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SUMMARY

This paper combines an alternative chain-scattering matrix description with (J, J@)-lossless and a class of
conjugate (!J, !J@)-lossless systems to design a family of nonlinear H= output feedback controllers. The
present systems introduce a new chain-scattering setting, which not only o!ers a clearer expression for the
solving process of the nonlinear H= control problem but also removes the "ctitious signals introduced by
the traditional chain-scattering approach. The intricate nonlinear a$ne control problem thus can be
transformed into a simple lossless network and is easy to deal with in a network-theory context. The
relationship among these (J, J@) systems, ¸

2
-gain, and Hamilton}Jacobi equations is also given. Block

diagrams are used to illustrate the central theme. Copyright ( 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since Zames [1] proposed the concept of sensitivity minimization in the H= domain, many
researchers have made valuable contributions to the study of the H= domain. Parameterization
of all linear H=-(sub) optimal output feedback controllers were given by Glover
et al. [2]. Green et al. [3] and Kimura [4] then o!ered an alternative method by using J-spectral
or (J, J@ )-lossless factorization. Also, Kimura [5] and Ball et al. [6] developed a "ctitious signals
method to solve the linear 4-block control problem. Hong and Teng [7] then developed a new
method which both matched the famous results of Glover et al. [2] and removed the "ctitious
signals.

As in the extension of linear H= control theory to nonlinear settings, the local disturbance
attenuation with internal stability was "rst studied by Ball and Helton [8], Bas

'

ar and Bernhard
[9], and Van der Schaft [10, 11]. Van der Schaft used the notion of dissipativity in a nonlinear



system to show that the Hamilton}Jacobi equation is the nonlinear version of the Riccati
equation considered in linear systems which yields the solution of a nonlinear H=-state feedback
control problem. As for measurement feedback, Ball et al. [12] established the necessary
conditions for the existence of a solution. Moreover, Isidori [4, 13] summarized the notion of the
dissipative system and the theory of di!erential games to de"ne su$cient conditions based on two
Hamilton}Jacobi equations.

An alternative approach using (J, J@ )-inner-outer factorization or the chain-scattering
approach, Helton and James [14, 26], Baramov and Kimura [15], and Ball et al. [16, 17] solved
the so-called 2-block case. Following this approach, Pavel and Fairman [18] introduced a non-
linear version of the "ctitious signals method to solve the general 4-block case, which reduced the
4-block case to a simple 2-block case. However, one must then be careful to ignore the "ctitious
signals when seeking the solution for the original problem.

The present paper aims to reformulate the earlier results by combining the traditional
(J, J@)-lossless system with a class of nonlinear conjugate (!J,!J@)-lossless system to solve the
4-block nonlinear H=-output feedback control problem. This new chain-scattering matrix
description extends the concept of Hong and Teng's [7] to the nonlinear setting and discrads the
"ctitious signals proposed recently by Pavel and Fairman [18]. Therefore, the controller
thus obtained is quite straight-forward and provides deeper insight into the synthesis of the
controllers.

In Section 2, we brie#y state the standard nonlinear a$ne H= control problem. Section 3
proposes the relationships among the Hamiltonian system, (J, J@)-lossless, conjugate (J, J@)-
lossless, and conjugate (!J,!J@)-lossless matrices. The main results and the relation between
the nonlinear H= control problem and the chain-scattering matrix description are presented in
Section 4.

2. NOTATIONS AND PRELIMINARY INFORMATION

R denotes a real number
Rn denotes n-dimensional Euclidean space
RL= the set of proper real rational function matrices with no poles on the jw axis.
dom(Ric) denotes the Hamiltonian matrix with no eigenvalues on the jw-axis.
G&(s) denotes GT(!s) and G* (s) denotes GT(sN ).
The chain-scattering matrix description is abbreviated as CSMD.

Consider a smooth nonlinear a$ne system PK given by

PK :"G
xR "A(x)#B(x)u

y"C(x)#D(x)u

with y3R(p1`p2), u3R(m1`m2), and x"(x
1
, x

2
,2,x

n
) are local co-ordinates for a smooth state-

space manifold M de"ned in a neighbourhood ) of the origin. Also, we assume x"0 is an
equilibrium point and C(0)"0.

Basic properties for this system which will be used in the present paper are stated in the
following de"nitions (see Pavel et al. [18]).

Dexnition 1
The system PK is said to be stabilizable if there exists a continuous function F(x) with F(0)"0

such that A(x)#B (x)F (x) is asymptotically stable.
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Dexnition 2
The system PK is said to be zero-state detectable if for all x3Rn, u"0, and y"0, ∀t*0, implies

xP0 as tPR.

Dexnition 3
The Zero dynamics of system PK are de"ned as the set of state trajectories M(x (t)N generated by

the set of input U and initial conditions X
0

such that the output is identically null, i.e.,
xR "A(x)#B (x)u, with 0"C(x)#D (x)u, ∀t*0, u3U, x (0)3X

0
.

Dexnition 4
The system PK is said to have ¸

2
-gain less than or equal to c if its zero state response satis"es

P
T

0

Ey (t)E2dt)c2P
T

0

Eu (t)E2dt with ¹'0

The following de"nition of the right-coprime factorization can be found in Pavel et al. [18] or
Scherpen et al. [19]. Which is well known in linear case. As this is one of the key ideas of this
paper, for completeness, we rewrite it below.

Dexnition 5
A right-coprime factorization of system PK , with (A(x), B (x)) being stabilizable, is given by two

systems

N :"G
xR "A(x)#B (x)F (x)#B (x);

a
(x)f

y"C (x)#D(x)F (x)#D(x);
a
(x)f

M :"G
xR "A(x)#B (x)F (x)#B (x);

a
(x)f

y"F (x)#;
a
(x)f

with ;
a
(x) is invertible and M~1 is the inverse system of M such that:

(i) for every initial condition of PK there exist initial conditions for N and for M~1 such that the
input}output behaviour of PK equals the input}output behaviour of N

3
M~1, where N

3
M~1

denotes the system obtained by the series interconnection of M~1 followed by N,
(ii) A(x)#B (x)F (x) is asymptotically stable;
(iii) N and M are right coprime, i.e. the zero dynamics of the system [N

M
] is asymptotically stable.

The standard nonlinear azne HR control problem

Consider the following smooth (C=) nonlinear a$ne H= framework

P :"

i
g
j
g
k

xR "A(x)#B
1
(x)w#B

2
(x)u

z"C
1
(x)#D

12
(x)u

y"C
2
(x)#D

21
(x)w

(1)

where z (t)3Rp1, y(t)3Rp2, w (t)3Rm1, and u (t)3Rm2 are the error, observation, disturbance, and
control input, respectively. The states x"(x

1
, x

2
,2, x

n
) are local co-ordinates for a state-space

manifold M de"ned in a neighbourhood ) of the origin in Rn. Assume x"0, an equilibrium
point, also A (0)"0, C

1
(0)"0, and C

2
(0)"0. Furthermore, as in the general 4-block nonlinear

H=-control problem, the inequalities m
1
'p

2
and p

1
'm

2
must hold.
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Figure 1.

The suboptimal nonlinear a$ne H= control problem is then modelled so as to choose
a controller K which connects the observation vector y to u so that K locally, asymptotically
stabilizes the closed-loop system in a neighbourhood ) of the origin with internal stability.
Furthermore, the closed-loop system with a local ¸

2
-gain is less than or equal to a prescibed

number c.
Figure 1 shows a general set-up for the nonlinear a$ne H= control system.
For simplicity and yet without any loss of generality of the derivations in subsequent sections,

let c"1 and take the following assumptions for the 4-block nonlinear a$ne H= control problem.

Assumptions:

A1. (A(x) , B
2
(x)) is locally stabilizable and (C

2
(x), A(x)) is locally detectable in a neighbourhood

) of the origin.
A2. DT

12
(x)D

12
(x)"I

m2
and D

21
(x)DT

21
(x)"I

p2
.

DT
12

(x)C
1
(x)"0 and B

1
(x)DT

21
(x)"0

A3. Any bounded trajectory x (t) of system xR (t)"A(x (t))#B
2
(x (t))u (t), satisfying

C
1
(x(t))#D

12
(x(t))u(t)"0, for all t*0, in such that lim

t?=
x (t)"0.

A4. rank

LA

Lx
(0)!jwI B

1
(0)

LC
2

Lx
(0) D

21
(0)

"n#p
2
, ∀u3R

Assumption A1 is necessary for the existence of stabilizing controllers. Assumptions A3 and A4
imply that the pair MA(x), C

1
(x)N is locally zero state detectable and MA(x), B

1
(x)N is locally

stabilizable at the origin. These assumptions are the nonlinear version of standard assumptions
usually considered in linear case (see References [2, 3, 7, 20]).

3. (J, J@ )-LOSSLESS SYSTEMS AND HAMILTONIAN SYSTEMS

3.1. The (J, J @ )-lossless system (#*J#"J @)

Before discussing the (J, J@)-lossless property in nonlinear system, let's consider this property in
the following linear chain-scattering setting.

y
y
1

y
2

$&

&"
#

L

$&

&"
u
1

u
2

u #
L
:"G

xR "Ax#Bu

y"Cx#Du
(2)
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with y
1
3Rp, y

2
3Rq, u

1
3Rm, and u

2
3Rn. It is well known (see references [5, 7, 21, 22]) that,

matrix #
L
(s)3RL=

(p`q)](m`n)
is said to be a (J, J@ )-lossless matrix if p*m, q*n and

#
L
(s) J J#

L
(s)"J@ for each s3 jw

#
L
(s)* J#

L
(s))J@ for each Re[s]*0

where J"diagMI
p
,!I

q
N and J@"diagMI

m
,!I

n
N. Its relevant state-space properties are stated

below.

¸emma 1
Let #

L
(s)3RL=

(p`q)](m`n)
with (A, B) controllable, (C, A) detectable.

Then #
L

is (J, J@)-lossless if:

(i) ATX#XA#CTJC"0;
(ii) XB#CTJD"0;
(iii) D is (J, J@ )-unitary (i.e. DTJD"J@ and DJ@DT"J );
(iv) X*0.

Obviously, from the above lemma, one has

#*
L
J#

L
"(D#C (sI!A)~1B)*J (D#C(sI!A)~1B)

"DTJD#BT(s*I!AT)~1CTJD#DTJC(sI!A)~1B

#BT(s*I!AT)~1CTJC(sI!A)~1B

"J@!BT(s*I!AT)~1(s*X#sX)(sI!A)~1B (3)

That is #
L
(s) I J#

L
(s)"J@, ∀s3jw and #

L
(s)*J#

L
(s))J@, ∀Re [s]*0.

Since y"#
L
u and #*

L
J#

L
)J@, one has

u* R#*
L
J#

L
u)u*J@uNy* Jy)u*J@uNEy

1
E2
2
!Ey

2
E2
2
)Eu

1
E2
2
!Eu

2
E2
2

NEy
1
E2
2
#Eu

2
E2
2
)Eu

1
E2
2
#Ey

2
E2
2

(4)

where

EuE
2
:"AP

=

~=

Eu(t)E2dtB
1@2

"A P
=

~=

u (t)*u(t) dtB
1@2

This implies that the output energy is less then or equal to the input energy.
Furthermore, from Lemma 3 in Hong et al. [7], one has the following lemma for a conjugate

(J, J@)-lossless system. For simplifying the mathematical narration, we use &if ' instead of &if and
only if ' in these lemmas for linear case.

Lemma 2
Let #

cL
(s)3RL=

(m`n)](p`q )
with (C, A) observable, (A, B) stabilizable. Then #

cL
is conjugate

(J, J@)-lossless if

(i) A>#>AT#BJ@BT"0;
(ii) DJ@BT#C>"0;
(iii) D is (J, J@)-unitary;
(iv) >*0.
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Remark 1
As a similar computation as in Equation (3), one obtains that

#
cL

J@# J
cL
"J for each s3 jw

#
cL

J@#*
cL
)J for eachRe[s]*0

Besides, if X in Lemma 1 is invertible, then (i), (ii) in Lemma 1 and (i), (ii) in Lemma 2 are related
by reciprocity: >"X~1. Furthermore, from the (J, J@)-unitary of D, this indicates that #

L
in

Lemma 1 also is a conjugate, (J, J@ )-lossless system (i.e. #
L
(s)J@#

L
(s) J"J,∀s3 jw and

#
L
(s)J@#

L
(s)*)J, ∀ Re[s]*0).

It immediately shows that, if > in Lemma 2 is invertible, then #
cL

is conjugate (J, J@)-lossless
implies that #

cL
also in (J, J@)-lossless. By a similar computation as in Equation (4), one obtains

that #
cL

also has the property of output energy is less then or equal to the input energy.
Now, consider the following de"nition of (J, J@ )-losslessness for the nonlinear system. This

de"nition is a modi"ed version of the well-known results of the dissipative system while applied to
the chain-scattering setting (see Willems [23] and Pavel et al. [18]).

Dexnition 6
A nonlinear C= chain-scattering system # given by

y
y
1

y
2

$&

&"
#

$&

&"
u
1

u
2

u # :"G
xR "a (x)#b (x)u

y"c(x)#d(x)u
(5)

with y
1
3Rp, y

2
3Rq, u

1
3Rm, and u

2
3Rn, is called a (J, J@ )-lossless system, if # has an

equilibrium point at x"0 with c(0)"0 and if there exists a storage function<(x)*0, such that:

<(x (¹ ))!<(x (0))"
1

2 P
T

0

(uT(t)J@u(t)!yT (t)Jy(t)) dt*0 (6)

with x (0)"0, < (0)"0, and ¹*0, where J"diagMI
p
,!I

q
N and J@"diagMI

m
,!I

n
N

Obviously, from Equation (6), one can see that this (J, J@)-lossless system has a same property
as it is in linear case, (i.e., the output energy is less than or equal to the input energy). Furthermore,
if <(x) is di!erentiable then Equation (6) becomes

<
x
(x)[a (x)#b (x)u]"1

2
uTJ@u!1

2
[c (x)#d (x)u]TJ[c(x)#d (x)u]

Direct computation yields the following lemma for the (J, J@ )-lossless system (see Ball et al. [17]
or Pavel et al. [18]).

Lemma 3
System # is (J, J@)-lossless with respect to a smooth function <(x), if:

(i) <
x
(x)a(x)#1

2
cT (x)Jc (x)"0;

(ii) <
x
(x)b(x)#cT(x)Jd (x)"0;

(iii) dT (x)Jd(x)"J@;
(iv) < (x)*0, <(0)"0.
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Remark 2
If one further de"nes the input vector u in # as u"[z{

w{
] and the output y as y"[z

w
], then from

Equation (6), it is obvious that:

P
T

0

[(Ez@(t)E2!Ew@ (t)E2)!(Ez(t)E2!Ew(t)E2)] dt*0

That is

P
T

0

(Ez@(t)E2!Ew@ (t)E2) dt)0NP
T

0

(Ez(t)E2!Ew(t)E2) dt)0

Furthermore, as proposed by Crouch et al. [24], the Hamiltonian extension of system # is

xR "a (x)#b (x)u

pR "!A
La (x)

Lx
#

Lb(x)

Lx
uB

T
p!A

Lc(x)

Lx
#

Ld(x)

Lx
uB

T
u
a

(7)
y"c(x)#d (x)u

y
a
"bT (x)p#dT(x)u

a

Imposing u
a
"Jy in Equation (7) leads to the following Hamiltonian system for #*J# (with

input u and output y
a
).

#*J# : G
xR "a(x)#b(x)u

pR "!A
La(x)

Lx
#

Lb(x)

Lx
uB

T
p!A

Lc (x)

Lx
#

Ld(x)

Lx
uB

T
J(c (x)#d (x)u)

y
a
"bT (x)p#dT (x)Jc (x)#dT (x)Jd(x)u

(8)

This Hamiltonian system can also be denoted by

#*J#: G
xR " C

LHK
Lp

(x, p, u)D
T

pR "!C
LHK
Lx

(x, p, u)D
T

y
a
" C

LHK
Lu

(x, p, u)D
T

with Hamiltonian function HK (x, p, u)"pT(a(x)#b (x)u)#1
2
(c (x)#d (x)u)TJ (c(x)#d(x)u).

Recalling from Proposition 7.1.3 in Van der Schaft [25] that, M(x, p) : p"<T
x
N being an

invariant mainfold for #*J# (with u"0) if and only if the smooth function <(x) is such that the
Hamilton}Jacobi equation HK (x, <T

x
(x), 0)"0, which is equal to condition (i) in Lemma 3. It

immediately follows that, if dT(x)Jd(x)"J@ and the smooth function <(x) satis"es conditions (ii)
and (iv) in Lemma 3 then the system # is (J, J@)-lossless. Also, from the local properties in Ball and
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Van der Schaft [17, 11] such an invariant manifold exists if the Jacobian matrix of the
Hamiltonian #ow associated with #*J# (with u"0) at equilibrium belongs to dom(Ric).

For discussing the ((J, J@ )-lossless)-(minimal-phase) factorization for a nonlinear a$ne system
G so that G can be factorized as G"#% (with % minimal phase and # being (J, J@)-lossless), let's
consider the following nonlinear a$ne system G:

G :G
xNQ "a (xN )#b (xN )u
y"c (xN )#d (xN )u

where xN "0 is an equilibrium point and c(0)"0. As shown in Ball and Van der Schaft
[17, 11] that, for such a nonlinear a$ne system, while the Hamiltonian system of (G*JG)~1 is
given by

(G*JG)~1 : G
xNQ " C

LHK ]

Lp
(xN , p, y

a
)D

T

pR "!C
LHK ]

LxN
(xN , p, y

a
)D

T

u" C
LHK ]

Ly
a

(xN , p, y
a
)D

T

then G has a ((J, J@ )-lossless)-(minimal-phase) factorization, suppose there exists an invariant
manifold M(x, p) : p"<T

x
N for (G*JG)~1 (with y

a
"0) so that the Hamilton}Jacobi equation

HK ] (xN , <T
x
N (xN ), 0)"0 with the stability side condition LHK ]/Lx6 (x6 , <TxN (xN ), 0) is Lyapunov stable.

Furthermore, such an invariant manifold does exist if the Jacobian matrix of the Hamiltonian
#ow associated with (G*JG)~1 (with y

a
"0) at equilibrium belongs to dom(Ric).

The idea behind this local result is easy to understand when one considers the following
characteristics for linear systems. One can further compare these characteristics with the related
nonlinear Hamiltonian system.

If the linear chain-scattering system G
L

is denoted by

G
L
"C(sI!A)~1B#D"C

A

C

B

DD"G
xNQ "AxN #Bu

y"CxN #Du

with R"DTJD being invertible, then the linear Hamiltonian system G
L
*JG

L
given by

G
L
*JG

L
"

A 0 B

!CTJC !AT !CTJD

DTJC BT DTJD

is contrasted with G*JG: G
xNQ " C

LHK
Lp

(xN , p, u)D
T

pR "!C
LHK
LxN

(xN , p, u)D
T

y
a
" C

LHK
Lu

(xN , p, u)D
T
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Furthermore, the (G
L
*JG

L
)~1 denoted by

(G
L
*JG

L
)~1"C

A
G

]

C
G

]

B
G

]

D
G

]D is contrasted with (G*JG)~1 : G
xNQ " C

LHK ]

Lp
(xN , p, y

a
)D

T

pR "!C
LHK ]

LxN
(xN , p, y

a
)D

T

y
a
" C

LHK ]

Ly
a

(x, p, y
a
)D

T

where HK ](xN , p, y
a
) is the Hamiltonian function for (G*JG)~1.

It immediately follows that

A
G

]"C
A!BR~1DTJC !BR~1BT

!CT (J!JDR~1DTJ)C !(A!BR~1DTJC)TD
is contrasted with the Hamiltonian #ow induced by HK ](xN , p, y

a
) (with y

a
"0) or the Hamiltonian

#ow associated with (G*JG)~1 (with y
a
"0). Now, introducing a similarity transformation

matrix ¹"[I
X

0
I
] into A

G
], one has

¹~1A
G

]¹"C
I

!X

O

ID A
G

]C
I 0

X ID"C
P R

Q !PTD
where

P"A!BR~1(DTJC#BTX)

R"!BR~1BT

Q"X (A!BR~1DTJC)#(A!BR~1DTJC)TX!XBR~1BTX#CT(J!JDR~1DTJ)C

Obviously, the stability side condition LHK ]/LxN (xN , <T
xN
(xN ), 0) is contrasted with P"A#BF (with

the state-feedback gain F"!R~1(DTJC#BTX)).
As we know, in linear system, the above Hamiltonian matrix A

G
] is related to the algebraic

Riccati equation:

X(A!BR~1DTJC)#(A!BR~1DTJC)TX!XBR~1BTX#CT (J!JDR~1DTJ)C"0

Furthermore, this algebraic Riccati equation can be solved if the eigenvalues of the related
Hamiltonian matrix A

G
] are not on the jw-axis (i.e. the Hamiltonian matrix belongs to dom(Ric)).

3.2. Conjugate (!J,!J@)-lossless system (!#) J@#K *"!J)

Consider the following linear chain-scattering system #)
L

given as

y
y
1

y
2

&"
$&

#)
L

&"
$&

u
1

u
2

u #K
L
:"G

xR "Ax#Bu

y"Cx#Du
(9)

Carefully comparing the chain-scattering structure of #)
L

with #
L
's are shown in Equation (2)

reveals that the directions of the arrow signals in #)
L

are contrary to #
L
's. One thus has the
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following lemma for conjugate (!J,!J@ )-lossless or conjugate (J, J@)-expansive system (see
Hong et al. [7]).

Lemma 4
Let #)

L
(s)3RL=

(m`n)](p`q)
with m)p, n)q, (C, A) observable, and (A, B) stabilizable. Then

#)
L

is conjugate (!J,!J@)-lossless if

(i) !A>!>AT#BJ@BT"0;
(ii) DJ@BT!C>"0;
(iii) D is (J, J@ )-unitary;
(iv) >*0, where J"diagMI

m
,!I

n
N and J@"diagMI

p
,!I

q
N.

The above lemma indicates that

!#)
L
J@#K *

L
"!(D#C(sI!A)~1B)J@ (D#C(sI!A)~1B)*

"!J!C(sI!A)~1(s>#s*>) (s*I!AT)~1CT

That is !#)
L
(s)J@#)

L
(s) 8"!J, ∀s3jw and !#)

L
(s)J@#)

L
(s)*)!J, ∀ Re[s]*0 or

#)
L
(s)J@#)

L
(s)**J, ∀ Re[s]*0.

Remark 3
This conjugate (!J,!J@)-lossless system also have the same property as the statement in

Remark 1. That is, if > is invertible, then #)
L

is conjugate (!J,!J@)-lossless implies that #)
L

also
is (!J,!J@ )-lossless (i.e., #) *

L
J#K

L
*J@).

Since y"#K
L
u and #) *

L
J#K

L
*J@, one has

y*Jy"u*#K *
L
J#K

L
u*u*J@uNy*Jy*u*J@u

NEy
1
E2
2
!Ey

2
E2
2
*Eu

1
E2
2
!Eu

2
E2
2

NEy
1
E2
2
#Eu

2
E2
2
*Eu

1
E2
2
#Ey

2
E2
2

From Equation (9), this implies that the output energy is less than or equal to the input energy.
Now, supposing the interconnection law u in Equation (7) is as u"!J@y

a
, and substituting

#) for #, one has the following Hamiltonian system for !#) J@#K * (with input u
a
and output y).

!#) J@#K * : G
xR "a(x)!b(x)J@bT (x)p!b (x)J@dT(x)u

a

pR "!A
La(x)

Lx
!

Lb (x)

Lx
J@bT(x)p!

Lb(x)

Lx
J@dT(x)u

aB
T
p

!A
Lc(x)

Lx
!

Ld(x)

Lx
J@bT(x)p!

Ld(x)

Lx
J@dT(x)u

aB
T
u
a

y"c (x)!d (x)J@bT (x)p!d(x)J@dT (x)u
a

(10)
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The Hamiltonian function HM is such that

!#) J@#K * : G
xR " C

LHM
Lp

(x, p, u
a
)D

T

pR "!C
LHM
Lx

(x, p, u
a
)D

T

y" C
LHM
Lu

a

(x, p, u
a
)D

T

is thus given as

HM (x, p, u
a
)"pTa(x)!1

2
pTb(x)J@bT(x)p!pTb (x)J@dT(x)u

a
#cT (x)u

a
!1

2
uT
a
d (x)J@dT(x)u

a
(11)

The following de"nition gives the property for a nonlinear a$ne system #) to be conjugate
(!J,!J@ )-lossless which is well known in linear case (see e.g. Hong et al. [7]). The same as the
(J, J@)-lossless system, this conjugate (!J,!J@ )-lossless system also involves the validity of an
energy storage balance equality in integral form. The nonlinear (I, I@) case was proposed by
Scherpen and Van der Schaft [19], who called it &co-inner'.

Dexnition 7
A nonlinear C= chain-scattering system #) given by

y
y
1

y
2

&"
$&

#)
&"
$&

u
1

u
2

u #K :"G
xR "a (x)#b (x)u

y"c(x)#d(x)u

with y
1
3Rm, y

2
3Rn, u

1
3Rp, and u

2
3Rq, is called a conjugate (!J,!J@)-lossless system, if

#) has an equilibrium point at x"0, with c(0)"0, and the input}output map of system
Equation (10) from u

a
to y, with x (0)"0 and p (0)"0, is equal to !J (i.e., !#) J@#K *"!J),

and there exists a smooth storage function= (x)*0, =(0)"0, and ¹*0 such that:

=(x(¹ ))!=(x (0))"
1

2 P
T

0

( yT(t)Jy(t)!uT(t)J@u(t)) dt*0 (12)

Equation (12) shows that the output energy is less than or equal to the input energy.
From the Hamiltonian system for !#) J@#K * in Equation (10), since u"!J@y

a
and the

conjugate (!J,!J@ )-lossless system #) has !#) J@#K *"!J (i.e. y"!Ju
a
), the above equation

is equal to

= (x(¹))!=(x (0))"
1

2 P
T

0

(uT
a
(t)Ju

a
(t)!yT

a
(t)J@y

a
(t)) dt*0 (13)

Also, the following theorem gives a state-space criterion for a nonlinear a$ne system #) to be
conjugate (!J,!J@)-lossless.

Theorem 1
System #) is conjugate (!J,!J@)-lossless with respect to a smooth function=(x), if there is an

invariant manifold M(x, p) : p"=T
x
N for (#) J@#K *)~1 (with y"0) such that:

(i) !a (x)#1
2
b (x)J@bT(x)=T

x
(x)"0;
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(ii) !c (x)#d (x)J@bT (x)=T
x
(x)"0;

(iii) d(x)J@dT(x)"J;
(iv) =(x)*0, = (0)"0.

Proof. Replacing the right-hand side of y"c (x)!d (x)J@bT(x)p!d(x)J@dT(x)u
a

in Equa-
tion (10) with (ii), (iii), and p"=T

x
, one obtains y"!Ju

a
(i.e. !#) J@#K *"!J).

Furthermore, from Equation (7), since y
a
"bT(x)p#dT(x)u

a
"bT (x)=T

x
(x)#dT(x)u

a
, one has

yT
a
J@y

a
"(uT

a
d (x)#=

x
(x)b(x))J@(bT (x)=T

x
(x)#dT(x)u

a
)

"2=
x
(x)b (x)J@dT(x)u

a
#=

x
(x)b (x)J@bT(x)=T

x
(x)#uT

a
d (x)J@dT(x)u

a

From (i) and (iii), this implies that

=
x
(x)[a(x)!b (x)J@bT(x)=T

x
(x)!b (x)J@dT(x)u

a
]"1

2
(uT

a
Ju

a
!yT

a
J@y

a
)

Integrating both side with respect to t (from 0 to ¹), together with xR "a (x)!b (x)J@bT(x)p
!b (x)J@dT(x)u

a
in Equation (10), Equation (13) follows immediately.

Note that, the di!erentiability for <(x) or =(x) is an arti"cial hypothesis imposed for all
solutions of the Hamilton}Jacobi equations in this paper; however, there might exist some
viscosity solutions to admit nonsmooth < (x) or=(x) (see e.g. Bas

'

ar et al. [9] or Van der Schaft
[25]).

4. THE CSMD APPROACH FOR DERIVING HR CONTROLLERS

This paper proposes an alternative method for designing nonlinear H= controllers. This method
is based on a combination of a chain-scattering matrix description (CSMD) together with the
(J, J@)-lossless and conjugate (!J,!J@ )-lossless properties.

From Equation (1) and the properties in De"nition 5, let P"NM~1 be a right-coprime
factorization, in which one chooses F (x) to be a stabilizing feedback control for the pair
(A(x), B (x)), and hence N and M are stable. This is analogous to linear system theory, thus giving

N :"G
xR "A(x)#B (x)F (x)#B(x);

a
(x) C

z@
w@D

C
z

yD"C(x)#D(x)F (x)#D(x);
a
(x) C

z@
w@D

M :"G
xR "A(x)#B (x)F (x)#B (x);

a
(x) C

z@
w@D

C
w

uD"F (x)#;
a
(x) C

z@
w@D
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Figure 2.

where

B (x)"[B
1
(x) B

2
(x)], D(x)"C

0 D
12

(x)

D
21

(x) 0 D , C(x)"C
C

1
(x)

C
2
(x)D , F(x)"C

F
1
(x)

F
2
(x)D

and

;
a
(x)"C

;
a11

(x) ;
a12

(x)

;
a21

(x) ;
a22

(x)D
One further de"nes G

1
and G

2
as

G
1
:"G

xR "A(x)#B (x)F (x)#B(x);
a
(x) C

z@
w@D

C
z

wD"C
C

1
(x)

0 D#C
0

I

D
12

(x)

0 D C
F
1
(x)

F
2
(x)D#C

0

I

D
12

(x)

0 D ;a (x) C
z@
w@D

(14)

G
2
:"G

xR "A(x)#B (x)F(x)#B(x);
a
(x) C

z@
w@D

C
u

yD"C
0

C
2
(x)D#C

0

D
21

(x)

I

0D C
F
1
(x)

F
2
(x)D#C

0

D
21

(x)

I

0D;a
(x) C

z@
w@D

(15)

It is obvious that the standard nonlinear H= set-up as shown in Figure 1 is thus transformed into
the chain-scattering matrix description as in Figure 2.

Remark 4
If one rewrites G

1
in Equation (14) as

G
1
:"G

xR "AK (x)#B(x);
a
(x) C

z@
w@D

C
z

wD"CK (x)#DK (x);
a
(x) C

z@
w@D
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then, from Assumptions A1}A4 and Lemma 3, G
1

will be a (J, J@ )-lossless system if the following
properties hold (an equivalent version of these properties can be found in Isidori [4]).

(i) One chooses ;
a
(x)"[0

I
~I
0

] such that ;
a
(x)TDK (x)TJDK (x);

a
(x)"J@.

(ii) there exists a C2 nonnegative di!erentiable function <(x) (with <(0)"0) that is locally
de"ned in a neighbourhood of the origin and < (x) and satis"es the Hamilton}Jacobi
equation

<
x
(x)AK (x)#1

2
CK (x)JCK (x)"0 (16)

such that

<
x
(x)B (x);

a
(x)#CK T (x)JDK (x);

a
(x)"0 (17)

This also implies that the stabilizing state feedback gain F (x) can also be obtained from
Equation (17). That is

<
x
(x)B (x)#CK T(x)JDK (x)"0

N<
x
(x)B (x)#AC

C
1
(x)

0 D#DK (x)F (x)B
T

JDK (x)"0

NBT(x)<T
x
(x)#DK T (x)J C

C
1
(x)

0 D#DK T(x)JDK (x)F (x)"0

NF (x)"!R~1(x)CBT(x)<T
x
(x)#C

0

DT
12

(x)C
1
(x)DD

NC
F
1
(x)

F
2
(x)D"C

BT
1
(x)<T

x
(x)

!BT
2
(x)<T

x
(x)#DT

12
(x)C

1
(x)D

where

R(x)"DK T (x)JDK (x)"C
!I

m1
0

0

DT
12

(x)D
12

(x)D and DK (x)"C
0

I

D
12
0 D

However, as stated on p.11 in Section 3.1, the existence of <T
x
(x) such that A(x)#B (x)F(x) is

locally asymptotically stable corresponds to the Jacobian matrix of the Hamiltonian #ow
associated with G*

1
JG

1
(with z@"0, w@"0) at equilibrium belonging to dom(Ric). Direct

computation yields that such a Jacobian matrix is as

H
=
"C

A B
1
BT
1
!B

2
BT
2

!CT
1
C

1
!AT D

which is equal to the Hamiltonian matrix &H
=
' proposed by Doyle et al. [20].

4.1. Local disturbance attenuation by measurement feedback

Before discussing the nonlinear output-feedback control problem, "rst consider the linear case.
As proposed by Hong and Teng [7], the linear 4-block H= controllers are obtained directly by
inverting one of the (J, J@ )-coprime factors of G

2
. That is, if the linear version of G

2
in

Equation (15) has an outer-(conjugate (J, J@ )-inner) factorization of G
2
"%3 ~1#3 so that #3 is
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conjugate (!J,!J@)-lossless and both %3 and %3 ~1 are stable, then the linear 4-block H=

controllers can be described as K"F
L
(%I , '), i.e.

where E'E
=
)1 and F

L
() , )) indicates left CSMD. De"nitions of left and right CSMD are

reported in Reference [7].
For a nonlinear system, as shown in Crouch et al. [24], Scherpen et al. [19], and Van der Schaft

[10, 11, 25], there locally exists an outer-(conjugate (J, J@)-inner) factorization for G
2

(Equa-
tion (15)), assuming that there exists solutions of the relevant Hamilton}Jacobi equations.
However, the outer-(conjugate (J, J@)-inner) factorization does not exist in nonlinear systems in
general. Hence, it is natural to replace x by some estimate m provided by a proper auxiliary
dynamics. One then "nds an appropriate nonlinear system %3 constructed by this estimate state
m such that %3 G

2
satis"es the conjugate (!J,!J@ )-lossless properties. This also implies that

locally one has the outer-(conjugate (J, J@)-inner) factorization for G
2
.

Now, one rewrites G
2

as

G
2
:"G

xR "AK (x)#B (x);
a
(x) C

z@
w@D

C
u

yD"CI (x)#DI (x);
a
(x) C

z@
w@D

and de"ne system %3 given as follows:

%3 :"G
mQ "AK (m)#H (m)CI (m)#H(m) C

u

yD

C
v

pD";z(m)CI (m)#;
z
(m) C

u

yD
(18)

where m is an an estimate of x,

H( ) )"[H
1
() ) H

2
( ) )], CI ( ) )"C

CI
1
( ) )

CI
2
( ) )D"C

F
2
( ) )

C
2
( ) )#D

21
( ) )F

1
( ) )D

and c"' (p) ('(p) is a free stable system with E'(p)E
L2
)1).

Therefore, the state-space representation of %3 G
2

is given by

%I G
2
:"G C

xR
mQ D"C

AK (x)

AK (m)#H(m)CI (m)#H(m)CI (x)D#C
B (x);

a
(x)

H(m)DI (x);
a
(x)D C

z@
w@D

C
v

pD";z
(m)[CI (x)#CI (m)]#;

z
(m)DI (x);

a
(x) C

z@
w@D
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Rewrite it as

%I G
2
:"G

xR
e
"A

e
(x

e
)#B

e
(x

e
) C

z@
w@D

C
v

pD"C
e
(x

e
)#D

e
(x

e
) C

z@
w@D

Remark 5
From Assumptions A1}A4 and Theorem 1, if one chooses ;

z
(x)"[I 0

0 I
] such that

D
e
(x

e
)JDT

e
(x

e
)";

z
(x)DI (x);

a
(x)J;T

a
(x)DI T (x);T

z
(x)"J

and if there exists a C2 non-negative function=(x
e
)"Q (x!m) locally de"ned in a neighbour-

hood of (x, m)"(0, 0) with =(0)"0 and = (x
e
) satis"es the Hamilton}Jacobi equation

=
xe

A
e
(x

e
)!1

2
=

xe
B

e
(x

e
)JBT

e
(x

e
)=T

xe
"0 (19)

such that

C(x
e
)!D

e
(x

e
)JBT

e
(x

e
)=T

xe
"0 (20)

where

=
xe
"[=

x
(x

e
) =m (xe

)]"[Q
x
(x!m) Qm(x!m)]

then %3 G
2

will be a conjugate (!J,!J@)-lossless system. Together with the properties in
Equation (12), this also implies that

P
T

0

(Ev (t)E2!Ep(t)E2) dt)0 NP
T

0

(Ez@ (t)E2!Ew@(t)E2) dt)0

As we know, from Ball and Van der Schaft [10, 17] if the corresponding Jacobian matrix of the
Hamiltonian #ow associated with (G

2
JG*

2
)~1 (with y

a
"0) at equilibrium belongs to dom(Ric),

then there exists such =(x
e
)"Q(x!m) so that A

e
(x

e
) is locally asymptotically stable in

a neighbourhood of (x, m)"(0, 0). Direct computation yields that such a Jacobian matrix
indicated by A

Hz
is similar to the Hamiltonian matrix J

=
given by Doyle et al. [20], where

J
=
"C

AT CT
1
C

1
!CT

2
C

2
!B

1
BT

2
!A D K

Furthermore, suppose ZK represents the solution of such A
Hz

, then, comparing Q(x!m) with ZK , it
follows that

ZK ~1"
1

2 C
L2Q

Lx2D
x/0

and Q(x!m )"(x!m )TZK ~1(x!m ) is one of such solutions.
For this reason, although the nonlinear function = (x

e
) can be expanded as

=(x
e
)"Q(x!m)"(x!m)TZK ~1(x!m)#O(x!m) locally de"ned in a neighbourhood of

(x, m )"(0, 0) with O(0)"0 and =(x
e
) satis"es Equations (19) and (20), we take

=(x
e
)"Q(x!m )"(x!m)TZK ~1 (x!m) as its quadratic approximation at the origin.
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Since Q(x!m)"(x!m)TZK ~1(x!m ), and then [Q
x
(x!m) Qm(x!m)]"[Q

x
!Q

x
], one

has the following derivation for the measurement feedback gain H(m ). From Equation (20), one
has

!C(x
e
)#D

e
(x

e
)JBT

e
(x

e
) C

QT
x

!QT
x
D"0

N!(CI (x)#CI (m)#DI (x);
a
(x)J;T

a
(x) (BT(x)!DI T (x)HT(m ))QT

x
"0

and multiplying the right-hand side by Q~T
x

, one obtains

!(C3 (x)#CI (m))Q~T
x

#DI (x);
a
(x)J;T

a
(x)(BT(x)!DI T(x)HT (m))"0

N!Q~1
x

(CI T(x)#CI T (m))#B (x);
a
(x)J;T

a
(x)DI T(x)!H(m )DI (x);

a
(x)J;T

a
(x)DI T (x)"0

NH(m)DI (x);
a
(x)J;T

a
(x)DI T"!Q~1

x
(CI T(x)#CI T (m))#B (x);

a
(x)J;T

a
(x)DI T (x)

N [H
1
(m) H

2
(m)]"[Q~1

x
(CM T

1
(x)#CM T

1
(m))!B

2
(x) Q~1

x
(CI T

2
(x)#CI T

2
(m))#B

1
(x)DT

21
(x)]RI ~1

where

RI "C
I 0

0 !D
21

(x)DT
21

(x)D"C
I 0

0 !ID"J

Speci"cally, H
2
(m)"[Q~1

x
(CI T

2
(x)#CM T

2
(m))#B

1
(x)DT

21
(x)]RI ~1 is the measurement feedback

gain of the central controller as shown by Isidori [4].
As a summary of the discussion so far, we state the following theorem as a conclusion.

Theroem 2
Under Assumptions A1}A4.
(i) Suppose there exists a C1 nonnegative function <(x) locally de"ned in a neighbourhood of

the origin (with <(0)"0), and <(x) satis"es Equations (16), (17) such that G
1

as shown in
Remark 4 is (J, J@)-lossless.

(ii) Suppose there exists a C2 nonnegative function= (x
e
)"Q(x!m ) that is locally de"ned in

a neighbourhood of (x, m )"(0, 0) and vanishes at (x, m )"(0, 0), and =(x
e
) satis"es

Equations (19), (20) such that %3 G
2

as shown in Remark 5 is conjugate (!J,!J@)-lossless.
Then, the problem of local disturbance attenuation with internal stability is solved by a family

of output feedback controllers %3 (with a free stable system '(p)) as shown in Equation (18).
A brief sketch of the proof From Equation (18), since v"'(p) with E'(p)E

L2
)1 and %3 G

2
is

conjugate (!J,!J@)-lossless, it immediately follows from Remark 5 that

P
T

0

(Ev (t)E2!Ep(t)E2dt)0NP
T

0

(Ez@(t)E2!Ew@ (t)E2) dt)0

Furthermore, as proposed in Remark 2, having G
1

is (J, J@ )-lossless implies

P
T

0

(Ez@(t)E2!Ew@(t)E2) dt)0NP
T

0

(Ez(t)E2!Ew(t)E2 dt)0

This means that the ¸
2
-gain of the closed-loop system (from w to z) is less than or equal to

a prescribed number c (c"1).

H= CONTROL FOR NONLINEAR SYSTEMS 331

Copyright ( 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:315}333



Figure 3.

To prove the internal stability, it su$ces to prove the exponential stability of the closed-loop
system, which is obtained from the linear approximation result (see Hong and Teng [7]). K

Theorem 2 can be illustrated in Figure 3.

5. CONCLUSION

We have extended a class of the chain-scattering approach from the linear H= control problem to
the case of local disturbance attenuation with internal stability, via measurement feedback, in
nonlinear a$ne systems. We have also stated the su$cient conditions for the existence of output
feedback controllers. Because the "ctitious signals introduced by traditional chain-scattering
approach are thought super#uous in the H= control problem, a nonlinear outer-(conjugate
(J, J@)-inner) coprime factorization is proposed. As shown in the block diagrams, the nonlinear
plant is thus described as serial energy-losslessness systems, which simpli"es the solving process
and provides deeper insight in the synthesis of the controllers.
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