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Fluctuations in single-crystal YBa2Cu3O6.5: Evidence for crossover from two-dimensional
to three-dimensional behavior
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Magnetization measurements as a function of temperature are reported for YBa2Cu3O6.5 crystal (Tc

545.2 K) for fields between 0.2 and 3.5 T. All isochamps forH.1 T intersect atT2D
! .42.8 K, implying a

fluctuation contribution to the magnetization. These curves collapse into a single curve when magnetization
and temperature are scaled according to the predicted ‘‘two-dimensional~2D! scaling’’ in the fluctuation
regime. Surprisingly, the low-field curves also intersect, atT3D

! .43.4 K, and they obey a 3D scaling. We
provide a theoretical picture of the magnetization in the fluctuation regime based on the Lawrence-Doniach
model. Within this model we calculate the field and temperature dependence of the magnetization. The two
intersection points and the 2D→3D crossover are consistent with the experimental observation.

DOI: 10.1103/PhysRevB.63.134501 PACS number~s!: 74.72.Bk, 74.60.2w, 74.40.1k, 74.25.Ha
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I. INTRODUCTION

High-temperature superconductors~HTS’s! are character-
ized by a wide temperature range in which fluctuations
important.1,2 This range is proportional to the Ginzburg p
rameter Gi, which is very sensitive both to the dimension
ity D of the system and to the superconducting cohere
lengthj. Thus, strong fluctuations, usually negligible in co
ventional superconductors, become extremely important
to the smallj and quasi-two-dimensional~quasi-2D! struc-
ture.

A useful tool in the analysis of the nature of critical flu
tuation is the dimensionality-dependent scaling of the m
netizationM versus temperatureT for various dc magnetic
fields H ~Ref. 3! in part of the phase diagram that is ‘‘no
very far’’ from Hc2(T).4 The scaled magnetizationm
5M /(HT)(D21)/D is plotted versus the scaled temperatu
aT5@T2Tc(H)#/(HT)(D21)/D and all isochamps are pre
dicted to collapse onto a single curve according to a dim
sionality of the system.5,6 Once such a scaling is found, th
‘‘fluctuation’’ dimensionality D can be determined. In 2D
systems the relative contribution of the fluctuations to
magnetization is much larger than in 3D systems. Exp
mentally, the scaling approach has been widely employe
study the highly anisotropic, quasi-2D, Bi-Sr-Ca-Cu
~2223! ~Ref. 6! and ~2212!,7,8,5,9 where two-dimensiona
scaling was shown to work very well. The same 2D scal
seems to work also for Tl-Ca-Ba-Cu-O~2223!,10,11

~2201!,5,12 ~2212!,5,11 and ~2223!,11 and for Hg-Ba-Ca-Cu-O
~1223!,13 ~1201!,10 and ~1212!.14

The contribution of fluctuations to the magnetization
also borne out in the experiment as a crossing point of
isochamps at a temperatureT* .3,7,8 At this temperatureM is
independent ofH for a large range of fields. This feature wa
previously observed experimentally in 2D systems where
scaling was expected.5,6,9–14Theoretically there is evidenc
that in both 2D and 3D the intersection is not perfect;
intersection points, however, are very close to each ot
especially in 2D.15 Though most HTS’s are either 2D or 3
materials, there is, in principle, a possibility that both 3D a
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2D behaviors would be measured at the same sample,
pending on magnetic field and temperature. Such a 2D to
crossover in vortex fluctuations is expected for highly ani
tropic superconductors, at high temperatures, simply beca
the coherence lengthj diverges asT approaches the trans
tion temperatureTc . Evidence for a temperature-induce
crossover was found in magnetization measurements
YBa2Cu3O7.16 Another possible experimental approach
study the 2D→3D crossover may be based on the expec
change in the anisotropy caused by changing the oxy
content in Y-Ba-Cu-O. In this system, the anisotropy
creases with the decrease in the oxygen content. Indeed,
scaling was observed in a fully oxygenated YBa2Cu3O7

single crystal,17 but a 2D scaling was demonstrated18 in
YBa2Cu3O6.6.

In the present work we establish, experimentally a
theoretically, the existence of a 2D to 3D crossover in
nature of fluctuations in a high-Tc superconductor. Specifi
cally, in the oxygen-deficient YBa2Cu3O6.5 (Tc'45.15 K!
single crystal, at high fields~above 1 T!, the magnetization
isochamps intersect at one temperatureT2D

! ~Fig. 1! and ex-
hibit a 2D type of scaling. However, at the lower fields w
find another, somewhat smeared, crossing point atT3D

! ~Fig.
2!, and the magnetization exhibits a 3D scaling. Two int
section points, as well as 2D and 3D scaling of magneti
tion in different field regimes, are the new experimen
points in this work. If one defines a field-dependent ‘‘inte
section point’’ as an intersection of two lines for close ma
netic fields, one observes that as the field is lowered,
intersection point first ‘‘sits’’ at (M2D

! ,T2D
! ), then jumps

quickly to (M3D
! ,T3D

! ), and nearly stops there. Prelimina
discussions of these results were presented in Ref. 19. In
current paper we provide a theoretical picture of the fluct
tion in different regimes of the field-temperature (H-T)
plane showing a 2D→3D crossover in accordance with th
experimental results. We calculate the magnetization of
Lawrence-Doniach model describing layered supercond
ors using the ‘‘bubble’’ diagram resummation analogous
that established earlier in the 2D and 3D limiting cases20
©2001 The American Physical Society01-1
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The results are compared in the 2D and 3D limits and a
between these limits where scaling does not hold.

II. EXPERIMENT

Details of the sample preparation are given in R
21. The magnetization of the 2.4533.8530.8– mm3

YBa2Cu3O6.5 single crystal was measured by a Quantum D
sign superconducting quantum interference device~SQUID!
magnetometer. The high-temperature part of the magne
tion (462200 K! was fitted to a Curie lawM5xH5(x0
1C/T)H and extrapolated to temperatures belowTc . The
extrapolated values ofM were subtracted from the raw da
measured belowTc . This procedure was repeated for ea
value of the applied magnetic field. In Fig. 1 we show t
temperature dependence of the magnetization for var
magnetic fieldsH.1 T. All these curves intersect atT
5T2D

! .42.8 K, indicating a fluctuational contribution to th
magnetization.3,7,8 The subscript 2D is justified by the suc-
cess of the 2D scaling procedure described in Fig. 3 wh

FIG. 1. Magnetic moment vs temperature in the high-field
gion (1.5– 3 T!. The solid lines are fits to Eqs.~8! and~11! obeying
the 2D scaling with the parameters listed in Table I.

FIG. 2. Magnetic moment vs temperatures in the low-field
gion (0.2– 0.75 T!. The solid lines are fits to Eqs.~8! and ~15!
obeying the 3D scaling with the parameters listed in Table I.
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we plot M /(HT)1/2 versus@T2Tc(H)#/(HT)1/2 for magne-
tization curves between 1 and 3 T.

Low-field measurements (H,1 T! are shown in Fig. 2.
Another intersection point, atT5T3D

! .43.4 K, is found in
this field range. This group of curves can be scaled by us
the 3D scaling procedure. This is demonstrated in Fig
where we plotM /(HT)2/3 versus@T2Tc(H)#/(HT)2/3 for
magnetization curves between 0.2 and 0.75 T. These ob
vations imply a 2D→3D crossover in the vortex fluctuatio
regime of our sample.

III. THEORY

In order to find domains of different fluctuation behavi
in the H-T phase diagram one has to calculate the fluct
tional part of the magnetizationM defined by the partition
function Z:

M52
1

4p

]F

]H
, F52T ln Z,

~1!

Z5E DcDc* exp~2HLD /T!,

-

-

FIG. 3. Two-dimensional scaling of the high-field data. T
solid line is a fit to Eq.~12!.

FIG. 4. Three-dimensional scaling of the low-field data. T
solid line is a fit to Eq.~16!.
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FLUCTUATIONS IN SINGLE-CRYSTAL . . . PHYSICAL REVIEW B 63 134501
whereF is a free energy. In the general case of a laye
superconductor with Josephson interlayer coupling
Hamiltonian HLD has the well-known Lawrence-Doniac
~LD! form22

HLD5(
n

N~eF!E d2r Fjab
2 US 2 i“2

2e

c\
ADcnU2

1
g

2
ucn2cn11u21~ t21!ucnu21

b

2
ucnu4

1
1

8p
~¹3A!2G . ~2!

The magnetic field is assumed to be constant and orie
perpendicularly to the layers (xy) and its fluctuations ne
glected. We use the Landau gaugeA5(0, Hx, 0). In Eq.
~2!, cn(x,y) is the order parameter in thenth layer,N(eF) is
~the 2D! density of states within the layer,jab is the in-plane
coherence length,b is the Ginzburg-Landau~GL! coeffi-
cient, g5(jc /d)2 is a dimensionless parameter describi
the interlayer coupling, whered is the interlayer spacing, an
t5T/Tc . This Hamiltonian describes the strong in-plane s
perconducting fluctuations and their interlayer interactio
and can manifest both 3D and 2D behavior in limiting ca
as shown below.

The nonlinear termucnu4 in the Hamiltonian become
very important in the temperature rangeu12tu;NGi at the
broad region near the transition line, preventing an ex
solution of the Hamiltonian in this regime. We are ab
however, to apply various approximations, as described
low, and to show that free energyF can exhibit a 3D→2D
crossover as the temperature or field are changed. We
are able to approximate the intersection point of the mag
tization curves in both 2D and 3D limits.

The magnetic moment of fluctuations described by
Hamiltonian~2! may be approximately found in three limi
ing cases:~i! The 3DXY model,23 ~ii ! the 3D lowest Landau
level ~LLL ! approximation, and ~iii ! the 2D LLL
approximation.20 Case~i! is not relevant for our experiment
since it applies to too low magnetic fields. Cases~ii ! and~iii !
are studied here. In the region of strong fluctuations it
convenient to expand the order parameter in terms of
Landau level eigenfunctions24

cn
N~r !5(

k,q
fk,q

N ~r !ak,q
N , ~3!

fk,q
N ~r !5

1

ALzLy
S 2eH

p\c2NN!
D 1/4

HNS x2
q\c

2eHD
3expF iqy1 ikdn2

eH

\c S x2
q\c

2eHD 2G , ~4!

whereN stands for Landau level number and the summat
index q bears in mind degeneration of the LLL state.

In the field and temperature ranges of the experiment
can rely on the LLL approximation.4 Therefore, we retain in
the Hamiltonian only terms withN50:
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HLD5(
q,k

uak,qu2@aH1g~12coskd!#1
b

2
P, ~5!

where

aH5
2eH

\c
jab

2 1t21

is a dimensionless temperature parameter and

P5(
kiqi

I ~k1 ,k2 ,k3 ,k4!ak1 ,q1
* ak2 ,q2

* ak3 ,q3
ak4 ,q4

.

Here
k11k25k31k4 ,

q11q25q31q4 ,

and I (k1 ,k2 ,k3 ,k4)5*d2r) i 51,2,3,4fki ,qi
(r ).

Since we are interested in the vortex liquid phase, we w
use the renormalized high-temperature expansion propo
for the 2D and 3D cases by Ruggeri and Thouless
others.20 The first step is to perform a summation of all th
‘‘bubble’’ diagrams. This is equivalent to a kind of mea
field approximation in whichucnu4→ucnu2^ucnu2&. In this
approximation the Hamiltonian~2! becomes

H LD
MF5(

q,k
uak,qu2FaH1g~12coskd!

1
b

2 (
q,k

^uak,qu2&
LxLy

G N~eF!

d
. ~6!

The dimensionless average

D[
b

2 (
q,k

^uak,qu2&
LxLy

can be found self-consistently by solving the gap equatio

D5
Tdb

2LxLyN~eF! (
q,k

1

aH1g~12coskd!1D

5
2TbeH

N~eF!p\c

1

A~aH1g1D!22g2
. ~7!

The magnetization calculated from Eq.~1!, using the
mean field Hamiltonian~2!, is

M52
eN~eF!jab

2

pb\cd
D. ~8!

For convenience, we convert the expression forD into a
dimensionless form

D5g
bt

A~b1t1D1g21!22g2
, ~9!

where

b5
H

Hc2~0!
, g5

2TcbeHc2~0!

N~eF!p\c
.

The dimensionless coupling constantg is proportional to the
2D Ginzburg number.

We consider two limits for which the gap equation can
solvedanalytically. The first case refers to the domain of th
H –T phase diagram where
1-3
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g!
1

2
@A~b1t21!214bt1~b1t21!#, ~10!

namely, for the experiments at relatively high fields. In th
case, a well-known 2D result~see Ref. 4! reads

D5~Abt! f 2D~u!, u5
b1t21

2Abt
, ~11!

f 2D~u!5Au2112u,

where

b1t215
T2Tc~H !

Tc
.

The magnetization in this limit demonstrates a we
pronounced 2D scaling dependence

M

AHT
} f 2DS T2Tc~H !

AHT
D . ~12!

The second case refers to the limit

g@b1t211
2~b1t21!3

27
, V5

4~b1t21!3g

27g2~bt!2
.

1

2
,

~13!

namely, for the experiments at relatively low fields. In th
case,

D5@~bt!2/3#S g2

g D 1/3

f 3D~V!, ~14!

where

f 3D~V!52V1/3sinS p

6
2

w

3 D2S V

2 D 1/3

and

tanw5
A2V21

12V
. ~15!

Apparently, the behavior of the magnetization in this cas
caused by 3D fluctuations:

M

~HT!2/3
} f 3DS T2Tc~H !

~HT!2/3 D . ~16!

In both limits one clearly finds a scaling behavior, ma
fested in Figs. 3 and 4. For an intermediate magnetic fi
however, scaling is not expected even though the LLL
proximation is still valid. In this intermediate case the sc
is provided by the interlayer spacingd.

IV. FITS AND DISCUSSION

The solid lines in Figs. 1 and 2 are the theoretical m
netization vs. temperature curves derived from Eq.~11! for
the 2D behavior~Fig. 1!, from Eq. ~15! for the 3D behavior
~Fig. 2!, and from Eq.~8! for the intermediate case~Fig. 5!.
Also, as implied by Eqs.~12! and ~16!, in both the 2D and
the 3D cases the magnetization data are expected to s
Both of these formulas obey the respective scaling con
tions as demonstrated by the solid lines in Figs. 3 an
derived from Eqs.~11! and~14!, respectively. All the ‘‘2D’’
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experimental curves intersect at aboutT2D
! / Tc.0.948 and

the 3D curves approximately intersect at somewhat hig
temperatureT3D

! / Tc.0.960. Table I summarizes the su
perconducting parameters used in our analysis to fit the
perimental data.

The parameters were derived in the following way: T
transition temperatureTc was derived directly from the mag
netization data. The slopedHc2 /dTuT5Tc

54 T/K, yielding

Hc2(0)5180 T, gave the best fit to the experimental data
both intersection points. Here we use the notationHc2(0) to
denoteTc dHc2 /dTuT5Tc

rather than unknown upper critica
field at zero temperature. The latter is unknown and som
times is estimated as 70% of this quantity as in BCS the
inapplicable to the present case. The coherence length
defined byjab(0)5AF0/2pHc2(0). It should be noted tha
heredHc2 /dTuT5Tc

is the mean field theoretical paramet
rather than experimentally measured; direct measuremen
this value is expected to yield a smaller value due to con
bution of fluctuations.25 The value of the dimensionless cou

TABLE I. Parameters used for calculations of theoretical curv
in Figs. 1, 2, and 5.

Parameter Value used

Tc 45.15 K
dHc2

dT U
T5Tc

4 T/K

jab(0) 14 A
b

N~«F!
0.65 sec2/g

d 5 A
bBCS 2.631027 erg22

N(«F) 431027@1/(erg cm2)#

jc(0) 0.5 A

mc

mab
5Sjab

jc
D2

850

FIG. 5. Magnetic moment vs temperature for various magn
fields around 1 T. This field range represents an intermediate
gime whereM (T) obeys neither 3D nor 2D scaling. It is still de
scribed, however, in the framework of the Lawrence-Donia
model, Eqs.~8! and ~9!, as described by the solid lines.
1-4
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pling constantg50.07, theinterlayer-couplingparameterg
50.008, and the magnetizationM2D* 522.531024 emu at
the 2D intersection point determine the ratiob/N(«F), d,
andjc(0). Assuming the validity of the BCS expression f
b57z(3)/8p2Tc

2 one gets a rough estimate of the density
states. Now we discuss the applicability of the 2D and
limits to describe the regions around the crossing points
was done in Figs. 1 and 2. The inequality 10 fort5T* /Tc
50.95, so that 12t@b50.001 simplify to b@g* (12t)
50.2 T/Hc2(0). Similarly the condition of applicability of
the 3D limit @see Eq.~13!# can be simplified tob!12t
2g55 T/Hc2(0). The use of the 2Dlimit in Fig. 1 is there-
fore justified forB51.5 T or larger, while forB<0.75 T the
use of the 3D limit in Fig. 2 is justified.

To conclude, a crossover between 2D and 3D behavio
the magnetization of YBa2Cu3O6.5 was observed and de
scribed theoretically by employing the Lawrence-Donia
model in the lowest Landau level approximation in the flu
tuation regime. The model yields analytical expressions
i

e

s

,

,
le

o
,

tt

C

13450
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two intersection points of the magnetization curves, as o
served experimentally. One intersection point, for magne
zation curves at relatively high fields, is a result of fluctua
tions in the 2D regime. The second intersection point, fo
relatively low fields, is a result of fluctuations in the 3D
regime. The model also predicts scaling of the magnetizati
data in the 2D and the 3D regimes, as observed experime
tally.
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