parallel. However, the iterations in Area3 contain both tail and head; they must be exe-
cuted serially as shown in Figs. 10(b) and (c). Because the Area3 must be executed se-
rially in both the ITRP and OTRP mechanisms, the degree of parallelism of the whole
iteration space will be bounded by the number of iterations in Area3. Based on Figs.
10(b) and (c), we can conclude that the OTRP scheme is more effective than the ITRP
mechanism because the size of Area3 in the ITRP is much larger than that in OTRP
scheme.

In all the cases of unique set partitioning, OTRP extracts more parallelism than ei-
ther unique set oriented partitioning or ITRP do. We will next present preliminary per-
formance evaluations to demonstrate the effectiveness of our OTRP scheme in the next
section.

5. PRELIMINARY EXPERIMENTAL RESULTS

The OTRP method is similar to ITRP and the three region partitioning in the sense
that the iteration space is divided into two parallel regions and one serial region. The
size of the parallel region in OTRP is not less than that in ITRP or in the three region
partitioning method mentioned above.

In unique set oriented partitioning, it is a complicated task to divide the iteration
space into up to eight partitions, and it is also difficult to determine the best execution
order for the partitions. On the other hand, in the ITRP and OTRP mechanisms, it is
simple to divide the iteration space into three regions, and the execution order for the
partitions is always the same (Area1 � Area3 � Area2). In some cases (case 4 and
case 5), ITRP has a much larger serial region than does the OTRP scheme.

Theoretical speedup based on performance analysis can be represented as follows.
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If an unlimited number of processors is assumed, then each parallel partition, executed in
one time step. Hence, the total execution time will be equal to the number of parallel
partitions, Np, plus the number of sequential iterations, Ns, plus some synchronization,
scheduling and copy-renaming overheads. Generally speaking, the speedup can be rep-
resented by the ratio of the total sequential execution time to the execution time on a par-
allel computer system as follows:

Speedup = ( NI * NJ) / ( Np + Ns +�),

where NI and NJ are the size of loops I and J, respectively. �is the combined overhead
of synchronization, scheduling and copy-renaming. If we ignore the synchronization,
scheduling and copy-renaming overheads, the speedup will be expressed as

Speedup = ( NI * NJ) / ( Np + Ns ).

Fig. 11(a) shows one probable partitioning case of unique set oriented partitioning.
Area2 contains only flow dependence heads, and Area1 contains flow dependence tails
and anti-dependence tails as well as heads. By means of minimum dependence distance
tiling, Area1 can be tiled with width = 1 and height = 4. Thus, 24 tiles are obtained.
The speedup for this method is (10*11)/(24 + 1) = 4.4 as shown in Fig. 11(b). On the
other hand, if ITRP or OTRP is applied to this example, then the maximum speedup will
be achieved, which is

Speedup = ( NI * NJ) / ( Np + Ns ) = (10*11)/(2 + 0) = 55.

Fig. 11. An example of (a) Unique set oriented partitioning with one parallel area (Area1) and one
serial area (Area2). (b) The serial area is partitioned by the minimum dependence dis-
tance tiling scheme.

Let us consider the loop shown in Example 2. Three region partitioning can divide
the iteration space into one parallel region, Area1, and one serial region, Area3, as shown
in Fig. 12. The speedup can be computed as (10*10) / (1 + 60) = 1.6. If dependence
uniformization is applied to Area3, only a limited amount of speedup is obtained.
Hence, if the serial region is large, the performance of the loop will be significantly de-
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graded. Unique set oriented partitioning will also divide the iteration space into two
parts according to the line j2 = 4i2 –10. Area1 will be on the left side of the line, and
Area2 will be the right side of the line. The execution order will be Area1 � Area2, and
Area2 should be tiled by means of minimum dependence distance tiling. Area2 will be
tiled into 34 tiles with width = 1 and height = 2. Thus the speedup achieved by this
method will be (10*10) / (1 + 34) = 2.9.

Fig. 12. Examples of region partitioning.

ITRP divides the iteration space into two parallel regions and one parallelizable re-
gion as shown in Fig. 13(b). The execution order will be Area1 � Area3 � Area2.
Without using the variable size partitioning technique of ITRP, Area3 can be partitioned
into 10 partitions. Hence, the speedup that con be obtained by this method is (10*10) /
(1 + 10 + 1) = 8.3. The OTRP mechanism divides the iteration space into two parallel
regions and one parallelizable region as shown in Fig. 13(c). The execution order is
Area1�Area3�Area2. Without using the variable size partitioning technique of ITRP,
Area3 will be partitioned into 8 partitions by means of the minimum dependence distance
tiling technique. Hence, the speedup for the OTRP method will be (10*10) / (1 + 8 + 1)
= 10.

Fig. 13. Divided by the (a) three region partitioning scheme, (b) ITRP scheme, (c) OTRP scheme.
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If the variable size partitioning technique of ITRP is employed, Area3 can be parti-
tioned into 4 partitions. Hence, the speedup that can be achieved by ITRP is (10*10) /
(1 + 4 + 1) = 16.7. On the other hand, if the variable size partition in the OTRP mecha-
nism is used, Area3 can be partitioned into 2 partitions. Hence, the speedup that can be
achieved with this method is (10*10) / (1 + 2 + 1) = 25. It is clear that OTRP exploits
more parallelism than does either the three-region partitioning or unique set oriented par-
titioning method. In addition, the OTRP scheme extracts much more parallelism than
the ITRP scheme and other mechanisms do. In order to see whether our method can be
implemented and whether our method can find more parallelism than other existing
popular methods can, we implemented our method in a parallel compilation environment
and ran it on a real machine to evaluate its performance.

We have constructed the OTRP mechanism in the SUIF [13] parallel compilation
environment, run experiments on an IBM SPP1000 with 8 processors and used the EXPA
system to analyze the performance. EXPA is a tool developed by SPP to accurately
measure and graphically display the tasking performance for a job run on an arbitrarily
loaded SPP system. We used the User-directed tasking directives #pragma _CNX to
construct our fully parallelizable and critical section in the iteration space. We used
Example 2 to evaluate different mechanisms. Fig. 14 shows the speedup achieved by
our technique, OTRP and ITRP combined with the MDT (Minimum Dependence dis-
tance Tiling) and VSP (Variable Size Partitioning) techniques. Our technique delivered
better performance when the loop bounds of this example were set to 10 and 100 as
shown in Figs. 14(a) and (b). As the number of processor increased, the performance of
OTRP combined with the VSP mechanism became even better than that of the others.
However, the speedup degree of different mechanisms was nearly linear as shown in Fig.
14(c) due to the massive parallelism degree and the limited number of processors in the
IBM SPP-1000 when the loop bound was set to 1000.

(a) Speedup on the SPP-1000 with Loop Bound = 10

Fig. 14. (a) Evaluation of the program in Example 2 on a real machine.
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(b) Speedup on the SPP-1000 with Loop Bound = 100

(c) Speedup on the SPP-1000 with Loop Bound = 1000

Fig. 14. (Cont’d) Evaluation of the program in Example 2 on a real machine.

In order to see whether our OTRP technique could perform better than the existing
region partitioning mechanisms on a system with a large number of processors, we con-
struct a multiprocessor evaluation environment in order to measure their performance.
Different mechanisms were implemented, and the object code was evaluated on a simu-
lator called SEESMA (A Simulation and Evaluation Environment for Shared-Memory
Multiprocessor Architecture) [17], which was enhanced from MINT [18]. This system
is a highly parallel shared memory multiprocessor system environment. It is a
CC-NUMA architecture consisting of many clustering nodes interconnected by the K-ary,
n-Cube network. Each node contains a local shared-memory area, a cache, a processor
environment, and a local bus. Each processor environment includes a two-level cache
hierarchy associated with write buffers. The cache hierarchy interfaces with the local
portion of the shared memory.
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Fig. 15 shows the speedup obtained by our technique, OTRP and ITRP combined
with the MDT (Minimum Dependence distance Tiling) and VSP (Variable Size Parti-
tioning) techniques in the SEESMA environment. Our technique delivered better per-
formance when the loop bounds of this example were set to 10, 100 and 1000 as shown
in Figs. 15(a), (b) and (c). As the number of processor increased to 128, the perform-
ance of OTRP combined with the VSP mechanism became even better than that of the
others. We also found that the speedup achieved when the loop bound was set to 10 by
ITRP-VSP and OTRP-VSP was 14.44 and 21.67, respectively, as shown in Fig. 15(a).
These values are closer to the ideal speedup values of 16.7 and 25, respectively, than
were the speedup values achieved on the IBM SPP-1000, which were 2.5 and 4.2 as
shown in Fig. 14(a). These results could be obtained because more parallelism can be
achieved with more processors.

(a) Speedup on SEESMA with Loop Bounds = 10

(b) Speedup on SEESMA with Loop Bounds = 100

Fig. 15. Evaluation on the SEESMA environment for the program of Example 2.
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(c) Speedup on SEESMA with Loop Bounds = 1000

Fig. 15. (Cont’d) Evaluation on the SEESMA environment for the program of Example 2.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of transforming nested loops with
non-uniform dependences in order to maximize parallelism by means of a new scheme,
called OTRP that is, based on convex hull theory. OTRP can easily divide the iteration
space into two parallel regions and one parallelizable region. In addition, the small size
of the serial region in OTRP produces more parallelism than do the currently available
schemes. On the other hand, the OTRP scheme can partition the areas easily when the
DCH bounds or dependence vector’s lines are known in advance. In comparison with
the other partitioning methods that are based on convex hull theory, OTRP has several
advantages, such as simple partitioning and high speedup. We implemented our scheme
in the SUIF parallel compilation environment and evaluated it both on a real machine
and in a simulation environment. We also ran it with large loop bounds to simulate the
case of large scientific benchmarks. Under all the above conditions, our scheme per-
formed better than the other existing mechanisms.

In the future, we will improve the OTRP scheme by means of higher dimensional
nested loops and loops with multiple dependences. We also think that scheduling and
allocation are needed for massive parallel iterations derived using the OTRP mechanism
when the system overhead becomes large. On the other hand, the parallelizable part
divided by the OTRP scheme can also be enhanced by using more aggressive methods.
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