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Analysis and Design of Large Leaky-Mode Array
Employing the Coupled-Mode Approach
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Abstract—This paper presents the coupled-mode approach
to the analysis and design of a large leaky-mode array, in which
an -element microstrip array above a common ground plane
supports coupled leaky modes (leakyEH1 modes) at the first
higher order. Following a brief description of a conventional
full-wave nonstandard eigenvalue problem for solving the complex
propagation constants, we present the detailed formulation of the
coupled-mode approach, clearly showing the transformation of
the nonstandard eigenvalue problem into a standard one. Thus,
all the eigenvalues (complex propagation constants) and eigen-
vectors (modal current distributions) are solved simultaneously,
regardless of the size of the array ( ). Two key issues pertinent
to the successful implementation of the proposed coupled-mode
approach are addressed: the determination of the coupling coef-
ficients and the uniqueness of the isolated uncoupled leaky mode,
which represents the leaky modal solution of a single microstrip,
but is derived from a system of coupled leaky-mode solutions
provided the coupled microstrips have equal width and spacing.
Closed-form expressions for obtaining the coupling coefficients of
orders two, three, and four are presented. Theoretical studies of
closely coupled microstrip arrays of two, three, and four elements
show that the magnitude of the coupling coefficient + be-
tween elements and + decreases at the order of 10 . These
theoretical case studies also lead to the same isolated uncoupled
leaky-mode solution as predicted. Furthermore, the dispersion
characteristics of the microstrip array at the first higher order ob-
tained by the coupled-mode approach and the full-wave approach
agree excellently for all the case studies. Error analyses indicated
that at least two coupling coefficients ( +1 and +2) are
required for obtaining accurate complex propagation constants
with rms errors less than 1% for most of the leaky region of the
particular array under investigation. An example of applying the
proposed coupled-mode approach for analyzing a corporate-fed
leaky-mode array of eight elements is reported, revealing that only
four out of the eight leaky modes are excited. The coupled-mode
theory predicts the far-field radiation pattern in the main beam
region in excellent agreement with the measured results.

Index Terms—Coupled microstrip lines, coupled-mode ap-
proach, coupling coefficients, leaky-mode antenna, leaky modes.

I. INTRODUCTION

M UTUAL coupling of guided modes has been an impor-
tant phenomenon widely applied in various microwave

circuits such as directional couplers and filters [1]–[6]. A system
of parallel coupled microstrips placed on a substrate with an in-
finite ground plane, for example, supports bound modes if

Manuscript received October 8, 1998; revised October 14, 1999. This work
was supported by the National Science Council, Taiwan, R.O.C. under Grant
NSC 87-2213-E-009-105 and under Grant NSC 87-2213-E-009-106.

The authors are with the Institute of Electrical Communication Engi-
neering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C. (e-mail:
cktzuang@cc.nctu.edu.tw).

Publisher Item Identifier S 0018-9480(01)02445-0.

parallel lines are present above the common ground plane,
where is a positive integer. These bound modes are usually
termed dominant or quasi-TEM modes although they are hybrid
modes in nature, i.e., the superposition of TE and TM waves [7],
[8]. The well-known bound dominant microstrip mode can be
designated asorder zero, followed byfirst (odd),second(even),
third (odd), , higher ordermodes, possessing either odd or
even field symmetries. Adopting this notation, the dominant
modes of the parallel lines are essentially the results of the

mutually coupled microstrip modes oforder zero. This paper,
however, departs from the conventional results and investigates
the less known, but useful guiding properties of the coupled mi-
crostrip modes oforder one, from which similar results can be
obtained for microstrip modes oforder two, three, , etc.

The open microstrip modes of order greater than zero belong
to the class leaky modes. A single open microstrip has been
known for supporting leaky modes in various ways [9]–[13], in
which the first higher order microstrip mode leaks in the form of
space wave or surface wave. Coupled leaky modes of order one,
however, had been reported for a two- and a 20-element array,
respectively, of which the leaky modes are tightly distributed
in the dispersion characteristics [14]. When, the number of
elements, is increasingly larger, the solutions for leaky modes
are more difficult to obtain by full-wave methods [15], [16],
which result in the nonstandard eigenvalue problem [7]. Imme-
diately after the complex propagation constantis obtained, the
modal corresponding currents on each of thecoupled lines
are readily known. Thus, eachcorresponds to a modal current
vector, describing the modal current distributions of themi-
crostrips. Thus, for coupled leaky modes oforder one, there
are independent current vectors.

Section II of this paper transforms the nonstandard eigen-
value problem into a standard eigenvalue problem by adopting
the coupled mode approach [17], [18] mingled with the rigorous
full-wave formulation of the parallel lines supporting max-
imally coupled leaky modes, where is also a positive in-
teger. With this notation, becomes the complex eigenvalue
and the modal current vector is the complex eigenvectorof the
eigenvalue problem. This paper extensively expands the work of
[14] by showing how to obtain the adjacent coupling coefficient
and the coupling coefficients of nonadjacent lines in Section III.
Substituting these coupling coefficients into the coupled-mode
formulation described in Section II, the solutions for eigenvalue

and eigenvectors , for , and , are obtained
simultaneously, greatly reducing the time-consuming numerical
efforts encountered by the well-known full-wave analyses [7],
[19]. It is interesting to note that the coupled-mode theory had
very often provided vivid physical insights for explaining the
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Fig. 1. GenericN -element microstrip leaky-mode antenna array, including
a CPW corporate-fed network, CPW-to-slotline transitions, and slotlines to
excite the higher orderEH modes of the microstrip lines [21].
 : CPW
corporate-fed network followed byN CPW-to-slotline transitions on the
backside of the substrate.b
: Microstrip leaky-mode antennas with length of
L, width ofW , and gap ofS on the top side of the substrate.

guiding properties of complex waves in a variety of waveguides
[18], [20], [21].

One important application of this paper is to analyze the mi-
crostrip array from the leaky-mode perspective, as described in
Section IV. As shown in Fig. 1, this array may consist ofcou-
pled microstrip lines printed on the top surface and a coplanar
waveguide (CPW) feeding network on the backside of the sub-
strate. After a continuous wave (CW) signal source is applied
to the CPW input end, the CPW T-junction splits the signal
into two paths of equal amplitude and phase. Such power di-
viding sequence continues until, finally, each radiating element
receives equal amount of power and phase. Followed by the
CPW-to-slotline transitions, the uniformly divided signals are
coupled to the slotlines to excite the modes of the coupled
microstrips [22]. Since microstrip lines can be placed closely to
form a compact linear array, strong mutual couplings between

coupled lines will alter the dispersion characteristics of the
leaky modes. Eventually, a large linear-element array that si-
multaneously supports coupled leaky modes is established.
The quest for obtaining all the complex dispersion character-
istics considering these mutual coupling effects is essential for
the first-pass design of the array. Section V describes how to
apply the novel technique to accurately predict the far-field ra-
diation pattern of an experimental corporate-fed eight-element
microstrip array [22], demonstrating excellent agreement in the
main-lobe region between the simulated and measured results.
Conclusions are finally made in Section VI.

II. M ODAL ANALYSIS AND EIGENVALUE PROBLEMS

A. Full-Wave Approach: Nonstandard Eigenvalue Problem

When considering the microstrip array with fewer ele-
ments, e.g., two- or three-element, the leaky properties of
the coupled microstrips can be characterized by invoking
the rigorous full-wave integral-equation method using the
Green’s impedance function approach [16]. By applying the
appropriate boundary conditions at the interfaces, the tangential
electric-field components at the interface of each adjacent

Fig. 2. Normalized dispersion characteristics of the symmetrical coupled
microstrips at the higher orderEH mode. The data obtained by the full-wave
nonstandard eigenvalue approach (in solid lines) and those by the standard
eigenvalue approach (in circle symbols) agree excellently. The parameters for
the coupled microstrips are also shown in the inset.

region can be expressed in terms of current distributions. One
can then write

(1)

where and designates regions (1)-(3), respectively
(see Fig. 1). Integrating (1) along all the metal strips, the gen-
eral dyadic Green’s impedance function [] can be obtained as
follows:

(2)

where

(3a)

(3b)

Let the unknown current distributions and be ex-
pressed in terms of a complete set of basis functions. Following
the Galerkin procedure to solve (2), a system of homogenous
linear equation can be obtained. The nontrivial solution for
the unknown current coefficients can be found by equating
the determinant to zero. The roots of the
determinant are the propagation constants for microstrip modes
of order zero, one, two, three, , etc.

Fig. 2 shows the normalized complex propagation constants
of a two-element coupled microstrip oforder one, namely, the

even mode ( ) and the odd mode ( ), where
is the free-space wavenumber equal to and is the
free-space wavelength. The inset of Fig. 2 also shows that the

even mode (odd mode) can be obtained by inserting an
equivalent electric (magnetic) wall at the symmetry plane. An-
other view for distinguishing the two leaky modes is based on



HU AND TZUANG: ANALYSIS AND DESIGN OF LARGE LEAKY-MODE ARRAY EMPLOYING COUPLED-MODE APPROACH 631

the eigenvectors of the modal current distributions [of (3a)]
on the strips, either in-phase for the even mode or out-of-
phase for the odd mode. These in-phase and out-of-phase
modal current distributions are two orthogonal eigenvectors of
the two-element microstrip array from the perspective of the
coupled-mode approach, which will become apparent in sub-
sequent discussions within this paper.

B. Coupled-Mode Approach: Standard Eigenvalue Problem

By invoking the coupled-mode theory [23], [24], the
transversal and longitudinal electric and magnetic fields can be
expressed as follows:

(4)

(5)

where denotes the number of microstrips, represents the
complex propagation constant of theth microstrip in a single
isolated condition, is the unit vector in (longitudinal) direc-
tion, and are the normalized eigenfunction in
the transversal (denoted by) and longitudinal (denoted by)
directions, respectively, and and represent the corre-
sponding modal current and wave impedance, respectively. Sub-
stituting (4) and (5) into Maxwell’s equation and taking
the transverse part will lead to

(6)

Applying the orthogonality relationship to (6) allows us to ob-
tain a system of linear first-order differential equations for the
modal currents [23], [24] as follows:

(7)

where , and , but . Essentially , the
mutual coupling coefficient between theth element and theth
element, can be expressed as

(8)

Notice that the conversion of Maxwell’s equations into the cou-
pled-mode equations (7) is referred as the classical method.
When dealing with the leaky modes, the transverse fields grow

exponentially. Therefore, (8) is never used for computing cou-
pling coefficients. Equation (7) is viewed phenomenologically
[25]. Section III describes in detail how to obtain the coupling
coefficients for the coupled-mode equation (7). Using a matrix
notation, (7) is abbreviated as

(9)

where and . When
all the coupled microstrips are in equal width,must be equal
to , where is the complex propagation constant of the
leaky mode of a single microstrip. On the other hand,cou-
pled leaky-mode solutions should exist in the-element array,
denoted as , and . For a specific mode with com-
plex propagation constant , the modal solution mandates

(10)

Substituting (10) into (9) for , and , we obtain

(11)

The source-free modal solutions require the nontrivial solutions
for the modal current vector . Therefore, (11) leads to a
standard eigenvalue problem by solving

(12)

where . The procedure for
obtaining the complex propagation constants is transformed to
a classical eigenvalue problem of which the eigenvalues ()
are the complex propagation constants and the eigenvectors ()
represent the modal currents flowing at the microstrips. The te-
dious root-finding process in the full-wave nonstandard eigen-
value problem is eliminated.

III. COUPLING COEFFICIENTS OF THE PARALLEL

COUPLED MICROSTRIPS

A. Formulas for the Coupling Coefficients

Combining (11) and (12) for , one may deduce the
coupling coefficient of the two symmetrical microstrips at the
higher order leaky mode as

(13)

(14)

(15)

where denotes the even-mode (odd-mode) solution.
The corresponding normalized eigenvectorand are, re-
spectively,

(16)

(17)

implies that the leaky modal current distributions
flowing at the symmetrical coupled microstrips are in-phase
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Fig. 3. Magnitude (in decibels) of the coupling coefficientC obtained by
the cases ofN = 2; 3; and4, respectively.

(out-of-phase) with equal amplitude. Therefore, a perfect elec-
tric conductor (PEC) and a perfect magnetic conductor (PMC)
can be inserted along the symmetry plane, as shown in the
inset of Fig. 2, for the even and odd modes, respectively.
Applying the full-wave data already shown in Fig. 2, we obtain
the coupling coefficient using (13). Applying the full-wave
analyses again for a single identical isolated microstrip, the
complex leaky-mode ( ) propagation constantis obtained.
Substituting this value () and the coupling coefficient ( )
into (14) and (15), i.e., the complex propagation constants
obtained by the standard eigenvalue problem [see (14) and
(15)], we find excellent agreement between both approaches,
as shown in Fig. 2.

We can generalize the above discussions for a two-element
case study to a large coupled microstrip array. Given a system
of coupled microstrips of equal width () and spacing (),
we may rewrite (12) as

(18)

where is the complex propagation constant of theth leaky
mode, for to . Expanding the determinant ,
and comparing order by order at both sides of (18) for ,
we obtain the following equations for solving the unknown cou-
pling coefficients of and , representing the coupling
coefficients of the adjacent elements and other-than-adjacent
elements, respectively (see the inset of Fig. 3). Notably,

and since each coupled microstrip
has identical width ( ) and is positioned at equal spacing ().
Thus, we obtain the following system of equations for solving

and :

(19)

where . Invoking the full-wave nonstan-
dard eigenvalue approach for solving the solutions for ,
and , respectively, we obtain the value of, which is the arith-
metic mean of the three complex propagation constants of cou-

pled modes. Such observation can be generalized by the
following expression:

(20)

Similarly, for , one may derive a system of equations
as follows for solving the coupling coefficients , , and

, noticing that , and :

(21a)

(21b)

(21c)

B. Assessment of the Magnitudes of the Coupling Coefficients

Applying (13), (19), and (21), we obtain distinct coupling co-
efficients for , , and , respectively. Assume
that a system of tightly coupled microstrips of width 6.8 mm
( ) and spacing 3.4 mm ( ) with number
of elements equal to two, three, and four are under investiga-
tion. The magnitude of the coupling coefficients in decibel scale
against frequencies of interests is plotted in Fig. 3 for , ,
and , respectively. values of the coupling coefficients
for the case study of , coincide with those for .

, one of data of the coupling coefficients for the case study
of , also coincide with those for the case study of .
Notice that the magnitude of is one order of magni-
tude less than that of . This implies that the magni-
tude of decreases very rapidly in the order of (10) as

increases, for and ( ). When computing the
eigenvalues (complex propagation constants) of a large array,
the coupling coefficients obtained by assuming , i.e.,

for , are adequate for practical accuracy.

C. Numerical Results and Validity Checks

The data shown in Fig. 2 have validated the eigenvalue ap-
proach for obtaining the complex propagation constants of the
two-element symmetrical coupled microstrips. In this section,
the confirmation of the proposed coupled-mode formulation is
extended to the cases of and . Since the microstrips
are all identical and placed an equal distance apart, the solu-
tion for , i.e., the complex propagation constant of a single
isolated microstrip of first higher order, must be the same for

. is an arbitrary positive integer. Fig. 4 plots
the results obtained by (20), the arithmetic mean of the coupled
complex propagation constants, showing excellent agreement
for all frequencies of interests in the cases of and .
Notice that the full-wave solution for a single microstrip line
is almost indistinguishable from the plots obtained by the cou-
pled-mode approach. Such finding is important for conjecturing
that the particular coupled microstrips system can be viewed as
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Fig. 4. Plots of the complex propagation constant of a single isolated
microstrip at first higher order obtained by (20) using the data of the coupled
mode solutions of the two-, three-, and four-element coupled microstrips of
identical width and spacing.

Fig. 5. Validity of the proposed coupled-mode approach is confirmed by
studying a three-element array; data obtained by the full-wave analysis agree
excellently with those by the coupled-mode approach considering all the
coupling coefficients.

the mode coupling of a single leaky mode ( ) at each mi-
crostrip.

Figs. 5 and 6 validate the coupled-mode approach that
transforms the conventional full-wave nonstandard eigenvalue
problem into a standard eigenvalue problem for and

, respectively. The three (four) sets of data of the complex
propagation constants obtained by the coupled-mode approach
are virtually indistinguishable from those by using full-wave
analyses, as shown in Fig. 6 for the entire leakage regime of
interests. The coupled-mode approach is not only accurate for
obtaining the modal solution, but also explicit for providing
physical insights on the coupled lines behavior in terms of their
corresponding propagation constants (eigenvalues) and modal
current distributions (eigenvectors).

D. Error Analysis for Cases with Fewer Number of Coupling
Coefficients

Section III-C shows the nearly error-free solutions of the cou-
pled leaky modes obtained by the coupled-mode approach
provided that all coupling coefficients are considered. This sec-
tion investigates the percentage of rms errors if the term of cou-
pling coefficients is intentionally reduced. Given a system of
a coupled four-element microstrip array, as studied in the pre-
vious section, the coupling coefficients of the particular case

Fig. 6. Validity of the proposed coupled-mode approach is confirmed by
studying a four-element array; data obtained by the full-wave analysis agree
excellently with those by the coupled-mode approach considering all the
coupling coefficients.

Fig. 7. Percentage of the rms error defined by (22) for the four-element array
using one term (C ), two terms (C andC ), and all coupling
coefficients, respectively.

study contain the following terms , , and . Mean-
while, the percentages of rms errors for the normalized phase
constant and normalized attenuation constant are defined as fol-
lows:

(22a)

(22b)

The results of the coupled-mode approach assuming one term
( ), two terms ( and ), and three terms ( , ,
and ) are plotted in Fig. 7, which shows the nearly error-free
solutions for and , when all coupling coefficients
( , , and ) are considered. The worst rms errors
occur at the lowest frequency near 11.0 GHz on the left-hand
side of Fig. 7, where 1.7% (1.86%) and 1.4% (1.55%) errors
are observed for ( ) when coupling coefficients of
one and two terms are considered, respectively. For a typical
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leaky-wave antenna design of this study, the normalized atten-
uation constant is usually chosen to be about 0.1 [21]. Corre-
sponding the frequency of operation of the presented coupled
microstrips is near 11.7 GHz (see Figs. 5 or 6). Notice that
the two-term approximation results in a significant reduction
in against one-term approximation, i.e., from 0.96% to
0.48% near 11.7 GHz. For practical use of the coupled-mode
approach, at least two terms of coupling coefficients are recom-
mended for obtaining solutions for all the coupled leaky modes.
What follows is an array design example described in the fol-
lowing section, in which we apply three coupled coefficients to
ensure accuracy.

IV. M ICROSTRIPLEAKY-MODE ARRAY DESIGN SUBJECT TO

ARBITRARY EXCITATIONS—THEORY

Given a microstrip leaky-mode array, the radiation fields are
characterized by the modal current distributions (eigenvectors),

, for , and . Considering an arbitrary input
current excitations at the incident plane, where ,
(11) can be modified as

(23)

Notice that the square matrix is diagonalizable. If ,
and are the eigenvalues of and , and
are the associated linearly independent eigenvectors, the matrix

, formed by applying as the th column, can be used to
diagonalize . That is,

(24)

where is the diagonal matrix in the form of and
is the inverse matrix of . Upon substituting (24) into (23),

one derives the excited current vector

(25)

and the coefficient vector

(26)

Given a known arbitrary signal , the coefficient vector
can be obtained by (26) and, therefore, the resultant current

distributions over the entire array are fully determined by
(25). Applying the Fourier transform to the equivalent current
sources on aperture, we obtain the far-zone electric field con-
tributed by the th microstrip of length [26], [27] as follows:

(27)

where

is the free-space wavelength

where and are the propagation constant and attenuation
constant of theth coupled leaky mode, respectively. The total
far-zone electric field is the superposition of the -element
microstrip leaky-mode array written as

(28)

where is the center location ofth microstrip in the -direc-
tion. Equations (27) and (28) explicitly relate the excited modal
currents against the known current source to the far-field
radiation pattern.

V. EXAMPLE OF A CORPORATE-FED MICROSTRIPLEAKY-MODE

ARRAY DESIGN

Fig. 1 shows a typical corporate-fed microstrip leaky-mode
array. A proof-of-concept design of an eight-element array
with mm, mm, and mm
was fabricated on a 25-mil-thick Duroid 6010 substrate with
relative dielectric constant 10.2. Careful designs were exercised
for obtaining the input voltage standing wave ratio (VSWR)
less than 1.2 at microstrip input feed and isolation better than

17 dB at divider outputs (made of a CPW T-junction) at the
operation center frequency. Therefore, the mutual coupling
due to the feeding network, as shown in Fig. 1, is minimized
and can be neglected when a signal of a CW source is applied
to the input port of the array during the measurement. The
coupled-mode approach will explicitly show what coupled
leaky modes contribute the radiation subject to a particular
form of excitations. An eight-element leaky-mode array should
have eight sets of eigenvectors , for , and .
Each represents the modal currents of a specific leaky mode
with respect to an eigenvalue (the complex propagation
constant), as shown in Table I. Since the corporate-fed network
results in signals of equal amplitude and phase reaching each
microstrip, the incoming current source vector can be
expressed as . By invoking (26),
we obtain the coefficient vector , as tabulated in Table II,
which explicitly shows that leaky modes numbered 2, 4, 6,
and 8 are not excited. Only four leaky modes numbered 1, 3,
5, and 7 are presented in the corporate-fed leaky-mode array.
The leaky mode denoted as determinates the corporate-fed
array since the magnitude of is much greater than that of

, , and . Substituting the computed coefficient vector
and the eigenvalues of the excited leaky modes into (27) and

(28), we obtain the far-field radiation as shown in Fig. 8, which
also plots the measured radiation pattern and that obtained by
the unit-cell approach described in [9] and [22]. Notice that
the -plane ( – -plane) far-field patterns are normalized and
plotted at the observation angle off broadside from 25to 65
for close comparison. Although the unit-cell approach shows
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TABLE I
EIGENVECTORS �I AND EIGENVALUES (COMPLEX PROPAGATION CONSTANTS) OF AN EIGHT-ELEMENT CORPORATE-FED ARRAY

(W = 3:304 mm,S = 13:38 mm,h = 25 mil, " = 10:2, AND f = 12:16 GHz

TABLE II
COEFFICIENTVECTOR[
] OF THE PARTICULAR EIGHT-ELEMENT ARRAY UNDER STUDY

Fig. 8. An almost replica of the measured radiation pattern in the main beam
from 33� to 65� is obtained by the coupled mode analyses of the eight-element
leaky-mode array. The well-known unit-cell approach [9], [21], however,
predicts a narrower bandwidth with a slight shift in the beam-pointing angle.

close agreement with the measured data, the coupled-mode
approach, which accounts for all the contributing coupled leaky
modes, offer further improvement. An excellent agreement is
observed for the radiation pattern in the main beam region from
33 to 65 at the -plane cut, between the measured data and
those obtained by the coupled-mode approach. Importantly,
the mutual coupling affects the array on the radiation pattern
by slightly shifting the beam pointing direction from 43.2to
44.7 and increasing 3-dB beamwidth from 13.5to 14.7. The
latter effect can be attributed to the contribution of the excited
leaky modes, possessing slightly different phase propagation
constants. This effect cannot be predicted by the unit-cell
approach (a single leaky-mode analysis) but, however, can be
accurately predicted by using the coupled-mode approach (four
excited leaky-mode analyses).

VI. CONCLUSION

This paper has presented and validated the coupled-mode
approach for the analysis and design of the large leaky-mode
array from the perspective of mode coupling of the leaky modes
of higher order. Detailed formulation is derived to transform
the well-known nonstandard eigenvalue problem using the
full-wave approach to the standard eigenvalue problem by the
coupled-mode approach, which simultaneously obtains all the
eigenvalues (complex propagation constants) and eigenvectors
(modal current distributions) regardless of the size of the
array ( ). Consequently the proposed coupled-mode approach
greatly reduces the tedious root-searching process of the
nonstandard eigenvalue problem, which may become unman-
ageable for a large array problem. Closed-form equations for
obtaining the coupling coefficients inhering in the microstrip
array are derived and the theoretical results indicate that the
magnitude of the coupling coefficient between elements

and decreases at the order of 10as increases. Exten-
sive study for validating the new approach is conducted both
numerically and experimentally, clearly indicating that at least
two coupling coefficients are required for obtaining accurate
complex propagation constants with rms errors less than 1% for
most leaky region of the particular array under investigation.
Finally, the investigation of a corporate-fed eight-element array
using the coupled-mode approach explicitly shows which leaky
modes are excited at what levels and demonstrates that the
effect of mutual coupling on the array performance can be
accurately determined.
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