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SUMMARY

Applying active control systems to civil engineering structures subjected to dynamic loading has re-
ceived increasing interest. This study proposes an active pulse control model, termed unsupervised fuzzy
neural network structural active pulse controller (UFN-SAP controller), for controlling civil engineering
structures under dynamic loading. The proposed controller combines an unsupervised neural network
classi�cation (UNC) model, an unsupervised fuzzy neural network (UFN) reasoning model, and an
active pulse control strategy. The UFN-SAP controller minimizes structural cumulative responses dur-
ing earthquakes by applying active pulse control forces determined via the UFN model based on the
clusters, classi�ed through the UNC model, with their corresponding control forces. Herein, we assume
that the e�ect of the pulses on structure is delayed until just before the next sampling time so that the
control force can be calculated in time, and applied. The UFN-SAP controller also averts the di�culty
of obtaining system parameters for a real structure for the algorithm to allow active structural control.
Illustrative examples reveal signi�cant reductions in cumulative structural responses, proving the feasi-
bility of applying the adaptive unsupervised neural network with the fuzzy classi�cation approach to
control civil engineering structures under dynamic loading. Copyright ? 2001 John Wiley & Sons, Ltd.
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INTRODUCTION

Control of civil engineering structures subjected to dynamic loading, such as those attributed
to earthquakes, heavy winds and high waves, can be classi�ed into passive and active controls.
A passive control system requires no external power source. On the other hand, in an active
control system, external power sources control actuator(s) that apply forces to the structure in
a prescribed manner. Active control devices are used in civil engineering structures to modify
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the structural parameters (sti�ness and damping), allowing them to respond more favourably
to external excitation [1].
The several analytical theories used for active control of civil engineering structures include

optimal control, stochastic control, adaptive control, hybrid control and intelligent control [2]
Housner et al. [3] indicated that the control strategies deemed appropriate for civil engineering
structural control should be simple, but robust and fault tolerant. Additionally, such control
strategies not need to be an optimal control, and must be implemented. Intelligent control is a
promising approach in the application of automatic structure control systems. Several references
from the special issues of Journal of Engineering Mechanics [2] give a good overview of
intelligent control systems.
Fu [4] proposed the concept of intelligent control to enhance and extend the applicability of

automatic control systems. Intelligent controllers can be viewed as adaptive or self-organizing
systems that learn through interaction with their environment with little a priori knowledge.
Two main methodologies related to intelligent control have been developed: (1) arti�cial neu-
ral networks (ANNs) and (2) fuzzy logic. ANNs have been used since the 1980s to identify
and control structures in the context of structure control. Nikzad and Ghaboussi [5] �rst ap-
plied multi-layered feedforward networks (MFN) to the problem of digital vibration control
of mechanical systems. Wen et al. [6] used two ANNs: one to predict the structural response
subjected to the control force alone, and the other to predict ground accelerations. Yen [7]
applied an indirect predictive learning control scheme for control of a large space structure.
Meanwhile, Tang [8] described a simple heuristic-based control strategy capable of applying
the control force to cancel the system velocity at the preceding time step for an SDOF system.
Chen et al. [9] used ANNs to identify the structure system and the trained ANNs can model
the structural behaviour. Furthermore, Chen et al. [10] proposed a BTTNC active structural
control model consisting of two neural networks. One is used for representing the structure to
be controlled; the other is trained for determining the actions taken to control the structure.
Recently, Hung et al. [11] presented an active pulse control model, termed the adaptive neural
structure active pulse controller (ANSAP controller), to control civil engineering structures
under dynamic loading. The controller consists of two sub-networks: the neural emulator net-
work (NEN) and the neural control network (NCN). The NEN network is used as a system
identi�cation model to obtain the structural parameters and it is trained o�-line. The NCN
model is then used to determine the corresponding control force for the structure represented
by the NEN model according to measured structure responses. Other related investigations
dealing with ANNs applied to control domains can also be presented in the special issues of
the Journal of Engineering Mechanics [2].
The theory of fuzzy logic theory developed by Zadeh [12] can be used to model imprecision,

ambiguity and fuzziness in vague linguistic information. Adeli and Hung [13] developed a
fuzzy neural network learning model by integrating an unsupervised fuzzy neural network
classi�cation algorithm with a genetic algorithm and an adaptive conjugate gradient neural
network learning algorithm, and applied it to the domain of image recognition. Meanwhile,
Hung and Jan[14] presented an unsupervised fuzzy neural network (UFN) reasoning model in
structural engineering. Recently, Hung and Jan [15] integrated the UFN reasoning model with
a supervised learning model, termed integrating fuzzy neural network (IFN) learning model,
and applied it to the problem of structural engineering. In the framework of structural control,
Casciati and Yao [16] provide an overview of neural and fuzzy techniques for the control of
structures. Faravelli and Yao [17] presented guidelines for implementing a fuzzy active control
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strategy for civil engineering structures. Other examples of recent research include Furuta
et al. [18], Yeh et al. [19], Sun and Goto [20] and Nagarajaiah [21].
While extending the above research, this work presents a novel fuzzy-ANN active pulse

control model, the unsupervised fuzzy neural network structural active pulse (UFN-SAP) con-
troller, to control civil engineering structures under dynamic loading. The proposed model is
based on an unsupervised neural network classi�cation (UNC) model [13], an unsupervised
fuzzy neural network (UFN) reasoning model [14; 15] and an active pulse control strategy
[22]. The proposed control strategy attempts to reduce cumulative structural responses during
earthquakes by applying the active pulse control force. The necessary pulse control forces are
determined via the UFN model based on the clusters, classi�ed through the UNC model, with
their corresponding control forces. These classi�ed clusters with their corresponding control
forces are representative of structural dynamic behaviours. The control e�ectiveness of the
UFN-SAP controller is investigated for an SDOF and a 3DOF structure subjected to the EL
Centro, Kobe, and Northridge earthquakes.

ACTIVE PULSE CONTROL ALGORITHM

Active control system in civil engineering structures is based on closed-loop control, implying
that the structural response is continually monitored and this information is used to continu-
ously modify the applied control forces. Consider a non-linear structural system with n degree
of freedom subjected to an external excitation. The equation of motion is written in matrix
notation:

M �x(t) +Cẋ(t) +Kx(t)=B1u(t) + E1w(t) (1)

where constant matrices M, C and K are, respectively, the mass, damping, and sti�ness ma-
trices with n×n entities; x(t) is the n-dimensional displacement vector with respect to the
ground; u(t) is the p-dimensional control force vector, w(t) is the q-dimensional external ex-
citation vector and the n×p matrix B1 and n×q matrix E1 are location matrices that de�ne the
locations of the control force and the excitation, respectively. While assuming that the external
seismic force and the control force are piecewise-linear and piecewise-constant interpolation
functions, respectively, the external seismic force and the control force are expressed in the
following forms:

u(�) = 0; k�t 6 �¡[(k + 1)�t −�tu] (2)
u(�) = u[k�t]; [(k + 1)�t −�tu]6 �¡(k + 1)�t (3)

w(�) =
�− k�t
�t

{w[(k + 1)�t]− w[k�t]}+ w[k�t]; k�t 6 �¡(k + 1)�t (4)

where k=0; 1; 2; : : : ; N , is an integer number, �t is the time length of the sampling period and
�tu is the time length of applying the control force. Therefore, Equation (1) can be written
in a discrete state form as follows:

z[k + 1]=Apz[k] + BpBu[k] + Ep1Ew[k + 1] + Ep2E(w[k + 1]− w[k]) (5)
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where Ap=eA�t ; Bp=A−1(eA�tu − I); Ep1 =A−1(Ap − I); Ep2 =A−1(Ep1=�t −Ap), and

z[k + 1]=
[
x[k + 1]
ẋ[k + 1]

]
2n×1

is a 2n-dimensional state vector of the structure response at time t=(k + 1)�t. The system
matrix A and location matrices B and E can be determined by the following:

A=
[

0 I
−M−1K −M−1C

]
2n×2n

(6)

B=
[

0
M−1B1

]
2n×p

(7)

E=
[

0
M−1E1

]
2n×q

(8)

The �rst two terms on the right-hand side of Equation (5) represent the structural response
at time k(�t) after the active pulse force u[k] has been applied. With applying a pulse
control force u[k], the structural response z[k] at any time k(�t) should be eliminated, as
z∗[k]=Apz[k] + BpBu[k]= 0. Then the control force can be obtained by

u[k]= − (BTB)−1BTB−1
p Apz[k]=Gz[k] (9)

The matrix G is called a state feedback gain matrix and equals to

G= − (BTB)−1BTB−1
p Ap (10)

Such a control approach is called an active pulse control strategy, in which, the control
force is applied to minimize the system response that carries over from the current time step
to the next time step [11; 22]. In the active pulse control algorithm, the pulse control force
applied to the structure is reduced in a �tu(�tu ¡ �t) period. Furthermore, the e�ect of
pulses is assumed to be postponed to just before the next sampling time. Consequently, there
is time to calculate the control force, to prepare it during the former �t −�tu period and to
apply it to the structure during the later �tu period of each time step �t.

UNSUPERVISED NEURAL NETWORK CLASSIFICATION (UNC) MODEL

This section briey reviews the unsupervised neural network classi�cation (UNC) model [13].
Assume there is a set with N training instances, X= {X1;X2; : : : ;XN}. Instance Xj is de�ned
as a pair including input Xj; i and its corresponding output Xj;o. If there are M decision vari-
ables in the input and K data items in the output, then, the input Xj; i and output Xj;o of
instance Xj are represented as vectors of the decision variables and data, and are denoted as
Xj; i=[x1j ; x

2
j ; : : : ; x

M
j ] and Xj;o = [o

1
j ; o

2
j ; : : : ; o

K
j ]. The clustering process aims to classify the set

of training instances into a certain number of clusters based on predetermined features from
the training data. The elements in each cluster are as similar as possible to each other and as
dissimilar as possible to those in other clusters. Unsupervised classi�cation is conducted using
a topology and weight-change neural network. The number of input nodes is made equal to
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the number of input decision variables (M) in each training instance. The number of output
nodes is set to equal the number of clusters and it will be determined once the classi�cation
process is completed.
A neural network with M input nodes and one output node is �rst generated and the input

vector of the �rst training instance is presented. Then, the input vector of the succeeding
training instance is inputted through the network. The classi�cation of a training instance
into an existing cluster or a new cluster is based on the notion of maximum likelihood. The
unsupervised classi�cation process can be summarized as follows:

1. Calculate the degree of di�erence, di�(Xj;Ck), between the input vector of a training
instance Xj and each cluster Ck . The function di�(Xj;Ck) is de�ned as the square Euclidean
distance represented as

di�(Xj;Ck)=
M∑
m=1
�m(xmj − cmk )2; (11)

where �m denotes prede�ned weight, and is used to represent the degree of importance for
the mth decision variable in the input. The weights �m are generally set as constant based
on the heuristic associated learning problem.

2. Find the smallest degree of di�erence, di�min =min{di�(Xj;Ck); k=1; 2; : : : ; Q}, for the
training instance and assign the cluster with the value of di�min to be active. Term Q
denotes the number of classi�ed clusters presently.

3. Compare the value of di�min with the prede�ned threshold value �. If di�min is smaller
than �, the training instance belongs to the cluster with the value of di�min and the weights
associated with the links are updated using a successive estimation approach [13]. If di�min
greater than �, the training instance is classi�ed as a new cluster and the topology of the
neural network is altered.

Hereinafter, the set of N training instances is classi�ed into a certain number homogeneous
clusters, say P. These P distinct clusters represent a discrete feature set for these N training
instances. The workability of these P clusters must be veri�ed before they can be used as a
sample base of the set. The veri�cation process relies on the concept that the input of any
instance Xi in the set X can be regenerated by combining these P clusters with an acceptable
error, provided these P clusters represent the important features of the set. The veri�cation
process is summarized in the following steps:

1. For each training instance Xj, calculate the degree of di�erence, di�(Xj;Ck), between the
input vector of the training instance and each cluster Ck where j=1–N and k=1–P.

2. Collect similar clusters for instance Xj such that the di�(Xj;Ck)6 �. Meanwhile, set the
term sk as 1− di�(Xj;Ck)=� between 0 and 1.

3. Regenerate the input of instance Xj by combining its similar clusters as X ′
j; i=(1=

∑S
s=1 ss)

(s1C1 + s2C2 + · · ·+ ssCs) and evaluate the error, �j, between the desired and computed
input vectors Xj; i and X ′

j; i ; �j=
∑M

m=1(x
m
j − x′mj )2.

4. Calculate the system error E=
∑N

j=1 �j, an accumulation of the error for each instance. If
the system error is below a prede�ned level, these P clusters are adequate. Otherwise, the
threshold value � is modi�ed and the classi�cation process of the UNC model is initiated
to once again re-classify these N training instances.
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After the veri�cation process is completed, the corresponding outputs for each cluster can
then be obtained. These P distinct clusters with their corresponding output are then collected
as a sample base for the set.

UNSUPERVISED FUZZY NEURAL NETWORK (UFN) REASONING MODEL

Assume that U is an associated sample base with P samples U1; U2; : : : ;UP classi�ed via
the above UNC model for the aforementioned instance base X and Y is a new instance
in the same problem domain. The input Uj; i and output Uj;o of sample Uj are denoted as
Uj; i=[u1j ; u

2
j ; : : : ; u

M
j ] and Uj;o = [o

1
j ; o

2
j ; : : : ; o

K
j ]. Similarly, the new instance Y can also be

de�ned as a pair, including input Yi and unsolved output Yo, respectively. The input Yi is
a set of decision variables, Yi = [y1; y2; : : : ; yM ]. The output Yo is currently a null vector
and can be solved using the unsupervised fuzzy neural network (UFN) reasoning model.
[14; 15].
The UFN reasoning model is briey reviewed as follows. Similar to other neural network

learning models, the UFN model must �rst be trained based on a given sample base. The
learning stage in the UFN model just involves two stages: determining weights for each
decision variable in the input vector and selecting appropriate working parameters for the
fuzzy membership function. For the �rst stage, the weights �m are set based on the heuristic
associated learning problem. The second stage is more complicated and is implemented as
follows. The �rst step is to determine the degree of di�erence between any two distinct
samples in base U. Therefore, a total of T =CP2 =P(P − 1)=2 degree of di�erence has to be
calculated. The prede�ned square Euclidean distance function in Equation (11) is employed
to measure the di�erence, dij, between two inputs Ui; i and Uj; i for samples Ui and Uj as
dij=di�(Ui; i; Uj; i)=

∑M
m=1 �m(u

m
i − umj )2. After the values of dij for all samples in base U

are computed, the average of the sum of dij, denoted as �dij=avg(dij)=
∑T

t=1(dij)=T , can be
derived. The second step involves determining the fuzzy membership function. In the UFN
reasoning model, a ‘similarity’ between any two samples is represented using a quasi-Z type
membership function de�ned as

�ij=f(dij; Rmax; Rmin)=




0 if dij ¿ Rmax

RmaxRmin − Rmindij
(Rmax − Rmin)dij if Rmin¡dij¡Rmax

1 if dij 6 Rmin

(12)

The working variables Rmax and Rmin are employed to de�ne the upper and lower bounds of
the ‘degree of di�erence’. The lower bound Rmin is set to a constant 10−5. The upper bound,
however, was set as Rmax = � �dij. The term � is a real number between 0 and 1 and was
established through trial and error.
After the learning in the UFN model is completed, the new instance Y can be solved via

the UFN reasoning model. The process of the UFN reasoning can be summarized in three
steps. The �rst step involves search for samples that resemble the new instance Y in the
sample base U, and performed through a single-layered laterally connected network with an
unsupervised competing algorithm. That is, to collect the similar samples with the degree
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of di�erence, dYj=di�(Yi; Uj;i)=
∑M

m=1 �m(y
m − umj )2, less than Rmax. The second step entails

representing the fuzzy relationships among the new instance and its similar samples using
Equation (12).
The �nal step is to generate the output Yo vector of instance Y by synthesizing the outputs

of similar samples Sk;o according to their associated fuzzy membership values using the center
of gravity (COG) method [14; 15]. Assume that R similar samples are collected. Then, the
output Yo of instance Y yielded via the COG method is de�ned as follows:

Yo =
∑R

k=1�kSk;o∑R
k=1�k

(13)

where �k represents the membership value for the kth similar sample.
The reasoning process of the UFN depends on determining the degree of similarity between

Y and Uj. Consequently, the UFN reasoning model can generate no solution if the new instance
entirely di�ers from all samples in the sample base. Herein, the output of the new instance is
simply set as the output of the sample with the smallest degree of di�erence.

UFN STRUCTURAL ACTIVE PULSE (UFN-SAP) CONTROLLER

For an SDOF structure with an active control device installed and subjected to an external ex-
citation, the responses (dynamic behaviours) of the structure in each time step are monitored
and the required control force for the structure can then be determined through the equa-
tion of motion. Herein, the structural response with its corresponding control force in time
step k(�t) is denoted as an instance Xk . For the entire time history, say H , of excitation,
there are total N (=H=�t) training instances can be obtained and collected as a training set,
X= {X1;X2; : : : ;XN}.
For the entire time history of external excitation, these N instances may be identical or

similar to each other. If some particular instances can be systematically collected from these
N instances, the dynamic behaviours of the structure under the given external excitation can
be represented by a series of these particular instances. The UNC model is a tool permitting
these instances to be systematically classi�ed into a certain number of homogeneous clusters,
say P, according to their inputs, relative displacement and velocity data in this study. The
feasibility of these P clusters is then veri�ed based on the above-mentioned process. Once
the veri�cation process is complete, the corresponding control force for each cluster can be
obtained. These P distinct clusters with their corresponding output then gathered as a sample
base for the SDOF structure.
As the structure is subjected to a new excitation, the structural dynamic response of the

structure is monitored at each time step. The required control force can then be obtained via
the following steps. First, the monitored structural response is compared with the input of
each sample in the sample base. Second, the samples with their degree of di�erences below a
prede�ned threshold are collected as similar samples. Finally, the corresponding control force
in the time step is then calculated via a fuzzy synthesis of the outputs of these similar samples.
The aforementioned steps can be performed through the UFN reasoning model.
This work proposes a novel fuzzy-ANN active pulse control model, Unsupervised fuzzy neu-

ral network structural active pulse (UFN-SAP) controller, to control civil engineering structures
under dynamic loading, and Figure 1 schematically illustrate the model. The proposed model
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Figure 1. Model of the UFN-SAP controller.

is an integration of a UNC model [13], a UFN reasoning model [14; 15], and an active pulse
control strategy [22]. The controller design process is implemented in the following stages.
Figure 2 presents a owchart of these steps.

1. Run a case based on the aforementioned active pulse control algorithm to generate a set
of training instances.

2. Classify the set of training instances into a certain number of homogeneous clusters using
the UNC model.

3. Verify the feasibility of the classi�ed clusters based on the previously mentioned veri�cation
steps.

4. Compute the control force for each cluster and gather it as a sample base for the structure.
5. Train the UFN reasoning model using the sample base.

These stages are o�-line design of the UFN-SAP controller. However, applying control force
in a structure system is an on-line process. Given a base motion, the response of the structure
in each time step is �rst measured, then the associated control force is determined via the
UFN-SAP controller, and �nally the control force is applied to the structure to destroy the
response of the current time step before the next time step.
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Figure 2. UFN-SAP controller design process.

THE NUMERICAL EXAMPLE

Example 1: SDOF structure system

This section �rst chooses an SDOF structure system, one-storey structure with an active tendon
controller, to explore the control e�ectiveness of the UFN-SAP controller. This structure is an
approximately 1 : 4 scale model of a 1 : 2 scale model of the prototype structure. Table I lists
the properties of the SDOF system. The EL-Centro earthquake recorded data (PGA=0:348g),
referred to as Base Motion One, are enlarged to 150 per cent of the original intensity to be used
as the greatest external excitation imaginable (0.522g) for the 1 : 4 scale model. The sampling
period �t is 0.01 s. Figure 3 depicts the time history and the corresponding acceleration spectra
of base motion one.

Controller design: The response of the SDOF structure is �rst calculated for base motion one
using Equation (5). The pulse duration �tu is assumed to be half of the sampling period �t,
i.e. �tu=0:005 s. Herein, the kth instance is set as Xk = b(x[k]; ẋ[k]); u[k]c. Consequently,
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Table I. System parameter values for
the SDOF example.

Parameter Quantity

Mass, m 2923.38 kg
Structure sti�ness, k 1391:06 kN m−1
Natural frequency, f0 3.47 Hz
Damping factor, � 5%
Damping coe�cient, c 6373:74 N − s m−1

Figure 3. (a) Time history and (b) the acceleration spectrum of base motion one.

2000 instances are obtained for base motion one and the �rst 1500 instances are taken as
training instances for the UNC model. Setting the threshold value, �, as 0.0012 via trial and
error, 127 clusters are classi�ed after the clustering process in the UNC model is completed.
The feasibility of these 127 clusters is then veri�ed. The inputs of these 1500 training instances
are regenerated using these 127 classi�ed clusters. The average error for each instance equals
0.008 per cent and it is tolerable. Hence, these 127 clusters are feasible for the SDOF structure.
Subsequently, the corresponding control force for each cluster is calculated. Figure 4 depicts

the distribution of these clusters and the relationship among the classi�ed clusters and the 1500
training instances. This �gure reveals that each training instance is circled to one or more
clusters where the radius of each circle (cluster) exactly equals the square root of threshold
value �. Figure 5 also shows the range and distribution of the control forces. According to
this �gure, these control forces are linearly distributed in the maximum and minimum range.
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Figure 4. Distribution of the classi�ed clusters and training instances.

Figure 5. Distribution of the control forces for the clusters.

The UFN reasoning model is trained based on the sample base. A total of 900 instances
are used as training instances, including 500 untrained and 400 trained instances randomly
selected from the 1500 training instances. The value �dij is calculated based on these 900
instances. Setting the term � as 0.8, the value of Rmax for the fuzzy membership function in
the UFN reasoning model is 0.003. Based on these working parameters, the corresponding
control force for each training instance is generated via the UFN reasoning model. For the
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Table II. Results for some veri�cation instances: Similar samples associated
with the veri�cation instances.

No. of No. of similar Input decision variables Desired Computa- Absolute Relative
veri�cation samples output tional error error (%)
instance Displace- Velocity output

ment

12 3,89,90,92 0.47644 0.56195 0.43529 0.43592 0.00063 0.15
50 1,5,6 0.51481 0.46148 0.54028 0.54041 0.00014 0.03
61 1,2,3,89,92,97 0.45976 0.52995 0.46198 0.45619 0.00579 1.25
100 1,4,5 0.54624 0.49857 0.51217 0.51236 0.00020 0.04
105 1,5,6 0.51463 0.44449 0.55647 0.56244 0.00597 1.07
150 1,3,4,92,98 0.49626 0.54101 0.45993 0.45377 0.00616 1.34
200 1,2,3,91,92 0.47652 0.50555 0.48921 0.49180 0.00259 0.53
300 1,2,3,5,91 0.49330 0.49309 0.50504 0.50345 0.00159 0.31
400 1,2,3,4,5,92 0.49475 0.50859 0.49057 0.49707 0.00651 1.33
450 1,3,4,5 0.52043 0.49968 0.50508 0.50233 0.00275 0.55
509 25,75,76 0.63945 0.30467 0.71926 0.71912 0.00014 0.02
525 68,69 0.40942 0.76716 0.22350 0.23157 0.00807 3.61
539 25,26,76 0.64301 0.22831 0.79308 0.80088 0.00780 0.98
565 74,75 0.67932 0.38123 0.65539 0.64859 0.00680 1.04
570 57,58 0.44587 0.22480 0.75040 0.74223 0.00817 1.09
589 73,74 0.70365 0.42766 0.61670 0.60582 0.01088 1.76
650 5,6 0.54475 0.43925 0.56852 0.56050 0.00801 1.41
750 1,2,5,91 0.48585 0.48320 0.51275 0.50563 0.00712 1.39
789 10,11 0.36103 0.61772 0.35503 0.35447 0.00056 0.16
794 13,14,15,81,100 0.54810 0.72367 0.29745 0.29917 0.00172 0.58
900 1,2,5,6,91 0.49931 0.46027 0.53782 0.53022 0.00760 1.41

900 training instances, the average absolute error equals 0.0047. The error is tolerable and
hence the learning process in the UFN reasoning model is terminated. Table II lists similar
samples associated with randomly selected instances from the 900 training instances. Two to
six similar samples are found for each instance. For example, instances 50 and 105 share the
same similar samples: 1, 5 and 6. However, the computed outputs di�er, and equal 0.54041
and 0.56244. This is attributed to the fact that the associated fuzzy membership values for
these three similar samples di�er from each other in instances 50 and 105. Remarkably, the
average computing time in the UFN reasoning process for each instance is less than 0.001 s.
This �nding implies that the required control force in each time step can be calculated in time
(�t −�tu=0:005 s) and applied to the structure.

Structure control with the UFN-SAP controller: Herein, 2000 training instances of the base
motion one are used to explore the control e�ectiveness of the UFN-SAP controller. Figure
6 displays the controlled and uncontrolled relative displacements under base motion one. This
�gure reveals that the applied control force destroys the gradual rhythmic buildup of the
structural responses. Figure 6 also indicates that the controlled structural responses using the
UFN-SAP controller and those obtained via the numerical formulas in Equations (5) and (9)
are almost identical. Signi�cantly, the results reveal not only the feasibility of the sample
base in representing the dynamic behaviour of the structure but also the high accuracy of the
process of fuzzy synthesizing in the UFN reasoning model.
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Figure 6. Controlled and uncontrolled relative displacements of the SDOF structure input
external excitation: base motion one.

Uncertainty in the input external excitations: Two earthquake recorded data, the Kobe (PGA
=0:834g) and Northridge (PGA=1:779g) earthquakes, referred to as base motion two and
base motion three, serve as the uncertainty input data, and are scaled to 25 per cent of their
original intensity. Figures 7 and 8 display the time history and the corresponding response
spectra of base motion two and three, respectively. Herein, base motion two and three are
used as external excitation to the SDOF structure.
For the SDOF structure system, base motion two and three are employed as unknown input

data. The corresponding control forces are yielded by the UFN-SAP controller based on the
127 samples derived from base motion one. Figure 9 portrays the distribution among the 127
clusters and the instances for base motion two and three. The �gure clearly reveals that some
instances do not belong to any cluster. In this work, the control forces for these instances
approximately equal that of the most similar sample. The results reveal that the responses
of the structure are signi�cantly reduced even through the controller design is based on base
motion one and there are many di�erences between the peak, shape, and amplitude of the
spectra of base motion one and base motions two and three.

Example 2: 3DOF structure system

A 3DOF structure system is also used to investigate the control e�ectiveness of the UFN-
SAP controller. Notably, the parameters for each oor are identical and assumed to be the
same as those of the SDOF structure used in Example 1. Figure 10 depicts the structure with
three active tendon controllers installed, respectively, on each oor. This example also uses
base motion one to generate the instance set that is then used to train and verify the perfor-
mance of the UFN-SAP controller. The pulse duration �tu is also set as half of the sampling
period �t.
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Figure 7. (a) Time history and (b) the acceleration spectrum of base motion two.

Figure 8. (a) Time history and (b) the acceleration spectrum of base motion three.
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Figure 9. Distribution of the classi�ed clusters and the instances for base motions two and three.

Figure 10. Example of the 3DOF structural system.

Controller design and structure control with the UFN-SAP controller: This example uses
the same procedures for designing UFN-SAP controller described in Example 1. However,
the response of the structure is the relative displacements and velocities of each oor. That
is, a training instance is a pair of inputs (structural responses) and outputs (required control
forces), and it is denoted as Xk = b(x1[k]; ẋ1[k];x2[k]; ẋ2[k];x3[k]; ẋ3[k]); (u1[k]; u2[k]; u3[k])c,
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Figure 11. Controlled and uncontrolled relative displacements of the 3DOF structure input
external excitation: base motion one.

where the subscripts, 1–3, denote the number of oors. The pair indicates that, at any time
step, the required control force in each oor is determined based on the response of each oor
at the current time step. Likewise, a total of 2000 instances are obtained based on base motion
one and 1500 instances are randomly selected as training instances. The working parameter,
�, for the UNC model is set as 0.0025 through trial and error. The upper bound (Rmax) of the
quasi-Z type membership function in the UFN reasoning model equals 0.006 as the term � is
set to 0.8.
Based on these parameters, 269 clusters are �rst classi�ed through the 1500 training in-

stances using the UNC model. Next, the suitability of these 269 clusters is veri�ed. The
average absolute error equals 0.0099 per cent for each training instance and hence is tolera-
ble. Meanwhile, the UFN reasoning model is also trained with the aforementioned parameters.
With six input decision variables in each instance, the computing time in the UFN reasoning
model for 1500 training instances is about 1 s. That is, the control force can be calculated
within the period of (�t −�tu) and then applied to the structure in on-line control. Finally,
base motion one is used to investigate the control performance of the UFN-SAP controller.
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Figure 12. Controlled and uncontrolled relative displacements of the 3DOF structure
input external excitation: base motion two.

Figure 11 displays the controlled and uncontrolled displacements for each oor, respectively,
of the 3DOF structure system. The results reveal that the structural responses of the structure
are signi�cantly reduced.

Uncertainty in the input external excitations: Base motions two and three are also used as
the uncertainty input data in this example. The UFN-SAP controller, designed based on the
recorded data of base motion one, is used to control the 3DOF structure system under two
unknown external excitations. Figures 12 and 13 depict the time history of relative displace-
ments, uncontrolled and controlled, for each oor of the 3DOF structure under base motions
two and three, respectively. The �gures reveal that the response of the structure is signi�cantly
reduced even though the UFN-SAP controller is trained based on the data of base motion one.
Table III summarizes the peak values of displacements, uncontrolled and controlled, of the
3DOF structure under three di�erent base motions. The results surely con�rm the ability of
the UFN-SAP controller to handle uncertain information in the input of external excitations.
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Figure 13. Controlled and uncontrolled relative displacements of the 3DOF structure input
external excitation: base motion three.

Table III. Peak values of uncontrolled and controlled relative displacements
for di�erent input base motions.

Base motion Peak values of uncontrolled Peak values of controlled
relative disp. (cm) relative disp. (cm)

1st oor 2nd oor 3rd oor 1st oor 2nd oor 3rd oor

One 2.311 4.109 5.282 0.694 1.025 1.163
Two 3.538 6.455 8.137 0.720 1.103 1.274
Three 1.022 1.825 2.238 0.400 0.635 0.757

CONCLUSIONS

This work presented a novel active structure control model, unsupervised fuzzy neural network
structure active pulse controller, termed the UFN-SAP Controller, to control structures under
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external excitations. The UFN-SAP controller integrates an unsupervised neural network clas-
si�cation (UNC) model [13], an unsupervised fuzzy neural network (UFN) reasoning model
[14; 15], and an active pulse control strategy [22]. The pulse control force in the UFN-SAP
controller aims to eliminate the cumulative structural responses. For a structure under a given
base motion, �rst, the training instances are obtained using the active pulse control algorithm.
Then, these instances are systematically classi�ed into certain number of clusters according to
the response of the structure using the UNC model. These clusters with their corresponding
control forces are gathered as a sample base. With any unknown base motion, the correspond-
ing control force at each time step for the structure is then derived according the response in
the current time step and samples in the sample base using the UFN reasoning model.
Two structure systems, an SDOF and a 3DOF, under three di�erent base motions are used

to explore the control e�ectiveness and capability of handling uncertain input information for
the UFN-SAP controller. Examination of the SDOF system reveals that the active control
algorithm destroys the gradual rhythmic buildup of the structural response and signi�cantly
reduces the structural responses at the peak of the relative displacements. Additionally, the
response of the structure are signi�cantly reduced for base motions two and three even the
UFN-SAP controller is designed based on the recorder data of base motion one. Remarkably,
there are many di�erences in the peak, shape, and amplitude of the spectra of base motion
one and base motions two and three. Meanwhile, a 3DOF structure system with active control
device installed in each oor, respectively, demonstrates the control e�ectiveness and capability
of handling unknown input data of the UFN-SAP controller. The results also reveal that the
structural responses for each oor are signi�cantly reduced throughout the time history. The
UFN-SAP controller is thus clearly useful and extendable to a system with much greater
freedoms and non-linear systems.
The control performance of the UFN-SAP controller is heavily dependent on the selection of

the working parameter, �. The smaller � is, the more clusters can be classi�ed in the instance
base, but also the greater the computing time. On the other hand, the larger � is, the fewer
clusters can be derived in the instance base, and these clusters may be insu�cient to represent
the dynamic behaviour of the structure. This work adopts a heuristic approach to assist the
user to obtain an appropriate parameter � with a minimum of trail-and-error iterations. That
is, the distribution of the corresponding control forces for classi�ed clusters will be well-
distributed within the range of maximum and minimum values. Meanwhile, the results for
the veri�cation process in the UNC model can provide further information for selecting an
appropriate parameter �. A more systematic approach for selecting working parameters is
currently being investigated to enhance the e�ectiveness of the UFN-SAP controller.
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