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Abstract

We present a novel approach of shape matching and recognition of 3D objects using arti"cial potential "elds. The
potential model assumes that boundary of every 3D template object of identical volume is uniformly charged. An initially
small input object placed inside a template object will experience repulsive force and torque arising from the potential
"eld. A better match in shape between the template object and the input object can be obtained if the input object
translates and reorients itself to reduce the potential while growing in size. The template object which allows the
maximum growth of the input object corresponds to the best match and thus represents the shape of the input object. The
above repulsive force and torque are analytically tractable for an input object represented by its boundary samples, which
makes the shape matching e$cient. The proposed approach is intrinsically invariant under translation, rotation and size
changes of the input object. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the major problems in computer vision is object
recognition. Many existing algorithms simplify the prob-
lem by reducing it to a shape matching and recognition
problem. In this paper, we propose a method for match-
ing and recognition of 3D objects using a potential "eld
model.

1.1. Shape matching and recognition of 2D objects

Although the recognition of 3D objects is of primary
interest in computer vision, many 2D shape matching
algorithms are developed for situations which can be
regarded as two dimensional. Template matching
methods are presented in [1}3] for object recognition.
Fourier descriptors [4,5] transform the coordinates of
boundary points into a set of complex numbers for
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the matching. Moments of 1D functions representing
segments of shape contours are used in the matching in
[6}9]. Stochastic models, e.g., autoregressive models, are
used for shape classi"cation in [10}12]. In [13}15], the
boundary of a region is represented by a sequence of
numbers and the shape matching is accomplished by
string matching. Other shape-matching methods involve
"nding the polar transform of the shape sample [16] or
calculating the distances of the feature points from the
centroid [17], etc. In [18], the shape matching is accom-
plished by graph matching for multilevel structural
descriptions of shape samples. Multiple 1D matching
processes for multiscale curvature descriptions are ad-
opted in [19] in building shape models. Usually, the
scaling of the object, the viewscale of the shape contour,
and the rotation and the translation of the object need to
be determined before a "nal matching process can take
place. The matching process may involve the matching of
binary images, discrete 1D data, or extracted shape fea-
tures arranged into structured data.

In [20], a potential-based approach for 2D shape
matching is proposed. The matching process involves the
minimization of a scalar function, the potential. The
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Fig. 1. The basic shape-matching procedure: (a) place a (size-
reduced) template inside the input region, (b) translate and (c)
rotate the template to reduce the potential, then (d) increase the
size of the template.

potential model assumes that the border of any 2D
region is uniformly charged. If a shape template is small
in size and can be placed inside a region whose shape is to
be determined, the template will experience repulsive
force and torque arising from the potential "eld. The
basic idea of the approach is to achieve a better match in
shape between the template and the given region by
translating and reorienting the template along the above
force and torque directions, respectively, toward the con-
"guration of the minimum potential. The template is
then expanded and its con"guration readjusted until the
template almost touches the border of the given region
(see Fig. 1). For a selected group of shape templates, the
template with the largest "nal size is considered as the
best match. Such an approach is intrinsically invariant
under translation, rotation and size changes of the shape
sample.

1.2. 3D object matching and recognition

The recognition of 3D objects is one of the most
challenging problems in computer vision. The recogni-
tion is much harder than the 2D case because of the
complexity involved with the extra degree of freedom.
Instead of extending the concepts adopted in the 2D
approaches presented in Section 1.1 to three dimensions,
most of 3D recognition works are based on the analysis
of 2D scenes.

Several recognition systems extract features from 2D
images and match them to corresponding features in
a database of 3D object models. The approaches turn the
recognition process into a procedure of verifying each
candidate hypothesis and "nally ranking the veri"ed
hypotheses. In [21], some invariant features are extracted
from triplet of surfaces and then constructed into an
invariant feature indexing (IFI) of interpretation table. In
the veri"cation process, the extracted features are used to

prune the hypotheses which are incorrect. A method
based on the rotational symmetry is proposed in [22] to
reduce the number of hypotheses. Further improvement
is proposed in [23] based on a multiview and multigroup
approach. In the BONSAI system proposed in [24],
a constrained search mechanism is used. The features
extracted from the CAD model are represented by an
interpretation tree (IT) and the search space is pruned by
pose estimation.

Other approaches of recognition of 3D objects from
2D images use di!erent image features. In [25], triangle
pairs and quadrilateral pairs are used as features. In [26],
edges of a 3D object are described by second-order equa-
tions and a transformation from a feature of a 3D object
model to a 2D image feature is established. With such
a transformation, proper alignment between a trans-
formed 3D model and a possible image of the model can
be obtained. In [27], the edges of a polyhedral 3D model
are described by a weighted graph and the matching
process is carried out using the Laplacian matrix. In [28],
probabilistic indexing is used to determine whether there
is a correspondence between projections of a 3D model
and a 2D image. In [29], Fourier transform of the bound-
ary description of a 3D model is "rst obtained, which is
then used in the matching through clustering.

Several physically based computer vision methods
have been proposed for the representation and recogni-
tion of 3D objects using the "nite element method. In
[30], in order to de"ne virtual forces which deform an
object to "t a set of data points, springs are attached to
pairs of corresponding object and data points. The shape
matching is achieved by identifying the equilibrium dis-
placement of the springs. In [31], a dynamic balloon
model represented by using a triangular mesh is driven
by an outward in#ation force, while the vertices in the
mesh are linked to neighboring vertices through springs
to simulate the surface tension and to keep the shell
smooth, until the mesh elements reach the object surface.
The system includes an adaptive local triangle mesh
subdivision scheme that results in an evenly distributed
mesh. In [32], a 3D object is regarded as an isolated
conductor. By assuming a piecewise constant charge den-
sity for each triangle of a triangular mesh, the segmenta-
tion is achieved by identifying surface concavities by
tracing local charge density minima.

1.3. The proposed approach

In this paper, the potential-based shape-matching ap-
proach presented in [20] is extended to three dimensions
using a generalized potential model presented in [33].
The goal is to develop a potential-based 3D shape-
matching algorithm which, as its 2D counterpart, can
correctly and e$ciently perform the matching without
knowing the exact information about the location, ori-
entation and size of the input object. Furthermore, the
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Fig. 2. A polygonal surface S in the 3D space.

Fig. 3. Geometric quantities associated with a point, an edge C
�

(subscript i is omitted) of S shown in Fig. 2 and the plane
Q containing S.

proposed shape-matching scheme is not based on any
hypothesis of feature correspondence. Therefore, feature
extraction of an input object which is required for a struc-
tured object representation is not needed.

In Section 2, the generalized potential model is brie#y
described. According to such a model, the repulsion
between two 3D objects, one with polyhedral description
and the other represented by point samples on its surface,
can be evaluated analytically. In Section 3, a potential-
based shape-matching algorithm using these analytic
results is developed. Some computer implementation
details of the matching algorithm are also presented.
Simulation results for the shape matching of some 3D
objects are presented in Section 4. Section 5 presents
some concluding remarks.

2. Generalized potential 5elds in the 3D space

In [33], it is shown that the Newtonian potential,
being harmonic in the 3D space, cannot prevent a
charged object point from running into another object
whose surface is uniformly charged. This is because the
value of such a potential function is "nite at the continu-
ously charged surface. Subsequently, generalized poten-
tial models are proposed to assure collision avoidance
between 3D objects. The potential function is inversely
proportional to the distance between two point charges
to the power of an integer and, as reviewed next, the
potential and thus its gradient due to polyhedral surfaces
can be calculated analytically. The shape-matching ap-
proach proposed in this paper will use these results to
evaluate the repulsion between template and input
objects.

Consider a planar surface S in the 3D space as shown
in Fig. 2; the direction of its boundary, �S, is determined
with respect to its surface normal, n( , by the right-hand
rule, u(�lK"n( , where u( and lK are along the (outward)
normal and tangential directions of �S, respectively. For
the generalized potential function, the potential value at

r is de"ned as

�
�

dS

R�
, m*2, (1)

where R"�r�!r�, r�3S, and integer m is the order of
the potential function. The basic procedure to evaluate
the potential at r is similar to that outlined in [34] for the
evaluation of the Newtonian potential (m"1) and can be
summarized as follows:

(i) Write the integrand of the potential integral over S as
surface divergence of some vector function.

(ii) Transform the integral into the one over �S based on
the surface divergence theorem.

(iii) Evaluate the integral as the sum of line integrals over
edges of �S.

Related geometric quantities associated with an edge
C

�
of S in the plane containing S, Q, are shown in Fig. 3

for r�3C
�
. Without the loss of generality, it is assumed

that

d �
" n( ) (r!r�)'0 (2)

which is equal to the distance from r to Q.
For (i), we have (see [33])

1

R�
"�

�
) ( f

�
(R)P), (3)

where P is the position vector of r� with respect to the
projection of r on Q, r

�
, and

f
�
(R)"�

logR

R�!d�
, m"2,

!1

(m!2)R���(R�!d�)
, mO2.

(4)
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�Detailed discussions concerning some special cases for the
potential calculation, e.g., for P�"0 or d"0, etc., as well as the
associated collision avoidance property can be found in [33].

� In this paper, only m"3 is considered. The increase of the
value of m will increase the contribution to the potential due to
nearest boundary points of an object. In any case, the matching
should perform equally well since no collision between the input
object and the template is allowed.

Note that if r
�

is inside S, f
�
(R) will become singular

for some r�"r
�
, i.e., R"d. Let S� denote the intersec-

tion of S and a small circular region on Q of radius � and
centered at r

�
, the potential due to S can be evaluated as

�
�
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where
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g
�
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� log d, m"2,
�
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, m'2,

(7)

P�
�

is the distance between r
�

and C
�
, l

�
is measured from

the projection of r on C
�
along the direction of lK

�
, and � is

the angular extent of the circumference of S� lying inside
S as �P0. For example, �"2� if r

�
is inside S, �"� if

r
�

is on an edge of S and � is equal to the angle between
two edges if r

�
is a vertex of S where the two edges are

connected. (For simplicity, the subscript i is omitted
whenever it is appropriate.)

Since f
�
(l) is a rational function for even m's when

mO2 and is rationalizable for odd m's (see [35]), the line
integrals can always be evaluated in closed form except
for m"2. For example, if P�O0, then we have�

�
�
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�
(l) dl"�

�
	

�
�
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�
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1

P�d�tan��
l�d
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l	d

P�R	�. (8)

with R� and R	 equal to the distances from r to the
two end points of C, respectively. Thus, the repulsive
force exerted on a point charge due to S can be found
analytically by evaluating the gradient of the following
function�

	(x,y, z)"
1

z
tan��

xz

y�x�#y�#z�
, (9)

at some (x, y, z)'s.

For the potential-based 3D shape matching, the evalu-
ation of the repulsion between two 3D objects involves
the calculation of the repulsion between pairs of poly-
gons; each pair has a polygon from the template object
and the other from the input object. For continuously
charged object surfaces, it is obvious that the direct
calculation of the potential between two polygons re-
quires a quadruple integral. To simplify the mathematics,
the input object is approximately represented by a set of
point samples on its surface in this paper. The repulsion
between two 3D objects, in forms of repulsive force and
torque, can then be estimated in closed form through
superposition using the above analytical expressions.
The repulsion will be used in the shape-matching process
discussed next.

3. The potential-based shape matching

In this paper, a potential-based approach to 3D shape
matching is proposed. The matching process is a direct
extension of the 2D approach presented in [20]. While
the matching procedure for 2D shapes starts with a shape
template placed inside an input object, the 3D matching
considered in this paper is performed by "rst placing
input data (which may be obtained from a partial object
surface) inside a shape template.

3.1. The shape-matching process

For the shape-matching process, the following opera-
tions are performed with an input object placed inside
a template object (see Fig. 4). Since the potential function,
and its gradient, will increase inde"nitely (e.g., g

�
(�) in

Eq. (7) will diverge as dP 0 if �O0) as a point of the
input object approaches the boundary of the template
object, the input object will be con"ned inside the tem-
plate object throughout the matching process if su$cient
samples are taken from the surface of the former.

Step 1: Potential minimization through translations
(a) Compute the total force between the template object

and the input object. Find the minimum potential
position of the latter along the above force direction.

(b) Repeat (a) until two consecutive executions of (a)
result in negligible di!erence in the two minimum
potential positions found.

Step 2: Potential minimization through rotations
(a) With the centroid of the input object chosen as the

rotation center, compute the total repulsive torque
between the template object and the input object.
Find the angular position of minimum potential for
the input object by rotating it with the rotation axis
aligned with the above torque direction.

(b) Repeat (a) until an execution of it results in negligible
di!erence in the angular position of the input object.
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Fig. 4. The basic shape-matching procedure: (a) place a (size-
reduced) input object inside a template object, (b) translate and
(c) rotate the input object to reduce the potential, then (d)
increase the size of the input object.

�The precision in specifying the object position and orienta-
tion are arbitrarily chosen such that the con"guration change
due to further minimization of the potential is not noticeable.

Step 3: Scaling
With the centroid of the input object "xed in space,
and with the constraint that the object remains inside
the template object, "nd the maximum size of the
input object.

Step 4: End the matching process if the execution of
Step 3 results in negligible size change of the input object;
otherwise, go to Step 1.

3.2. Implementation of the algorithm

3.2.1. Implementation of Step 1
Since the input object is located inside the template

object and a contact between them will result in an
in"nite potential value, the minimum potential position
always exists along the initial force direction found in
Step 1(a). (Situations involving multiple local minima in
potential will be discussed later in this section.) For the
computer implementation, the minimal potential posi-
tion is identi"ed e$ciently by performing a gradient-
based binary search using the projection of the repulsive
force along the initial force direction. The precision in
specifying the location of the input object is chosen to be
0.1% of the length of the template object.�

Although a minimal potential position along the initial
force direction can be found with an execution of Step
1(a), it is possible to reduce the potential further by
searching for minimum potential con"guration of the
input object in a di!erent direction (ideally orthogonal to
the previous search direction) in the 3D space. In Step
1(b) this is done by recalculating the total repulsive force
then repeating Step 1(a). The search process ends when
the object translation due to two consecutive executions
of Step 1(a) is negligible, i.e., less than 0.1% of the length
of the template object.

3.2.2. Implementation of Steps 2 and 3
While the repulsive force is used to translate the input

object to a position of minimum potential in Step 1, if the
input object is allowed to rotate, it is possible to reduce
the potential further. (The choice of the object centroid as
the rotation center is mainly for the convenience of the
computer implementation and will have little e!ect on
the shape matching results.) Therefore, the minimum
potential object orientation is determined in Step 2 of the
proposed shape-matching algorithm. Because the degree
of freedom of object rotation in searching for such an
orientation is comparable to that discussed in the pre-
vious section for object translation, the minimization
procedure is similar to that of Step 1. The precision in
specifying the 1D potential minimum in Step 2(a) is
chosen to be within 0.53 of the object angular position.

The process of maximizing the size of the input object
in Step 3 is similar to the processes discussed above for
"nding the object con"guration of minimum potential.
The center of expansion of the object is conveniently
chosen as its centroid. The associated binary search is
carried out with a "nite number of iterations determined
by the closest distance allowed between the input object
and the template object. For the simulation results pre-
sented in this paper, the closest distance is chosen to be
0.1% of the length of the template object.

3.2.3. Initial object conxgurations
For the process of "nding the minimum potential

con"guration of an input object, the result corresponds
to a local minimum of the potential function. In general,
depending on the initial object con"guration, such a
result may not correspond to the global minimum. For
example, consider the two rectangles shown in Fig. 5. As
the inner rectangle rotates with respect to its centroid, the
potential will have local minima at four di!erent angular
positions with two of them do not correspond to the
global minimum in the potential value. In order to
resolve such a problem, multiple initial object con-
"gurations are tried out for each of the shape matching
problems considered in this paper.

For the implementation of the proposed approach, it is
assumed that the input object is initially placed near the
centroid of a template object. Subsequently, the object is

J.-H. Chuang et al. / Computers & Graphics 25 (2001) 211}222 215



Fig. 5. With its centroid chosen as the rotation center, the inner
rectangular will experience local minima in the potential value
at four angular positions.

Fig. 6. The arbitrarily chosen object axis is passing through the
object centroid and is parallel to the z-axis.

�To improve the e$ciency of the proposed approach, it will
be more desirable if less initial con"gurations can be used while
the matching result will not be a!ected. Such an important issue
is currently under investigation.

Fig. 7. Four directions of object axis used to generate 12 initial
object orientations.

rotated into di!erent orientations each used in a separate
shape matching process. For simplicity, the centroid of
the input object is chosen as the rotation center and the
line containing the centroid and parallel to the z-axis is
chosen as the axis of the object (see Fig. 6). With the axis
initially pointed to vertex A of the tetrahedron shown in
Fig. 7, the object is rotated such that the axis is pointed to
three other vertices B, C, and D. For each of the four axis
directions, the object is rotated by 0, 120, and 2403 with
respect to the object axis, respectively, to generate three
initial object orientations. Therefore, there are 12 di!er-
ent initial orientations totally. Initial object con"gura-
tions thus generated seems to work well for the
shape-matching problems considered in this paper,� as
presented next.

4. Simulation results

We now present some experimental results. The po-
tential-based shape-matching system was tested using
databases of 3D object models obtained from:

� Washington State University, NETLIB scienti"c data
repository.

� University of South Florida's vision research group.
� Michigan State University's PRIP Lab.

The object models comprise not only simple polyhedra
but also curved objects and objects with complex ge-
ometry. Fig. 8 shows images of some of the object models.
A text "le which contains lists of vertices, polygons, and
surfaces of the associated polyhedral representation can
be obtained for each object model.

In the following experiments, shape templates are rep-
resented by complete polyhedral surfaces given in the
databases. Simulation will "rst be performed for `ideala
input objects, i.e., point samples of an input object are
obtained by directly using the above list of vertices.
Non-ideal cases will then be considered which include
missing vertices due to a partial view of an object and the
perturbation in vertex locations. Finally, simulation will
be performed to show the e!ect of sampling.

4.1. `Ideala case

In this section, we "rst choose nine simple polyhedra
from the databases as shape templates and pick four of
them as input objects. Figs. 9(a)}(d) show the shape-
matching results for the four input objects, respectively.
In each of the "gures, the matching results shown for
each template object include (1) one of the initial input
object con"gurations, (2) the "nal (size maximized) input
object con"guration and (3) the template object whose
con"guration remains unchanged throughout the
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Fig. 8. Images of some object models.

	Although vertices, not polygons, of an input object are used
in shape matching, the percentage of the latter will be a good
estimate of the former for an evenly and densely sampled object
surface.

Table 1
Boundary elements and CPU times for examples shown in Figs.
12 & 13

Vertices/polygons (%) CPU time (s)

Dean 8/3(73/36) 2.66
Dodecahdrn 16/6(80/50) 2.38
M-104 17/11(77/55) 5.24
M-110 20/9(71/41) 4.91
M-112 47/26(72/62) 29.88
Propane 97/33(76/50) 26.62
Piston 259/192(67/50) 381.76

matching process. The best match which correctly identi-
"es a shape template for one of the input objects is
marked with a `Va. The CPU times spent on a Sun4u
Sparc Ultra-1 workstation for the best matches shown in
Figs. 9(a)}(d) are equal to 7.6, 32.0, 38.2, and 34.7 s,
respectively. (For these relatively simple shape templates
and input data, an execution of the matching process
presented in Section 3.2 takes less than 45 s.) Note that
for each pair of shape template and input object, the time
spent in the matching is determined not only by the
number of primitives representing the two but also by
their shapes. For example, while more primitives are used
in obtaining the best match in Fig. 9(b) than that in Fig.
9(c), the former in fact takes less time to calculate.

The proposed shape-matching method is also tested
for more complex situations involving curved objects.
Fig. 10 shows the matching results for propane and piston,
respectively. Because of the similarity in their shapes, the
same number of con"guration and size adjustments de-

scribed in Section 3.2 are carried out in deriving the best
matches. The CPU time spent in calculating the two best
matches are equal to 30.1 and 513.5 s, respectively. The
ratio of them (513.5/30.1"17.1) is very close to the ratio
of the products of the number of the vertices and the
number of polygons of the two objects (�
���
�

��
���
"17.5).

To further demonstrate the dependency of the computa-
tion time on the amount of input data, Fig. 11 shows the
CPU time spent in the shape matching if di!erent num-
bers of vertices of propane are used. It is readily observ-
able that the former is a linear function of the latter.

In general, the input data may not be acquired with
perfect conditions. For example, the data may be ob-
tained with some noise contaminations, or part of the
data may not be available due to a partial view of the
object. Simulations of some of these non-ideal cases are
given next.

4.2. Shape-matching results for some non-ideal cases

4.2.1. Shape-matching based on a partial view
To simulate the shape matching for input objects with

incomplete surface descriptions, e.g., due to a partial
view, it is assumed that only the vertices of a portion of
the polygons of a shape model are available as input
data. Fig. 12 shows partial object surfaces of some
shape models and the corresponding shape-matching
results. Similar results for objects with more complex
boundary descriptions are shown in Fig. 13. Table
1 shows the computation times as well as the amounts of
di!erent boundary elements,	 and the percentages
of these numbers with respect to those of the com-
plete object boundary, of the input objects shown in
Figs. 12 and 13.

For each of the input objects which has been
considered earlier in the previous section for shape-

J.-H. Chuang et al. / Computers & Graphics 25 (2001) 211}222 217



Fig. 9. Shape-matching results obtained for four input objects.

Fig. 10. Shape-matching results for propane (left) and piston
(right).

matching, there is a reduction in the CPU time in this
case due to a reduction of the amount of boundary
elements (vertices) used. However, the former is not pro-

portional to the latter in general since the e!ective shape
of the input object is changed.

4.2.2. Input data with noise contamination
To simulate the shape matching for input data with

data acquisition errors, noises are added to the locations
of point samples of the input object. To just demonstrate
the basic idea, the noise condition is simpli"ed by consid-
ering only the perturbation in one dimension. For each
of the two cylindrical objects shown in Fig. 10, per-
turbations are introduced by adding noises uniformly
distributed between $5 and $10%, respectively, of the
coordinates of object vertices measured from its centroid
along the direction of the cylinder's axis. Fig. 14 shows
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Fig. 11. The CPU time spent in the shape-matching for propane as a function of the amount of input data.

�While the vertices are uniformly distributed along each of the
above circumferences, this is not true for the 383 vertices at the
rim. Thus, a tilt can be observed from the shape-matching result.

� Ideally, the process should perform a `coarse feature extrac-
tiona to get `meaningfula samples.

the shape-matching results with the above additive
noises. While these results are consistent to those
obtained for the noise-free case, the noises result in
a small drop in the "nal size of the input object.

4.2.3. Ewects of sampling
Intuitively, in order to properly represent an object

with point samples on its surface, it would be desirable
that these samples are dense enough and have a near-
uniform distribution. Nevertheless, for the shape-match-
ing examples considered in the previous sections, the
vertices of the corresponding shape models, or a subset of
such vertices, are used directly as simulated input data
(point samples) of an object. Despite the satisfactory
shape-matching results presented so far, there are certain
occasions when using such data will cause a problem.

Fig. 15(a) shows an unsuccessful shape-matching
example for a cap-shaped object whose boundary con-
sists of two cylindrical surfaces of di!erent cross sections,
the rim connecting them, and two circular bases. While
there are 128 vertices along each circumference of the two
circular bases, there are 383 vertices located at the rim.
Due to such a highly uneven distribution of point sam-
ples, the matching process yields a "nal, minimal poten-
tial, con"guration of the input object which moves the
above (heavily sampled) rim near the central region of the
shape template, and in turn pushes one of the bases
against the template's boundary.�

To examine the e!ect of sampling further on an empiri-
cal basis, the following simple adjustment to the above
problem is considered: only a subset of the vertices, i.e.,
the 256 vertices on the circumferences of the two bases,
are used as input data. Fig. 15(b) shows the shape-match-
ing result thus obtained. One can see easily that the
aforementioned problem is not presented here.

4.2.4. Discussion
In the previous sections, the proposed shape-matching

method is shown to work for certain non-ideal cases.
However, it is easy to see that, like other shape-matching
approaches, such an approach will fail to work at some
point as the situation gets worse. For example, depending
on the viewing angle or the severity of an occlusion, input
data obtained from partial object surfaces may not convey
enough information regarding the object shape that the
shape-matching process will generate an erroneous re-
sult. Similar arguments also apply to the noise condition.

On the other hand, it is possible for the proposed
approach to use raw data of an input object, in the form
of object points, without "rst establishing a structural
relationship among the data points if the points have
a dense or sparse, fairly uniform distribution and
cover enough shape features of the object. For input
data not possessing such desirable attributes, the pro-
cesses of (i) "tting (polyhedral) surfaces to the raw data,
and (ii) obtaining near uniformly distributed point
samples from these surfaces may be necessary before
desirable object samples can be obtained.� Such issues
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Fig. 12. Matching results using partial views of, from top to
bottom, dean, dodecahdrn, M-104, M-110, and M-112.

Fig. 13. Matching results using partial views of propane and
piston.

Fig. 14. Matching results with (a) 5% and (b) 10% noise con-
tamination in the input data.

Fig. 15. (a) An unsuccessful shape-matching result due to
a highly uneven distribution of input data. (b) The result ob-
tained by using a subset of the input data.

have been considered by several researchers, e.g., those
in [31].

Fig. 16(a) shows a 240�240 range image of adapter.
Since very dense (about 40,000) point samples are ob-
tained for the visible surfaces of the object, the above
(i) and (ii) are not performed. Instead, in order to reduce
the computation complexity, the set of samples are
downsized by randomly selecting about 300 of them.
Figs. 16(b) and (c) illustrate the top and side views of the
shape-matching result, respectively, using these subset of
samples directly. Fig. 16(d) shows the matching result
using the range image of the object.

There are certain types of objects for which the pro-
posed isotropic scaling scheme will not perform perfectly.
For example, for bigwye shown in Fig. 8, an input object
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Fig. 16. Shape-matching result for range data (see text).

Fig. 17. Another unsuccessful shape-matching result.

of identical shape will not grow fully after the matching
process, as shown in Fig. 17. (As a simpler 2D example
of such a problem, consider the process of growing
a size-reduced I-shaped object in the corresponding
2D-shaped model.) More involved scaling scheme will
need to be developed to overcome such a problem.

5. Conclusions

A novel approach of shape-matching and recognition
of 3D objects using generalized potential "elds is pro-
posed in this paper. The potential-based model assumes
that 3D object boundaries are uniformly charged. An
initially small input object placed inside a template object

can translate and reorient itself to reduce the repulsive
potential. If the input object is allowed to increase its size
in template objects of di!erent shapes, the template ob-
ject which allows the largest "nal size of the input object
will correspond to the best match. Such an approach is
intrinsically invariant under translation, rotation and
size changes of the input object.

For an input object represented by its boundary sam-
ples, the above process of potential reduction can be
carried out e$ciently since the resultant potential
gradients, in the forms of repulsive force and torque
exerted on the object, are analytically tractable. Simu-
lation results show that the potential-based shape-
matching scheme has the time complexity as a linear
function of the boundary samples and works to some
extent for a partial view of an object. Moreover, due to
the nature of the potential model, such a scheme per-
forms satisfactorily against noise contamination in the
input data. The proposed shape-matching scheme is not
based on any hypothesis of feature correspondence.
Therefore, feature extraction for a structured object
representation is not needed.
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