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A new systematic calculation of magnetization and specific heat contributions of vortex liquids and
solids is presented. We develop an optimized perturbation theory for the Ginzburg-Landau description
of thermal fluctuations effects in the vortex liquids. The expansion is convergent in contrast to the
conventional high temperature expansion which is asymptotic. In the solid phase we calculate the first
two orders which are already quite accurate. The results are in good agreement with existing Monte Carlo
simulations and experiments. Limitations of various nonperturbative and phenomenological approaches
are noted. In particular, we show that there is no exact intersection point of the magnetization curves.
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It was clearly seen in both magnetization [1] and spe-
cific heat experiments [2] that thermal fluctuations in high
T, superconductors are strong enough to melt the vortex
lattice into liquid over large portions of the phase dia-
gram. The transition line between the Abrikosov vortex
lattice and the liquid is located far below the mean field
phase transition line. Between the mean field transition
line and the melting point physical quantities like the mag-
netization, conductivity, and specific heat depend strongly
on fluctuations. Several experimental observations call
for a refined precise theory. For example, a striking fea-
ture of magnetization curves intersecting at the same point
(T*, H*) was observed in a wide rage of magnetic fields in
both the layered [3] materials and the more isotropic ones
[4]. To develop a quantitative theory of these fluctuations,
even in the case of the lowest Landau level (LLL) corre-
sponding to regions of the phase diagram “close” to H.;
[5], is a very nontrivial task and several approaches were
developed.

Thouless and Ruggeri [6] proposed a perturbative ex-
pansion around a homogeneous (liquid) state in which
all the “bubble” diagrams are resummed. Unfortunately,
they proved that the series is asymptotic and although
the first few terms provide accurate results at very high
temperatures, the series becomes inapplicable for LLL
dimensionless temperature ar ~ [T — T,,s(H)]/(TH )1/2
smaller than 2 in 2D quite far above the melting line (be-
lieved to be located around ar = —12). Generally, at-
tempts to extend the theory to lower temperatures by the
Borel transform or Pade extrapolation were not successful
[7]. Several nonperturbative methods have also been at-
tempted including renormalization group [8] and the 1/N
expansion [9]. Tesanovic and co-workers developed a the-
ory based on separation of the two energy scales [10]: the
condensation energy (98%) and the motion of the vortices
(2%). The theory explains the intersection of the magneti-
zation curves.
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In the first part of this paper we apply optimized pertur-
bation theory (OPT) first developed in field theory [11,12]
to both the 2D and 3D LLL model. It allows one to ob-
tain a convergent (rather than asymptotic) series for mag-
netization and specific heat of vortex liquids together with
precision estimate. The radius of convergence is ar = —3
in 2D and ar = —5 in 3D. On the basis of this one can
make several definitive qualitative conclusions.

Our starting point is the Ginzburg-Landau free energy:

K2 b’
F= chdzx— DUl + alpl + Sl
2m 2

where A = (By,0) describes a nonfluctuating constant
magnetic field in Landau gauge and D =V — | %A,
Py = % L. is the width (for simplicity we write ex-
pressions for the 2D case, essential 3D complications
are discussed separately). For simplicity we assume
a(T) = aT.(1 — t),t = T/T,. On LLL, the model after
rescaling reduces to

f= ﬁfdzx[arlwlz + %lwl“}, 2)

where the LLL reduced temperature ar = _\/g #
is the only parameter in the theory [6]. Here b = Hiﬂ,
o = (32m3e*k2E°T)/(c*h>L.,).

We will use a version of OPT, the optimized Gaussian
series [12]. It is based on the “principle of minimal sen-
sitivity” idea [11], first introduced in quantum mechanics.
Generally a perturbation theory starts from dividing the
Hamiltonian into a solvable “large” part K and a perturba-
tion V. Since we can solve any quadratic Hamiltonian we
have a freedom to choose “the best” such quadratic part.
Quite generally such an optimization converts an asymp-
totic series into a convergent one (see a comprehensive
discussion, references, and a proof in [12]).
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Because of the translational symmetry of the vortex lig-
uid there is just one variational parameter & in the free
energy divided as follows:

_ ¢ 2 _ 1 2 L

K= 2P V= o anlef + k] o)
where ay = ar — . One reads Feynman rules from
Eq. (3): K determines the propagator (just a constant), the
first term in V is a “mass insertion” vertex with a value of
ﬁa 1, while the four line vertex is 8%7. To calculate the
effective free energy density ferr = —4a InZ, one draws
all the connected vacuum diagrams. We calculated directly
diagrams up to the three loop order. However, to take
advantage of the existing long series of the nonopti-
mized Gaussian expansion, we found a relation of the
OPT to this series. Originally Thouless and Ruggeri
calculated this series fer to sixth order, but it was sub-
sequently extended to 12th (9th in 3D) by Brezin et al.
and to 13th by Hu er al [13]. It is usually presented
using variable x introduced by Thouless and Ruggeri
[6] x = ﬁ, e = %(ar + \/a% + 16) as follows: ferr =
2logz= + 2>, c,x". We can obtain all the OPT
diagrams which do not appear in the Gaussian theory by
insertions of bubbles and mass insertions from the dia-
grams contributing to the nonoptimized theory. Bubbles
or “cacti” diagrams are effectively inserted by a technique
known in field theory [14]:

€1 =
Setr = 2log— + 2 Z cax”,
472 n=1

1
g = 3(82 + Vel + 16a).

Summing up all the insertions of the mass vertex is
achieved by &, = € + aay. Here a was introduced
to keep track of the order of the perturbation, so that
expanding fes; to order @”"*!, and then taking @ = 1 we
obtain fn(a) (calculating f” that way, we checked that
indeed the first three orders agree with the direct cal-
culation). The nth OPT approximant f, is obtained by
minimization of f,(g) with respect to &:

(:—8 - L)}n(S,CIH) =0. ®)

aaH

“4)

o
X =,
€]

The above equation is equal to 1/£*"3 times a polyno-
mial g,(z) of order n in z = gay. That Eq. (5) is of this
type can be seen by noting that the function f depends
on the combination a /(s + aay)? only. We were unable
to prove this, but have checked it to the 40th order. This
property greatly simplifies the task: one has to find roots of
polynomials rather than solving transcendental equations.
There are n (real or complex) solutions for g,(z) = 0.
However (as in the case of anharmonic oscillator [12]),
the best results give a real root with the smallest abso-
lute value. We then obtain e(ar) = %(aT + Ja: — 4z,)
solving z, = eay = ear — g2

In Fig. 1 we present OPT for different orders including
n = 0 (Gaussian) together with several orders of the
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FIG. 1. Optimized (solid lines) and nonoptimized (dashed

lines) free energy approximants in 2D. Numbers indicate the
order of the approximant.

nonoptimized high temperature expansion. One observes
that the OPT series converges above ar = —2.5 and
diverges below ar = —3.5. The proof of convergence
is analogous to that for the anharmonic oscillator; see
Ref. [12]. On the other hand, the nonoptimized series
never converges despite the fact that above ap = 2
the first few approximants provide a precise estimate
consistent with OPT. Above ar = 3 the liquid becomes
essentially a normal metal and fluctuations effects are
negligible (see Figs. 2 and 3). Therefore the information
the OPT provides is essential to compare with experi-
ments on magnetization and specific heat. If precision
is defined as ( f12 — f10)/f10, we obtain 4.87%, 1.27%,
0.387%, 0.222%, 0.032% at ar = —2,—1.5,—1,—0.5,0,
respectively. For comparison with other theories and
experiments in Figs. 2 and 3 we use the 10th approximant.

The calculation is basically the same in 3D, the only
complication being extra integrations over momenta par-
allel to the magnetic field. However, since the propagator
factorizes, these integrations can be reduced to correspond-
ing integrations in quantum mechanics of the anharmonic

oscillator [6,11]. The series converges above ay = —4.5
and diverges below ar = —5.5. The nonoptimized series
is useful only above ay = —1. The agreement is within
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FIG. 2. The 2D scaled LLL magnetization. Comparison of
data from Jin et al. in Ref. [3] with OPT calculation, Tesanovic
et al. result of Ref. [10] [Eq. (9)] and phenomenological “inter-
ception” theory Eq. (10) are shown for comparison.
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FIG. 3. Specific heat, 2D. Comparison of MC data with solid
OPT (first two orders), liquid OPT (10th order). Tesanovic et al.
theory and phenomenological formula are also shown.

the expected precision when we compare our results in 3D
with Ref. [15].

Now we turn to the vortex solids. Here the minimization
is significantly more difficult due to reduced symmetry.
Unlike in the liquid the field ¢ acquires a nonhomogeneous
expectation value and can be expressed as (x) = v(x) +

x(x), where y describes fluctuations. Assuming hexago-
nal symmetry, it should be proportional to the mean field
solution v(x) = ver—o(x) with a variational parameter
v taken real thanks global U(1) gauge symmetry where
@i (x) is the quasimomentum basis on LLL [5]. Expand-

ing y
X0 = 2;& fk exp[—i0/2ex (x) (Ox + iA). (6)

where real fields Ay = A™, (O = 0;) describe acous-
tic (optical) phonons of the flux lattice. The phase
exp[—i0;/2] defined, as in the low temperature per-
turbation theory developed recently [16], via y; =
lyelexplifil. & = (@o(x)o(x) @i (x) @ (), is crucial
for simplification of the problem. The most general
quadratic form is

1 _ _
K = 8_,[ OkGOCI)(k)Ofk + AkGAAl(k)Afk
T Jk

+ 0rG oA (K)A_; + ArG oA (k)OO @)

with matrix of functions G(k) to be determined together
with the constant v by the variational principle. The cor-

| responding Gaussian free energy fes is

arv? + Ba vt — 2 — (log[(4m)* det(G)] — ar[Goo(k) + Gaa(k)]

2

+ (W2Bk + lvi)Goo k) + 2Bk — lyil)Gaa(k) Dk + (Bi-ilGoo(k) + Gaa(k)1[Goo(l) + Gaa(l) i,

T+ Ul [Goo®) — Gaa®)] + Kyl Goak)).

24

where (- - -); denotes the average over Brillouin zone 8; = |

(0o (x)@o(x) @i (x)@i(x))x, Ba = Bo. The gap equations
obtained by the minimization of the free energy look quite
intractable, however, they can be simplified. The crucial
observation is that Gps(k) = 0 is a solution, and the gen-
eral solution can be shown to differ from this simple one
just by a global gauge transformation. One can set matrix
G !as

<E(k) + Alyl 0 )
0 E(k) = Alyil )

where A is a constant (details will appear elsewhere). The
function E(k) and the constant A satisfy

E(k) = dar + 2v2,8k + 2<Bk1(ﬁ +

BaA = ar — 2<ﬂk<L + EAl(k)>>k'

Eo(k)
Observing that B; has a very effective expansion in
x = expl—ai/2] = exp[—27//3] = 0.0265, B =
Z;O=0 Xnﬁn(k)a Bn(k) = Z|X|2:na,2A eXP[lk ’ X] and us-
ing the hexagonal symmetry of the spectrum, E(k) can also
be expanded in “modes” E(k) = > E, 8,(k). The integer
n determines the distance of a points on the hexagonal
lattice X from the origin. One estimates that E, = y"ar,
therefore the coefficients decrease exponentially with n.
For some integers, for example, n = 2,5,6, 8, = 0. We
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EAl(l) >>1 ’(8)

minimized numerically the Gaussian energy by varying
v, A, and the first few modes of E(k). In practice two
modes are quite enough. The results show that around
ar < —5, the Gaussian liquid energy is larger than the
Gaussian solid energy. So naturally when ay < —5, one
should use the Gaussian solid to set up a perturbation
theory instead of the liquid one. The Gaussian energy in
either liquid (see line TO on Fig. 1) or solid is a rigorous
upper bound on the free energy. We calculated the leading
correction (without its minimization) in order to determine
the precision of the Gaussian result (see Fig. 3 for the
specific heat results). We obtain 0.2%, 0.4%, and 2% at
ar = —30, —20, —12, respectively.

In the rest of the paper we compare our results with
other theories, simulations, and experiments. An analytic
theory used successfully to fit the magnetization and the
specific heat data [17]was developed in [10]. Their free
energy density is
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The corresponding magnetization and specific heat are
shown as dashed lines in Figs. 2 and 3, respectively. At

o 4 16 , 320
large positive ar, ferr = 2logar + = — = + % and
ar ar 3ay

differs very little from the exact series 2logar + % -
18 1324 T
T + 9 G -

ar ar 2 |a |

less precise: —2% — 2logz,>, which has an opposite

sign of the log term compared to the exact series [16]
ar lar] _ 199

—2p, t 2logga pr This is seen in Fig. 3 quite
clearly. Instead of rising monotonously from C/AC = 1
until melting as is predicted by OPT, their curve (dashed)
first drops below 1 and only later develops a maximum
above 1. In the liquid region it underestimates the specific
heat. We conclude therefore that although the theory of
Tesanovic et al. is very good at high temperatures they be-
come of the order 5-10% at ar = —3. An advantage of
this theory is that it interpolates smoothly to the solid and
never deviates more than 10%.

Experiments on a great variety of layered high T,
cuprates (Bi or TI [3] based) show that in 2D, magne-
tization curves for different applied fields intersect at a
single point (M*,T*). The range of magnetic fields is
surprisingly large (from several hundred Oe to several

Tesla). This property fixes the scaled LLL magnetization

defined as m(ar) = —df%(ra” = Z 2—ZM. Demanding

Its low temperature asymptotics is, however,

that the first two terms in 1/a? expansion of m(ar) are
consistent with the exact result, one obtains

m(ar) = %(aT — /16 + a%). (10)

When it is plotted in Fig. 2 (the dotted line), we find that
at lower temperatures the magnetization is overestimated.
The OPE results are consistent with the experimental data
[3] (points) within the precision range until the radius of
convergence ar = —3. It is important to note that devia-
tions of both the phenomenological formula Eq. (10) and
Tesanovic’s are clearly beyond our error bars. Therefore
we conclude that the coincidence of the intersection of all
the lines at the same point (7", M*) cannot be exact. As in
3D the intersection is approximate, although the approxi-
mation is quite good especially at high magnetic fields.

Specific heat OPE results in 2D is compared in Fig. 3
with Monte Carlo simulation of the same model by Kato
and Nagaosa [18] (black circles) [and the phenomenologi-
cal formula following from Eq. (10), dotted line]. The
agreement is very good for both the low temperature and
the high temperature OPT.

To summarize, we obtained the optimized perturbation
theory results for the 2D and 3D LLL Ginzburg-Landau
model in both vortex liquid and solid phases. The leading
approximant (Gaussian) gives a rigorous upper bound on
energy, while the convergent series allows one to make
several definitive qualitative conclusions. The intersection
of the magnetization lines is only approximate not only in

3D, but also in 2D. The theory by Tesanovic [10] describes
the physics remarkably well at very high temperatures, but
deviates on the 5%—-10% precision level at ar = —2 in
2D and has certain imprecise qualitative features in the
solid phase. Comparison with Monte Carlo simulations
and some experiments shows excellent agreement.
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