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ABSTRACT: The hybrid integral-differential moment and momentum model of 
fixed-boundary channel-bend flows developed in the companion paper is extended 
to erodible-bed flows. The 0 unit sediment discharge is formulated as a power of 
local depth-averaged 0 velocity; and the r unit sediment discharge as proportional 
to the ratio of the excess of the r bed shear stress, over the radial component of 
the submerged weight of the sediment bed layer, to the 0 bed shear stress. Bed 
topography is computed from two-dimensional (2D) sediment continuity. The re- 
sulting two coupled sets of simultaneous equations are solved numerically. The 
model yields accurate predictions of the velocities (primary and secondary), and 
2D bed topography. The average radial bed slope, primary velocity-profile expo- 
nent, and secondary rotational and translational velocities exhibit much larger 
variations along the channel than in fixed-boundary bends. The increased variation 
and oscillatory behavior of these quantities are elucidated from moment-of-mo- 
mentum conservation and interaction of bed topography and flow. 

INTRODUCTION 

An extension of the analytical  model  of f ixed-boundary nonuniform bend 
flow described in part  I (Yeh and Kennedy  1993) to flows in e rodib le -bed  
channel bends is deve loped  herein. The channel plan and much of the 
notat ion are defined in Fig. 1 of par t  I. The deve lopment  parallels  that  of 
Struiksma et al. (1985), Odgaard  (1986), Nelson (1988), and Shimizu et al. 
(1990). Special features of  the models  are summarized by Parker  and Jo- 
hannesson (1989). 

PHYSICAL DESCRIPTION 

Four  principal aspects of e rodib le -bed  channel-bend (river) flow differ- 
entiate it from flow in straight e rodib le -bed  channels: sediment  discharge 
across the channel; warped  bed topography;  skewed distr ibution of the 
primary flow; and radial-plane rota t ional  and translat ional  flows (the so- 
called secondary flows). The bed  deformat ion  results principally from two 
mechanisms, as follows. 

The first is the radial  bed shear stress p roduced  by the secondary rotat ional  
and translat ional  velocities,  u, and ut. The secondary rotat ional  velocity is 
always directed radial ly inward near  the bed,  and is usually somewhat  greater  
than u, (which, recall from par t  I,  changes direction along the bend).  Con- 
sequently, the radial  shear  stress acting on the bed,  ~or, is directed inward 
and transports  sediment  in this direction. This tendency is resisted by the 
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radial slope of the bed, ST, which produces a downslope outward force (in 
the radial vertical plane) on the moving layer of bed particles (the bed 
layer). The radial near-bed velocity and resultant radial bed shear transport 
sediment toward the inner bank until the areal distribution of ST is such 
that radial-force equilibrium, between shear and gravity forces, of the bed 
layer is attained (with allowance made for the second mechanism, discussed 
in the next paragraph) at every point on the bed. 

The second important effect of sediment transport arises from the redis- 
tribution of the flow (unit discharge) across the channel. The unit sediment 
discharge generally increases with increasing unit water discharge, and there- 
fore the continuous radial redistributions along the channel of V ( =  local 
depth-averaged velocity) and d are accompanied by a corresponding redis- 
tribution of unit sediment discharge. The radial sediment transport produced 
by us and ut generally is inadequate to satisfy the two-dimensional (2D) 
sediment-continuity equation; indeed, along some reaches (e.g., between 
sections 1 and 2 in Fig. 1 of part I) the near-bed radial velocity is in the 
wrong direction to do so. Consequently, the radial bed slope is increased 
or decreased by local deposition or scour and thereby modulates the radial 
sediment transport as required to satisfy sediment continuity. Due to the 
overshoot of the secondary rotational flow, discussed in part I, over- 
steepening of the radial bed slope and subsequent downstream spatial damped 
oscillation of the radial bed slope toward equilibrium can occur along the 
upstream part of river bends. 

The bed deformation also affects Mr and Me [ = 0 fluxes of radial and 
streamwise moment of momentum (MOM)] in very important ways, which 
can be illustrated by examining the effect of radial bed slope on them,  as 
was done by Yeh (1990). Fig. 1 shows the effect of the bed slope ST[ = Srb/ 
(2d0)][ST(0) = average radial bed slope; do = mean flow depth; and b = 
channel width] of a vertical-wall channel section on the normalized 6 MOM 
(computed about the centroid of the undeformed, rectangular section). Note 
that M0 can even become negative as ST increases. 

o,I O 
"13 

I D  
I >  

:E 

0.15 

0.10 

0 .05  

0 

- 0 . 0 5  

-0.I0 

-0.15 

3 " ' ~ 0 .  

" ~ 7 _ ~  --_ n = 8 ~  

n = '51~"~ , . - .  

- - T  

, t  

i i 

0 012 i 0.4 016 018 1.0 

FIG. 1. Variation of Mo/p(/Od~b with -~r for Trapezoidal Section (0 , /0  = 1.0; ~/ = 
0.5; M0 is Computed about Centroid of Original Rectangular Section 
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As can be seen from the MOM balances portrayed in Fig. 2 of part I, 
M r decreases along the upstream part of the bend (due to the negative influx 
of M0, and to the increase of St), and hence n(0) (=  inverse exponent in 
power-law velocity profile) increases. However, as M0 decreases and pos- 
sibly changes sign with increasing Sr (see Fig. 1), the negative influx of M0 
into Mr decreases, and thus Mr increases and n decreases. Consequently, n 
may overshoot its equilibrium curved-channel value and then decrease. The 
changes in n affect the centrifugal moment, and thus also the strength of 
the secondary rotational velocity and St, which in turn modulate n. Addi- 
tionally, the radial steepening of the bed as Sr tends toward its maximum 
increases the radially outward secondary translational velocity, ut, and re- 
distributes the unit water and sediment discharges across the channel, both 
of which affect St. Consequently, the radial bed slope, secondary rotational 
flow, and n undergo damped spatial oscillation along the transition reach 
of the bend; Ut (=  section-averaged secondary translational velocity) also 
is spatially oscillatory, due to the oscillation of St. The maxima of Sr lag 
those of n. As Sr retreats from its maximum toward its equilibrium value, 
the magnitudes of Mr and M0 first decrease and then oscillate along the 
channel (due to the variation of M0 resulting from the oscillation of St), 
and n, after initially increasing, oscillates toward equilibrium. 

MATHEMATICAL FORMULATION 

Integrated MOM Equations 
The r- and O-direction MOM equations again are obtained from the let- 

tered terms plus the term puOu/ar (which cannot be neglected in the case 
of deformed beds) in (1)-(3) of part I. Note that the strong warping of the 
bed along the bend significantly increases the r and 0 gradients of the 
velocities. Consequently, u is taken to be distributed as function of r and 0 

U(r, O) = 8 rc d V 7 ~ . 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

where ~ = correction factor given by 

fj ~ U dr 
o 

8 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

fr " rc d V 
o r do (7 0 dr 

and rc = channel-centerline radius. Eq. (1) is suggested by the analytical 
results of several investigators (Falcon and Kennedy 1983). In keeping with 
(1), r0r is expressed as 

l ( r c d V  ) 
rot = - ~ o o ~  ~ -  ~ +  u, (3) 

rd00 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Note that r- and 0-dependent velocities, V(r, 0), U(r, 0), and Ut(r, 0) are 
used in the velocity and shear-stress relations [(14)-(16), (19)-(21), and 
(23), in part I; V(r, 0), U~(r, 0), and d(r, 0) are obtained from differential 
depth-integrated momentum and continuity equations, as described in the 
next section. 

Because the bed topography now is a dependent variable, the integrations 
of the MOM equations must be accomplished numerically. Proceeding as 
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for the fixed-bed case, adopting { = 0.5 [see (16) in part I], and taking 
moments about the centroid of the original undeformed cross section yields 
the following 0 and r MOM equations: 

rdO Jr~ V ~ GHdr  + Jr~ (1 ~ ~rO-o(GH)  d r -  2 

s 1 7 6  1 0 ( -~o) (G~- )  [ n(n + 1) n + 1 _~] 
�9 , ~ dor O0 (2n + 1)(3n + 1) + 2(2n + 1) 

f j ~  ( d ) 2 1  c3 (_~) fr'~ ( V )  2 ( d ) 2  [ 
+ , ~ L r ~  I d r -  - 1 r doo 2(n + 2) 

1 ~ ]  f[o ( 0 ) 2  1 (_~o)2dcr_ rcrc V 
+ 2n(n + 2) dr + 2 , yg ~ ~ b b r (.1 

dr 

,o dr d (J Ut (r _ re) dr + 2 y fZ do �9 1 -  d r + 2  , Y b Z d 2 ( T ( /  

[ dc 1 0 ( ~ )  1 O1 0 (d_~o)] ( r _  rc)2dr = 1 fjo 1 V 
�9 bTdorO 0 + b 2 f / r O  O -8ctf , dofZ 

0 
�9 (--G--~ + ~ ) ( ~ o - - ~ ) d r - 1  f3f[ldc(].s di"dor~)l 

and 

. . . .  (4) 

f;o (..7 0 (~) ( ~_.  ~_.~ ..r- S; o 'V' '  ("),~. ~- 
, go g c/-/  + v /  , ,, P do ,~, goo \ v 

Sr (~)"(d 1~r~ ("7 (~7 r~ l d n n  + 1 1 O + I U ' ~ d r  - _ _  _ 
V~ , r dO n 3 J dr + 2 Jr~ ~ r-O0 

2 ro 2 d 1 O d (n + 1)2j dr + ,o 
�9 n_____~l J d r -  , -door-~ doo n 3 

() () s:o'~(5( ~ ~) d 2 d 1_dn (n + 1)2j dr + - GH + I dr 
�9 ~ In ~ rdO n 4 , r ~  Z 

s: ( ~ o )  s;O(~o)2(1) ~ ro O dc r - rc V d i n + 1 dr = gSo 
+ 2 , - / -~g  ~) l}d2 1 2 n 

1 1 1 ro 1 d 1 
�9 --~ +-~ dr + - ~ f  , ~ doo- d r - - ~ f  

s ' ~o d ne C dr (5) 
�9 - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i d2ne+ l 
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where din, dou = flow depths at the inner and the outer wall, respectively; 
So = channel streamwise bed slope; C is defined in (28) in part I; and 

G=Br_~ d V  
r do 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6) 

H = n(n  - 1) + 1 do 
(2n + 1)(3n + 1) 2(2n + 1) d 

. . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

n 1 do 
I =  + - - -  

2 n + l  2 d  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 8 )  

and 

-- 17 2 n do 
J =  + 

2(n + 1)(n + 2) 2(n + 2) d 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 9 )  

Because moments are not computed about the centroid of the deformed 
cross section, it is necessary to retain the pressure term {(1/r)[O(rcrrr)/Or] in 
(1), in part I} in the integration. Eqs. (4) and (_5) are a system of first-order 
nonlinear ordinary differential equations for U(0) and n(0). 

Depth-Integrated Momentum and Continuity Equations 
The depth-integrated 0-momentum equation and continuity equations are 

used in the calculation of V(r, 0) and U,(r, O) for computed values of U, n, 
and d. Depth integration of (31) in part I, after substituting the appropriate 
relations for the velocities and stresses yields 

n(n + 2) r O0 + f + 
(n + 1)210d 2(n + 1 ) d { O n ' ~ ]  

n(n + 2) rO0 n2(n + 2) 2 r  k J J  ~ 

(V)  2 1 r - G  O ( d )  O ( V )  
�9 = -~5 gSod  r O0 - Or d F  - 2 -dr =vV F . . . . .  (10) 

F _ 
1 8 r ~ d V O  G 

2n + ~  r d o V V + ~  " 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 

The depth-integrated water-continuity relation is 

1 3 13V 
r or (rU~) = r O0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

Bed-Slope Relation 
Ikeda and Nishimura (1986) found that the influence of suspended-load 

discharge on the bed topography of river bends is relatively minor and 
generally can be neglected. Therefore, only the bed-load discharge is con- 
sidered here. The bed-load transport in the r-direction is controlled prin- 
cipally by radial bed-shear and gravity forces. It will be assumed that the 
lateral unit sediment discharge is proportional to the difference between 
the shear and the gravity forces, exerted on the moving bed-surface layer; 
i.e. 
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q ~ =  (excess radial component  of submerged weight of bed- layer]  

qo \ unit area ] "q 

(St  - Sr0)yb(1 - p , )p 'g  

TOO 
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 3 )  

in which qr, q0 = radial and streamwise unit sediment discharge; S t ( r ,  O) 
= local radial bed slope; Sro = slope required to overcome the radial bed 
shear stress, i.e., to produce radial-plane force equilibrium of the bed layer; 
Yb = bed-layer thickness; p, = bed-material  porosity; p' = p, - p; Too = 
streamwise bed shear stress; and -q = a constant. When the local radial bed 
slope Sr  equals the equilibrium bed slope, Sro, the lateral sediment t ransport  
is zero and it then follows from (13) that: 

STO 
T0r 

yb(1 - p, )p 'g  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

Note that the equilibrium bed slope STO c a n  be expressed in terms of pr imary 
flow variables by substituting (3) for T0r and (15) for Yb, in which the shear 
velocities can again be expressed in terms of primary velocity and sediment 
properties. 

According to Karim and Kennedy 's  (1981) concept,  the bed-layer thick- 
ness, Yb, is given by 

Yb = Q D s o  u---z-* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 
b/,c 

where Cb = correction factor incorporated here to extend the transport  
relation to other than the primary-flow direction for which it was derived; 
Dso = median bed-mater ial  size; and u,c = critical shear velocity for ini- 
tiation of bed-material  motion,  as obtained from Shields' diagram. 

The radial bed slope S r  is obtained f rom the 2D equation of sediment 
continuity 

10qo 1 
r oO r 

(rqr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16) 

Integration of (16) with respect to r and normalization by q0 ( =  q0 corre- 
sponding to the section-averaged velocity l?) yields 

q r _  1_ r ~  qo dr 
(1o r ~ Os 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17) 

A power-law sediment-discharge relation in the streamwise direction is adopted 

q~ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18) 
Oo 

where the exponent  K = a function of the flow and sediment characteristics. 
In straight alluvial channels, K is generally between two and four (Simons 
and Senttirk 1977). Substitution of (3), (14), (15), (17), and (18) into (13) 
and letting u,  = V(f18)l/2; u,c = (gp'/pDso~p) a/2 in which ~ = dimensionless 
shear stress obtained f rom Shields' diagram; leads to 
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'.'r O' " " [ Jr:r s 
ca Dso (1 - p,) 

u + u,) 
- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 9 )  

P' Cb ~8g P Dso(1 - p,) 

Because of the small radial water-surface slope, the local depth can be well 
approximated by integration of 

Od 
- -  = Sr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 2 0 )  
Or 

Eqs. (10), (12), and (20) with Sr given by (19) are a system of strongly 
coupled nonlinear partial differential equations for the unknowns V(r, 0), 
U,(r, 0), and d(r, 0) and are solved numerically. 

N u m e r i c a l  S o l u t i o n  

The numerical scheme used in the solution of the MOM equations [(4) 
and (5)] for 0(0) and n(O), the 0 momentum and continuity equations [(10) 
and (12)] for V(r, 0) and U,(r, O), and the bed-topography relations [(20)] 
for d(r, 0) is the same as that for the fixed-bed case (part I), except for the 
following. 

It is observed experimentally tha t the  flow area remains almost constant 
along a channel bend. Accordingly, the depth, d(r, 0), obtained from (20) 
at each computational grid point was linearly adjusted in proportion to its 
relative magnitude to yield constant flow area along the bend. Alternatively, 
the adjustments could have been made so as to yield constant discharge. 

During the iterations for solving d(r, 0), (18) does not necessarily yield 
constant sediment discharge along the bend. Therefore, deviations of the 
computed sediment discharge from the inflow value were prorated among 
the computation points across each section in proportion to the local com- 
puted q0, to assure constancy of sediment discharge. 

Because the variations of local Sr between sequential computations must 
be relatively small, else computational instability may occur, the following 
relaxation relation was adopted: 

(ST)ne w : ( . 0 ( S T ) n e  w ~- (1 - O~)(ST)old . . . . . . . . . . . . . . . . . . . . . . . . . . .  (21) 

where o~ = relaxation parameter; ( S t ) h e  w = updated St; and (Sr)o~d = 
previous ST. It was found that ~0 = 0.2 yielded stability for all flows com- 
puted. 

VERIFICATION AND ANALYSIS 

The values of the parameters related to velocities and stresses {6 = 0.5 
[(16) in part I]; -/ = 0.3 [(17) in part I and (4) and (5) in part II]; c~ = 6 
[(20) in part I and (3) in part II]; and [3 = 1 [(21) in part I and (4) in part 
II]} determined for the fixed-bed case were found to be valid also for er- 
odible-bed bends. The exponent, K, in the power-law streamwise sediment- 
discharge relation [(18)] was taken to be K = 3. The parameters, -q [(13)], 
and Cb [(15)], were evaluated by calibrating the model against two of Struiks- 
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Measured and Computed ST for Struiksma's (1983) Run T1 

ma's (1983) experiments, runs T1 and T2. These flows and those utilized 
in verifying the model are described in Table 1. Optimal conformity of 
analytical and experimental results, as judged visually from comparative 
graphs, was obtained for -q = 0.2, and Cb = 0.75. A porosity ofps = 0.35 
was used for all erodible-bed computations. 

Only the results for run T1 are included here. Others are reported by 
Yeh (19_90). Fig. 2 shows the streamwise variations of radial average bed 
slope, St(O), which provides a rough, overall description of the channel- 
bed-topography variation along the bend. The overshoot of the radial bed 
slope (the oversteepening of the bed) and its subsequent damped oscillation 
are well reproduced. Fig. 3 shows the streamwise variations of flow depth 
near the walls for this flow, and the computed streamwise variations of 
V/12 near the walls are presented in Fig. 4. A comparison of Figs. 2 and 4 
shows that the maximum (minimum) value of V/V near the outer (inner) 
wall occurs downstream from the maximum oversteepening of the bed. The 
accompanying oscillation of n can be seen in Fig. 5, and the damped oscil- 
lations of U/V and 0,/17 are apparent in Fig. 6. Comparisons of computed 
and measured lateral distributions of d/do at representative sections are 
plotte_d in Fig. 7, and Fig. 8 shows comparisons of the lateral distributions 
of V/V. The agreement between computed and measured values seen in 
Figs. 2, 3, 7, and 8 is, in general, very good. It should be noted that Struiksma 
(1983) reported that the velocity data for his experiments are not very 
accurate due to the sparse measurements. 

It is of interest to compare the relative magnitudes of the individual terms 
of the 0-direction momentum equation [(31) in part I]. Recall that this 
equation incorporates the continuity equation and reads 

[ ~ - r  l O v 2 2 u v O  ] 10er~176 0%z 
p (uv) + - - -  + + - - ( v w )  = Pg0 + -  + - -  . . . . .  (22) 

r O0 r Oz r O0 Oz 
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FIG. 3. Measured and Computed Depths at 0.85b and 9,155 from Convex Wall for 
Struiksma's (1983) Run T1 
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FIG. 4. Computed V/Vat 0.85b and 0.15b from Convex Wall for Struiksma's (1983) 
Run T1 

Depth-integration of (22) after applying the kinematic boundary conditions 
given by (33) and (34) in part I leads to 

u v  d z  + - - -  v 2 d z  + 2 - - d z  = p g S o d  
b r O0 b b r 

1 2 3 4 
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fz ~ 10t~oo + - dz  - %0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23) 
b r  O0 

5 6 

Fig. 9 shows the magnitude of each term (except term 3) in (23) for Struiks- 
ma's (1983) run T1. Due to the oscillation of the radial bed slope, the values 
of the individual terms in the momentum equation also oscillate along the 
bend. The principal opposing terms are the gravity and bed-shear forces, 
terms 4 and 6. Examination of (23) for this and several other flows revealed 
that term 3 is much smaller than term 1 except for flows in bends with very 
sharp channel curvature. Therefore,  term 3 is not included in Figs. 9 and 
10. Because run T1 is a mild-bend flow, the magnitudes of terms 1 and 2 
are smaller than terms 4 and 6, but the former have larger amplitudes of 
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FIG. 7. Measured and Computed Lateral Distributions of d/do at Representative 
Sections for Struiksma's (1983) Run T1 

oscillation than the latter. For comparison, Fig. 10 shows the magnitudes 
of the terms (except term 3) in (23) for Kikuchi et al.'s (1988) run 1 [Table 
1 in Yeh and Kennedy (1993)]�9 It can be seen that terms 1 and 2 undergo 
opposing swings near the ends of the curve, but elsewhere all terms are 
nearly constant. These two terms each demonstrate minor extrema following 
their first major ones, but these oscillations are very small compared to 
those of the erodible-bed flow (Fig. 9). 

Sensitivity analyses of ~qr to "q and Cb (Yeh 1990) revealed.that the com- 
puted results are fairly sensitive to both. 

The third of Struiksma's (1983) experiments, run T3, was computed using 
the parameter values given previously. The computed results again were 
found to be satisfactory. Comparisons of the computed streamwise varia- 
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FIG. 8. Measured and Computed  Lateral Distributions of V/V at Representat ive 
Sections for Struiksma's (1983) Run T1 

tions of d/do along lines at 0.25b and 0.75b from the inside wall for Struiks- 
ma's (1983) three runs with computed results obtained from other investi- 
gators' models are shown in Fig. 11. Note that the computed results reported 
by Struiksma et al. (1985) utilized different values of the model parameters 
for runs T1 and T2 than for run T3. 

The model was also evaluated with two other experiments: Odgaard and 
Bergs' (1988), and Olesen's (1985) run T5, both summarized in Table 1. 
Instead of using the centerline-average value of depth (do = 0.15 m) given 
by Odgaard and Bergs (1988), the cross-sectional average depth, do = 0.165 
m, was adopted for their run. The friction factor then changes slightly, from 
their reported value of 0.067-0.074. Fig. 12 shows the streamwise variations 
of d/do near the walls. It can be seen that the computed oversteepening of 
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FIG. 9. Computed Streamwise Variations of Lettered Terms in Momentum Equa- 
tion [(23)] for Struiksma's (1993) Run T1 (Note: Term 3 = 0) 

the bed has almost no oscillation after the initial overshoot (i.e., Sr is 
"overdamped," in some sense, for this flow), which is different from the 
result computed by Odgaard and Bergs (1988). Olesen's experiments differ 
from Struiksma's (1983) mainly in the distribution of grain sizes (see Table 
1). Olesen (1985) pointed out that the measured bed topography seems to 
indicate that the gradation of the bed material has only a modest influence 
on the bed configuration provided that the sediment enters the bend uni- 
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FIG. 10. Computed Streamwise Variations of Lettered Terms in Momentum Equa- 
tion [(23)] for Kikuchi et al.'s (1988) Run 1 (Note: Term 3 - O) 

formly distributed across the channel. Therefore,  only run T5 of his inves- 
tigation was computed in the present study. When the values of the param- 
eters related to sediment transport, -q = 0.2 and Cb = 0.75, determined 
from Struiksma's (1983) runs T1 and T2 were used, the computed radial 
oversteepening of the bed was found to be somewhat smaller than measured. 
(Note that Ds0 in run T5 was almost twice as large as that in runs T1-T3 . )  
This suggests that the parameters ~q and Cb in (13) and (15), respectively, 
are dependent on the bed-particle size. It may be that the interactions among 
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dido at 0.25b and 0.75b from Convex Wall Measured by Struiksma (1983); 
), Struiksma et al. (1985) ( . . . . .  ), and 

the flow, bed topography, and two-dimensional sediment discharge are so 
complex that simplified relations such as (13) and (15) cannot be applied 
universally without modification. By adopting ~3 -- 0.15 and Cb = 0.45, the 
computed streamwise variation of dido near the walls presented in Fig. 13 
was obtained. Generally speaking, the overall computed results are satis- 
factory if the modified values of'q and Cb are adopted. The computed results 
using the calibrated values ('q = 0.2 and Cb = 0.75) are also plotted in Fig. 
13 for comparison. 

The present formulation is basically applicable to flows with moderately 
and highly nonuniform bed sediments. If other representative particle size 
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instead of Ds0 is used, parameters  ~q and Cb, which are included in the 
sediment  t ransport  model ,  need to be cal ibrated again. 

CONCLUSIONS 

The hybrid integral-differential  moment  and momentum formulat ion of 
r igid-boundary channel flow was extended to the case of e rodib le-bed  flows 
to obtain a set of equations which describe the flow field, bed  topography,  
and 2D sediment  discharge in e rodib le-bed  channel bends.  The formulat ions 
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for the fixed- and erodible-bed cases differ principally in that the 2D sed- 
iment-continuity relations and streamwise (0) and radial (r) sediment-trans- 
port relations are incorporated into the latter to calculate the variable bed 
elevation or flow depth, d(r, 0), in the bend. A power-law relation relating 
the streamwise unit sediment discharge to a power of the local mean velocity 
was adopted. The radial unit sediment discharge was formulated under the 
assumption that the ratio of radial to streamwise unit sediment discharges 
is proportional to the ratio of the excess (above that required to balance 
the radial bed shear stress) radial component along the bed of the submerged 
weight of the sediment bed-layer to the streamwise bed shear stress. The 
model contains six parameters: ~, % c~, and [3 [(16), (17), (20), and (21) in 
part I); and ~ and Cb [(13) and (15), for erodible-bed flows only]. The best 
estimates of the first four are ~ = 0.5, ~/ = 0.3, a = 6, and [~ = 1, obtained 
from calibration of the fixed-bed model (part I). The best estimates of the 
last two values are ~ = 0.2 and Cb = 0.75. 

The principal conclusions may be summarized as follows. 
The flow field and bed topography along a bend, including the reaches 

of transition flow (produced by changes in channel curvature) and fully 
developed flow, are well predicted by the model. 

The r and 0 distributions of V and the position and magnitude of the 
overshoot and subsequent spatial damped oscillatory behavior of the average 
radial bed slope, St, are accurately described by the model, as are other 
features of the bed topography. Due to the oscillation of ~qr, both /5" and 
U, (the average secondary rotational and translational velocities) also exhibit 
oscillatory behavior along the bend. This oscillatory behavior is neither 
predicted nor observed for the fixed-bed case. 

A simple relation, (13), based on physical reasoning and concepts related 
to unidirectional sediment transport, between the lateral sediment discharge 
and the radial nonequilibrium bed slope appears to work quite well. It may, 
however, need further refinement to adequately account for effects of bed- 
sediment size. 

Due to the deformation of the channel bed, the shift of maximum primary- 
flow velocity toward the outer wall region occurs upstream of that in the 
fixed-bed case, and the distortion of the radial depth-averaged-velocity pro- 
file is more pronounced. 

As in the fixed-boundary case, the relative magnitudes of terms in the 0 
momentum equation depend on the sharpness of the channel curvature. 
The conclusions concerning their relative magnitudes reached for the fixed- 
bed case apply also to erodible-bed bends, except for some effects due to 
the oscillatory behavior in the latter case. Due to the oscillation of the radial 
bed slope, all terms in the 0 momentum equation have corresponding os- 
cillatory behavior, with the terms O(uv)/Or and 1/r Ov2/O0 exhibiting the largest 
oscillations. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

b 
c~= 

050 
d, d o =  

din, dou = 
F =  

f =  
g = 

G , H , I , ]  = 
K =  

Mr, Me = 
n ( o )  = 

Ps = 

channel width; 
correction factor in (15); 
median sediment-particle size; 
flow depth; subscript 0 signifies upstream uniform-flow depth; 
flow depths at inner and outer walls; 
constant defined by (11); 
Darcy-Weisbach friction factor; 
acceleration of gravity; 
constants in (4) and (5), defined by (6)-(9) ;  
exponent in sediment-transport relation in (18); 
r and 0 components of MOM; 
inverse exponent in power-law velocity profile; 
bed-material porosity; 
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qr, qo 
(to 

r 

ri, ro, rc 
So 

St(r,  O) 
Sro 

Sr  
0) 

_u(o) 
u,(e) 

U~ ~ W 
.Xr, o, z) 

o) 
U, 

U,c 

V(r, O) 
Yb 

Zb, Zw 
~, f5 

"q 
Oo 

P, Ps 
p' 

"roy 

(o 

= radial  and s treamwise unit sediment  discharges; 
= value of q0 corresponding to 12; 
= radial  coordinate ,  or channel s t reamline radius; 
= radii  of  inner,  outer ,  and centerl ine channel radii;  
= streamwise bed  slope; 
= local radial  bed  slope; 
= equil ibrium radial  bed  slope; 
= average radial  bed  slope; 
= Srb/(2do) = normal ized average radial  bed slope; 
= surface value of secondary rotat ional  velocity, Us; 
= sect ion-averaged U; 
= cross-sect ional-averaged u,; 
= velocity components  in the r, 0, z directions; 
= secondary  rota t ional  velocity; 
= secondary  t ranslat ional  velocity; 
= shear velocity; 
= critical shear velocity for the init iation of bed-mater ia l  mo- 

tion; 
= depth-averaged v; 
= bed- layer  thickness; 
= bed and water  surface elevations;  
= constants in (20) and (21) in part  I and (3) and (4) in part  

II; 
= constant  in (17) in part  I; 
= correct ion factor in (1); 
= constant  in (13); 
= bend included angle; 
= densities of fluid and sediment  part icles;  
= p ~ - p ;  

= boundary  shear  stress; 
= dimensionless shear  stress obta ined  from Shields '  diagram; 

and 
= relaxat ion pa ramete r  in (21). 
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