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Fluctuations in single-crystal YBaCu3Og 5: Evidence for crossover from two-dimensional
to three-dimensional behavior
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Magnetization measurements as a function of temperature are reported foC¥%Bas crystal (T
=45.2 K) for fields between 0.2 and 3.5 T. All isochampsifor1 T intersect aff;p=42.8 K, implying a
fluctuation contribution to the magnetization. These curves collapse into a single curve when magnetization
and temperature are scaled according to the predicted “two-dimengi@balscaling” in the fluctuation
regime. Surprisingly, the low-field curves also intersectTt=43.4 K, and they obey a 3D scaling. We
provide a theoretical picture of the magnetization in the fluctuation regime based on the Lawrence-Doniach
model. Within this model we calculate the field and temperature dependence of the magnetization. The two
intersection points and the 2B3D crossover are consistent with the experimental observation.
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I. INTRODUCTION 2D behaviors would be measured at the same sample, de-
pending on magnetic field and temperature. Such a 2D to 3D
High-temperature superconduct@kTS’s) are character- crossover in vortex fluctuations is expected for highly aniso-
ized by a wide temperature range in which fluctuations areropic superconductors, at high temperatures, simply because
important™? This range is proportional to the Ginzburg pa- the coherence length diverges asT approaches the transi-
rameter Gi, which is very sensitive both to the dimensionaltion temperatureT.. Evidence for a temperature-induced
ity D of the system and to the superconducting coherencerossover was found in magnetization measurements in
length&. Thus, strong fluctuations, usually negligible in con- YBa,Cu;O,.1® Another possible experimental approach to
ventional superconductors, become extremely important dustudy the 2D-3D crossover may be based on the expected
to the small¢ and quasi-two-dimension&fuasi-2D struc-  change in the anisotropy caused by changing the oxygen
ture. content in Y-Ba-Cu-O. In this system, the anisotropy in-
A useful tool in the analysis of the nature of critical fluc- creases with the decrease in the oxygen content. Indeed, a 3D
tuation is the dimensionality-dependent scaling of the magscaling was observed in a fully oxygenated Y¥Ba;O,
netizationM versus temperatur& for various dc magnetic single crystal’ but a 2D scaling was demonstratdn
fields H (Ref. 3 in part of the phase diagram that is “not YBa,Cu;Og .
very far’ from H.,(T).* The scaled magnetizatiom In the present work we establish, experimentally and
=M/(HT)(P~D/® is plotted versus the scaled temperaturetheoretically, the existence of a 2D to 3D crossover in the
ar=[T—T,(H)]/(HT)®~V® and all isochamps are pre- nature of fluctuations in a highi; superconductor. Specifi-
dicted to collapse onto a single curve according to a dimeneally, in the oxygen-deficient YB&u;Og 5 (T,~45.15 K)
sionality of the system?® Once such a scaling is found, the single crystal, at high field&above 1 7, the magnetization
“fluctuation” dimensionality D can be determined. In 2D isochamps intersect at one temperafti}g (Fig. 1) and ex-
systems the relative contribution of the fluctuations to thenibit a 2D type of scaling. However, at the lower fields we
magnetization is much larger than in 3D systems. Experifizg another, somewhat smeared, crossing poifit;gt(Fig.
mentally, the scaling approach has been widely employed t9) anq the magnetization exhibits a 3D scaling. Two inter-

study the fhighly danizszoltro%c'éyg qur?si—ZD, Bc;er-Cg-CuIO section points, as well as 2D and 3D scaling of magnetiza-
(2223 (Ref. § and (2212, where two-dimensional i, i gitferent field regimes, are the new experimental

scaling was shown to work very well. The same 2D Scallngpoints in this work. If one defines a field-dependent “inter-

seems_ fo_work aiso for ;rlI-Ca-Ba-Cu-C(2223,1°v11 section point” as an intersection of two lines for close mag
5,12 5, Ra-Ca-Cl1- )
(2201, * (2212, and (2223, and for Hg-Ba-Ca-Cu-O netic fields, one observes that as the field is lowered, the

(1223,*3 (1201,'° and (1212.* : , o DESEIVES Rl )
The contribution of fluctuations to the magnetization isiNtersection point first “sits” at Mp,T5p), then jumps
also borne out in the experiment as a crossing point of alfiuickly to (M3p,T3p), and nearly stops there. Preliminary
isochamps at a temperatufé.>"® At this temperaturé is  discussions of these results were presented in Ref. 19. In the
independent oH for a large range of fields. This feature was current paper we provide a theoretical picture of the fluctua-
previously observed experimentally in 2D systems where 20ion in different regimes of the field-temperaturéi-T)
scaling was expectetf:°~**Theoretically there is evidence plane showing a 2B-3D crossover in accordance with the
that in both 2D and 3D the intersection is not perfect; theexperimental results. We calculate the magnetization of the
intersection points, however, are very close to each othet,awrence-Doniach model describing layered superconduct-
especially in 2D'® Though most HTS'’s are either 2D or 3D ors using the “bubble” diagram resummation analogous to
materials, there is, in principle, a possibility that both 3D andthat established earlier in the 2D and 3D limiting caes.
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FIG. 3. Two-dimensional scaling of the high-field data. The
solid line is a fit to Eq(12).

FIG. 1. Magnetic moment vs temperature in the high-field re-
gion (1.5-3 7. The solid lines are fits to Eq&3) and(11) obeying
the 2D scaling with the parameters listed in Table I.

1/2 1/2
The results are compared in the 2D and 3D limits and alsd/€ PIOtM/(HT)™= versus[T—T(H)]/(HT)"* for magne-

between these limits where scaling does not hold. tization curves between 1 and 3 T. o
Low-field measurementsH<1 T) are shown in Fig. 2.

Another intersection point, af=T3,=43.4 K, is found in
Il. EXPERIMENT this field range. This group of curves can be scaled by using
. . ) . the 3D scaling procedure. This is demonstrated in Fig. 4

Details of the ;ample preparation are given in Ref'where we plotM/(HT)?? versus[T—To(H)]/(HT)?? for
21. The magnetization of the 24%8.85<0.8-mn? magnetization curves between 0.2 and 0.75 T. These obser-
YBa,Cus0 5 single crystal was measured by a Quantum Dey 4ii0ns imply a 2D-3D crossover in the vortex fluctuation
sign superconducting quantum interference de{®&@UID) regime of our sample.
magnetometer. The high-temperature part of the magnetiza-
tion (46—200 K) was fitted to a Curie lawM = yH=(xq
+C/T)H and extrapolated to temperatures beldw. The . THEORY
extrapolated values dil were subtracted from the raw data In order to find domains of different fluctuation behavior

measured below ;. This procedure was repeated for eaChin the H-T phase diagram one has to calculate the fluctua-

value of the applied magnetic field. In F|g. 1. we show t.hetional part of the magnetizatiokl defined by the partition
temperature dependence of the magnetization for various - o>

magnetic fieldsH>1 T. All these curves intersect &t '

=T5p=42.8 K, indicating a fluctuational contribution to the 1 oF

magnetizatior?:”® The subscript D is justified by the suc- M=-—7—-5. F=-TIhz

cess of the 2D scaling procedure described in Fig. 3 where 1)

Z:j DyDy* exp(—H p/T),
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FIG. 2. Magnetic moment vs temperatures in the low-field re- (T-Te(H))/(HT) ““[(K/G) C]
gion (0.2-0.75 T. The solid lines are fits to Eq$8) and (15 FIG. 4. Three-dimensional scaling of the low-field data. The
obeying the 3D scaling with the parameters listed in Table I. solid line is a fit to Eq(16).
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whereF is a free energy. In the general case of a layered B
superconductor with Josephson interlayer coupling the Hip=2>, |ay g an+ y(1—coskd)]+ P
Hamiltonian H_ p has the well-known Lawrence-Doniach ak
(LD) form?? where
a zeng +t—1
2e 2 H™ 7 Sab™ '™
Hip=2, N(e;)fdzr fib(—iV—C—h )wn e

is a dimensionless temperature parameter and

Y B _ * *

+ §| Un— ¢n+1|2+(t_ 1)| ¢n|2+ El ¢n|4 P= g;‘i I(kl’k2’k3’k4)ak1vqlakzquakqusak4vq4'
1 Here

+%(V><A)2 . 2 kit ko=ks+Kky,

q1+02=03+da,
The magnetic field is assumed to be constant and orienteghq | (k, k,,ks,ks) = [d2rTT;_q 2 5 aby. o (1)

perpendicularly to the layersxy) and its fluctuations ne- . . g’ ' - .
glected. We use the Landau gauge= (0, Hx, 0). In Eq. Since we are interested in the vortex liquid phase, we will

. - . use the renormalized high-temperature expansion proposed
(2), n(x.y) IS the order par.ameterm tinzh layer’N(EF) 'S for the 2D and 3D cas%s by pRuggeri anpd Thoulgsspand
(the 20) density of states W'th.m the layety is the m-plar_le others? The first step is to perform a summation of all the
coherence lengghﬁ is the Ginzburg-LandadGL) coeffi- — wp pp an diagrams. This is equivalent to a kind of mean
cient, y=(&./d)“ is a dimensionless parameter describing,: i : 4_ 112 2 ;
the interlayer coupling, whemis the interlayer spacing, and field approximation in whichl y|'— |in|([1n|%). In this

. LI . ; approximation the Hamiltonia(2) becomes
t=T/T.. This Hamiltonian describes the strong in-plane su- PP ®

perconducting fluctuations and their interlayer interactions H'QADFZE |ak’q|2 ay+ y(1— coskd)
and can manifest both 3D and 2D behavior in limiting cases a.k
as shown below. FYRENEY
The nonlinear termy,|* in the Hamiltonian becomes +E D (l3q") (EF)_ (6)
very important in the temperature ranffe—t|~Ng; at the 29k Ly | d
broad region near the transition line, preventing an exac{na dgimensionless average
solution of the Hamiltonian in this regime. We are able, B (awd?
however, to apply various approximations, as described be- A=— kd
low, and to show that free enerdycan exhibit a 3B-2D 2 gk Ly

crossover as the temperature or field are changed. We thea, he found self-consistently by solving the gap equation
are able to approximate the intersection point of the magne- TdB 1

tization curves in both 2D and 3D limits. =
The magnetic moment of fluctuations described by the 2L LyN(er) gk an+y(1—coskd)+A
Hamiltonian(2) may be approximately found in three limit-

ing cases(i) The 3DXY model?® (ii) the 3D lowest Landau _ _2TpeH 1 _ @
level (LLL) approximation, and (i) the 2D LLL N(ep) The \[(ay+y+A)2— 2
approximatiorf’ Case(i) is not relevant for our experiments o )
since it applies to too low magnetic fields. Cagesand(iii ) The magnetization calculated from E@l), using the
are studied here. In the region of strong fluctuations it ismean field Hamiltoniart2), is ,
convenient to expand the order parameter in terms of the B eN(ep)éqp
Landau level eigenfunctiofis = Taghcd ®
Ny N N For convenience, we convert the expression doiinto a
= , 3 ) . ’
¥n(1) qu PN & dimensionless form
1/4 bt
1 2eH ( qﬁc) A=g (9)
N :
r= X— 50 b+t+A+y—1)2— 2
¢k,q( ) \/?Ly( WﬁCZNN! N 2eH \/( Y ) Y
H fel2 where
e c
xexr{iqy+ikdn—h—(x— g—H) . (4 b H o= 2T.BeH(0)
¢ © Hea(0)’ N(ep) mhic

whereN stands for Landau level number and the summatiorThe dimensionless coupling constanis proportional to the
index g bears in mind degeneration of the LLL state. 2D Ginzburg number.

In the field and temperature ranges of the experiment one We consider two limits for which the gap equation can be
can rely on the LLL approximatiohTherefore, we retain in  solvedanalytically. The first case refers to the domain of the
the Hamiltonian only terms wittN=0: H-T phase diagram where
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y< 5[ BTE- T 7 abts (b+t-1)], (10

namely, for the experiments at relatively high fields. In this

case, a well-known 2D resulsee Ref. #reads a -2
b+t—1 L, 0.75 Tesla
A=(\bfyp(u), u= i 1 s . 1 Tesla
2 A L] 1. 1
sz(U): U2+1_U, vg -4 5 Tesla
where s /
T-T(H)
b+t—1=—. 40 42.5 45 47.5 50 52.5 55
Te
The magnetization in this limit demonstrates a well- T [K]
pronounced 2D scaling dependence FIG. 5. Magnetic moment vs temperature for various magnetic

fields around 1 T. This field range represents an intermediate re-

(12) gime whereM(T) obeys neither 3D nor 2D scaling. It is still de-
scribed, however, in the framework of the Lawrence-Doniach
model, Eqs(8) and(9), as described by the solid lines.

M (T—TC(H))
20\ T =

—OCf
VHT VHT

The second case refers to the limit

3 3 experimental curves intersect at abddt, / T.~0.948 and
y>b+t—1+ 2(b+t—1) V= 4(b+t-1)%y E the 3D curves approximately intersect at somewhat higher
27 ’ 279%(bt)2 2’ temperatureT;, / T.=0.960. Table | summarizes the su-
(13 perconducting parameters used in our analysis to fit the ex-
perimental data.

namely, for the experiments at relatively low fields. In this The parameters were derived in the following way: The

case,

20 1/3 transition temperatur€, was derived directly from the mag-
A=[(bt)2’3]<g— fap(V), (14)  netization data. The sIopdzchldT|T:TC=4 T/K, yielding
Y H.,(0)=180 T, gave the best fit to the experimental data for
where both intersection points. Here we use the notatiu(0) to
s T @) (VR denoteT. dHc,/dT|r—1_rather than unknown upper critical
fap(V)=2V*sin 6 3/ |2 field at zero temperature. The latter is unknown and some-
times is estimated as 70% of this quantity as in BCS theory
and inapplicable to the present case. The coherence length was
tang= 2V-1 (15 defined byé,,(0)= V@ /2rH,(0). It should be noted that
1-v heredHCzldT|T=TC is the mean field theoretical parameter

Jather than experimentally measured; direct measurement of
this value is expected to yield a smaller value due to contri-
) bution of fluctuation€® The value of the dimensionless cou-

Apparently, the behavior of the magnetization in this case i
caused by 3D fluctuations:

M (T—TC(H)
3D

(HT)ZISOCf (HT)2/3 (16)

TABLE |. Parameters used for calculations of theoretical curves
in Figs. 1, 2, and 5.

In both limits one clearly finds a scaling behavior, mani-
fested in Figs. 3 and 4. For an intermediate magnetic field, Parameter Value used
however, scaling is not expected even though the LLL ap-

proximation is still valid. In this intermediate case the scale EHQ 45.15K
is provided by the interlayer spacimt o7 . 4 TIK

IV. FITS AND DISCUSSION §a/t13(0) 14 A

The solid lines in Figs. 1 and 2 are the theoretical mag- N(ep) 0.65 seé/g

netization vs. temperature curves derived from 8d,) for d 5A
the 2D behavio(Fig. 1), from Eq.(15) for the 3D behavior P 26X 1087 erg 2
(Fig. 2, and from Eq.(8) for the intermediate cas€ig. 5). N?CS) 4'>< 1027[1/(e? )]
Also, as implied by Eqs(12) and (16), in both the 2D and ‘;F 05 A 9
the 3D cases the magnetization data are expected to scale. &(0) '
Both of these formulas obey the respective scaling condi- E_(@)Z 850
tions as demonstrated by the solid lines in Figs. 3 and 4 my \ &

derived from Eqs(11) and(14), respectively. All the “2D”
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pling constanig=0.07, theinterlayer-couplingparametery  two intersectipn points of th(=T magne;izatiorj curves, as op-
—0.008, and the magnetizatid %, = —2.5x 104 emu at served experimentally. One intersection point, for magneti-
the 2D intersection point determine the rafiéN(sg), d, zation curves at relgtlvely high fields, is a reSL_JIt of flyctua—
and &.(0). Assuming the validity of the BCS expression for tIOI’IS' in the 2D. regime. The second mters'ectlorj point, for
/3=7§(3)/8772T§ one gets a rough estimate of the density Ofrela}tlvely low fields, is a re_sult of f_Iuctuatlons in the_ 3D
states. Now we discuss the applicability of the 2D and 3preyime. Ehe mode(; arllso pred|ct_s scaling Oli the méignetlz_anon
limits to describe the regions around the crossing points a; :?Ita in the 2D and the 3D regimes, as observed experimen-
was done in Figs. 1 and 2. The inequality 10 ferT* /T, atly.
=0.95, so that +t>b=0.001 simplify to b>y*(1-t)
~0.2 TH,(0). Similarly the condition of applicability of ACKNOWLEDGMENTS
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