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Abstract

The distinguished features of video retrieval lie in the similarity measures and content-based retrieval. Most research
on content-based video retrieval represents the content of video as a set of frames, leaving out the temporal ordering of
frames in the shot. In this paper, the similarity measures of video content are investigated. We propose a series of
similarity measures based on the similarity of frame sequence which take temporal ordering into consideration. All the
algorithms corresponding to the similarity measures are based on the approach of dynamic programming. © 2001
Published by Elsevier Science B.V.
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1. Introduction

Video access is one of the important design issues in the development of multimedia information sys-
tems, video-on-demand and digital libraries. Video can be accessed by attributes of traditional database
techniques (Little et al., 1993; Rowe et al., 1994), by semantic descriptions of traditional information re-
trieval technique (Wu et al., 1995), by visual features and by browsing (Furht et al., 1995).

To support video access by visual features and browsing, structural and content analysis of video must
be performed so that video can be indexed and accessed (Zhang et al., 1993). Having performed the process
of video parsing, a sequence of key frames is extracted from each segmented video shot. A sequence of key
frames is a representative set of images for each shot.

For each video shot, the video index is constructed based on visual features of the corresponding sequence
of key frames. That is, each video shot V' is associated with a sequence of visual features, (v, vs,...,0x),
where N is the number of key frames, and v;, 1 <j< N, is an f-dimensional vector of visual feature value.

Most researchers defined shot similarity as the similarity of the images chosen to represent each shot
(Flickner et al., 1995; Zhang et al., 1995). Some approaches defined shot similarity based on the similarities
between two key frame sets (Yeung and Liu, 1995; Zhang et al., 1995). The similarity between two shots U
and V is defined as SIM (U, V) = Max ({sim(u;, v;) |Vi, 1 <i<M, Vj, 1<j<N}).
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This definition assumes that the similarity between two clips can be determined by the most similar pair
of key frames.

Zhang et al. (1997) also defined another similarity according to the sum of the most similar pair of key
frames as SIM (U, V) = (1/M) 31, Max ({sim (u;, v)) | ¥/, 1 <j<N}).

Note that this definition is asymmetric. The complexity of calculating the above similarity measures is
O(M x N). The above similarity measures leave out all the temporal information of the shots. A more
precise measure of shot similarity should incorporate temporal information.

In the approach developed by Zhong et al. (1995), temporal variation, camera operation and statistic
motion features were used to represent the temporal information of shots for similarity measure. However,
this approach did not take temporal ordering into consideration.

Dimitrova and Abdel-Mottaled (1997) presented an approach for video retrieval from a large archive of
MPEG or Motion JPEG compressed video clips. Video clips are characterized by a sequence of repre-
sentative frame signatures, which are constructed from DC coefficients and motion information. The
similarity between two video clips is determined by the average distance of corresponding frames between
two videos as the similarity measure.

In the approach proposed by Mohan (1998), videos are matched based on similarity of temporal activity.
Video sequences are represented as a sequence of feature vectors computed from compressed MPEG videos.
Query video sequence is matched against the video sequences in a database using sequential matching.

We proposed similarity measures based on similarity of frame sequence (Shan and Lee, 1998). A set of
similarity measures was developed. The similarity was measured on the basis of the maximum-likelihood
criterion.

Adjeroh et al. (1999) presented a distance measure for video sequences. In this approach, a video se-
quence is represented as a string, called the vstring. The problem of video sequence matching is therefore
formulated as the pattern matching problem. The distance measure is based on the concept of string-editing
distance. Five editing operations, insertion, deletion, substitution, swap, and fusion, are considered.

Standard video hierarchical model classifies video sequences into four levels according to level of tem-
poral resolution. The lowest level is a series of frames. At the next higher level, frames are grouped into
shots. A shot is a continuous camera recording. Consecutive shots are aggregated into scenes based on
story-telling coherence. For scene-based video retrieval, it is beneficial for users to access by incorporating
temporal ordering information.

In this paper, we propose a framework for similarity measures between video clips. We will use clip to
stand for any temporal level of video in the rest of this paper. In contrast to the work of Adjeroh et al.,
where a unique distance is defined, a series of similarity measures based on similarity of frame sequence is
proposed. The proposed approach gives users the freedom to specify the temporal constraints. Moreover,
our proposed measure is measured on the basis of maximum likelihood of frames, instead of minimum
editing distance. In other words, we consider the mapping of similar frames and measure the similarity as
the sum of the distance between mapped similar frames.

For each similarity measure, the corresponding algorithm is also described. All these algorithms are
based on the dynamic programming approach (Aoe, 1994; Saoke and Chiba, 1990) and take O(M x N) of
computation time.

In the next section, we present the proposed similarity measures and algorithms. The result of perfor-
mance analysis is described in Section 3. Section 4 concludes the paper.

2. Similarity of frame sequence

In our framework, we use similarity measures that are consistent to the perception of human beings.
People often judge the similarity between videos by common subsequence. In this section, we present
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several similarity algorithms based on the similarity of frame sequence. Also note that, in this section,
examples are given to illustrate the computation of the algorithms. For the sake of clarity, each frame in the
examples is represented as an integer, instead of an f-dimensional feature vector. This does not affect the
correctness of the algorithms, since the assumption of these algorithms lies in the availability of distance
function between frames.

2.1. Symmetric similarity measures

A similarity measure is symmetric if D(U, V) = D(V,U). The symmetric measure is used in the video
clustering or query-by-video example. The straightforward measure of similarity is the one-to-one optimal
mapping. We try to map as many pairs of frames as possible under the constraint that each frame u; in U
corresponds to only one frame v; in V. Obviously, the maximal number of mapping pairs is equal to the
number of frames of the shorter clip (clip with less number of frames). The mapping with minimum sum of
frame distance is selected as the optimal mapping. The formal definitions are given as follows.

Definition 1. Given two video clips U = (uj,up,...,uy), V = (v1,02,...,0y) and the distance
d(u;,v;) Vi, 1<i<M, Vj, 1<j<N, a mapping between them is a one-to-one relation Ry from
{1,2,...,M} to {1,2,...,N}, such that

(1) |Rm| = min{M, N}, where |Ry| denotes the cardinality of Ry;

(2) for any two ordered pairs (i, /), (k, /) in Ry, (j < I) if and only if (i < k).

Definition 2. Given two video clips U = (uj,ua,...,uy) and ¥V = (vy,v2,...,0y), the distance between U
and ¥ for a given mapping Ry, Dg,, (U, V), is defined as

Dy (U, V)= > d(us,vy).

V(ij)ERm

Definition 3. Given two video clips U = (uy,us,...,uy) and V = (vy,vs,...,0y), the distance between U
and V for optimal mapping (OM) is defined as

Dom(U, V) = min{Dg,, (U, V)}.
VRMm

The solution of Doy (U, V') can be found based on the approach of dynamic programming. Assume that the
shorter clip is U and the longer one is V. First, from Definition 1, it is obvious that each frame of U must be
matched with a frame of V. Our goal is to find the subsequence of ¥ which is the most similar to U. Let
Dli, j] be the minimum cost of mapping between (uy,us, ..., u;) and (vy,vs,...,v;). Dynamic programming
tries to find a relation between D[m, n] and D[i, j] for some combinations of smaller is and Js. It is not hard
to see that there are two possibilities:

map: the frame v, is mapped with the frame u,,, D[m,n] = Dim — 1,n — 1] + d(u,,v,);

ignore: the frame v, is not selected to map with the frame w,,, D[m,n] = D[m,n — 1].

Note that it is not permitted to ignore frames of U. The reason, which has been discussed earlier, comes
from Definition 1. Combining these two cases, we get the following recurrence relation for the solution of
l)OM(l]7 V)

D[m - l,n - 1] +d(um7vn)7

D([m,n] = min { Dlm,n — 1],

with D[0, ] =0, for all j, 1 <j< N, and D[i,0] = oo, for all i, 1 <i<M.
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The setting of initial values can be understood as follows. D|0, j] denotes the distance between ( ) and
(v1,02,...,0;), where () is a null sequence. Therefore, D[0, /] = 0, for all j, 1 <j<N. DJ[i,0] denotes the
distance between (uy,uy, ..., u;) and ( ). As discussed earlier, each frame of U must be mapped with a frame
of V. It is impossible to map frames of U with those of null sequence ( ). Therefore, D[i, 0] = oo, for all
i, 1<i<M.

The algorithm for the solution of optimal mapping is listed as follows. Moreover, note that the relation
Ry can be constructed by backtracking the matrix D[M, N].

Algorithm (Optimal mapping (OM)).
if M > N then{
for i =0 to M do D[i,0] = 0;
for j =1 to N do D|0, ] = oc;
fori=1to M do
for j=1to N do
Dfi, /| = min(Dli — 1,/ — 1] + d(us, v;), Dli — 1,]):}

else{
for i =1 to M do DI[i,0] = oc;
for j =0 to N do D|0,j] = 0;
fori=1to M do
for j=1to N do
Dl | = min(Dli — 1,/ — 1] + d(us v,), Dl j — 1]):}
return D[M, N]

Example 1. Given two video clips V' = (2,6,7,1,6,10,4) and U = (5, 3,2, 8, 3), the computation process of the
distance of optimal mapping is described in Table 1. Fig. 1 shows the mapping of frames between V' and U.

Optimal mapping is one-to-one frame mapping. However, sometimes the key frames are extracted by
uniform sampling. It is likely that, in the extracted sequence of key frames, two consecutive key frames are
similar. In addition, sometimes, two sequences of key frames are extracted by non-uniform sampling but
with different thresholds. Therefore, given two similar clips, more number of key frames are extracted for
the clip with lower threshold. It is necessary to measure the sequence similarity based on many-to-many
frame mapping.

Definition 4. Given two video clips U = (uy,ua, ..., uy), V = (v1,0,...,vy) a mapping with replication is a
many-to-many relation Ryr from {1,2,..., M} to {1,2,...,N}, such that

Table 1
Computation of optimal mapping of Example 1

2 6 7 I 6 10
= 0 0 | 0 0 0 0
5] o 3 b ] 1 1 1
3] o oo 6 5 3 3 3
| o = = n_ s e 6
8 o0 oo oo o0 18 8 8
3 ) o oo 00 oo 21 16
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Fig. 1. Optimal mapping of Example 1.

(1) for each i, 1<i< M, there exists at least one j, 1<j<N, such that (i, ) € Rug,
(2) for each j, 1< j<N, there exists at least one i, 1 <i< M, such that (i, ) € Rur,
(3) for any two ordered pairs (i, ), (k,/) in Ryr, (j</) if and only if (i <k).

Definition 5. Given two video clips U = (uy,us,...,uy) and V = (vy,vs,...,0y), the distance between U
and ¥ for a given mapping Ryr, Dg,, (U, V), is defined as

Dryo (U, V)= > d(us,v)).

V(i.j)ERMR

Definition 6. Given two video clips U = (u1,u,...,uy) and V = (vi,02,...,05), and d(u;,v;) Vi,
1<i<M, V), 1 <j<N, the distance between U and V for optimal mapping with replication (OMR) is
defined as

DOMR(Ua V) = ?I;Iin{DRMR(U’ V)}
MR

Similar to Dom(U, V), the solution of Doyr (U, V) can be found based on the approach of dynamic
programming. Let D[i,j] be the minimum cost of mapping with replication between (u,us,...,u;) and
(v1,02,...,0;). There are three possible relations between D[m,n] and DJi, ] for some combinations of
smaller is and Js:

map: the frame v, is mapped with the frame w,,, D[m,n] = Djm — 1,n — 1] + d(u,, v,);

replicate v,: the frame v, is replicated to map with the frame u,,, D[m,n] = Dim — 1,n] + d(u,,v,);

replicate u,,: the frame u,, is replicated to map with the frame v,, D|m,n] = D[m,n — 1] + d(u, v,).

Combining these three cases, we get the following recurrence relation for the solution of Dour (U, V):

D[m — 1,n— 1]+ d(uy,v,),
D[m,n] = min{ D[m — 1,n] + d(uy,v,),
Dim,n — 1] + d(up, v,),

with D[0,0] = 0, D[0, /] = oo, for all j, 1 <j< N, and D[i,0] = oo, for all i, 1 <i< M.

The initial values are set according to Definition 4. Definition 4 states that each frame of one clip must be
mapped with at least one frame of the other clip. It is impossible to map a sequence of frames with a null
sequence ( ). Therefore, D[i,0] = oo, for all i, 1 <i< M, and D|0, ] = oo, for all j, 1< j<N. The algo-
rithm for the solution of optimal mapping with replication is listed as follows.

Algorithm (Optimal mapping with replication (O MR)).
DI[0,0] = 0;
for i =1 to M do D[i, 0]
for j =1 to N do D|0, ]
for i=1to M do

for j=1to N do
D[i,jl = min(D[i — 1,j — 1] + d(u;,v;), D[i — 1, j] + d(u;, v;), D[, j — 1] + d(u;, v}));

return D[M, N]

bl

o
e}

>
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Example 2. For the same example as Example 1, the computation process of the distance of optimal
mapping with replication is described in Table 2. Fig. 2 shows the mapping of frames between U and V.
Note that the shaded boxes denote the intermediate path to derive the minimum cost.

Definition 7. Let G = (U, E, V) be a bipartite graph, such that U, V' are two disjoint sets of vertices and E is
a set of edges connecting vertices from U to V. A redundant mapping is a set of edges with path length at
least 3.

In terms of frame mapping, U and V are respective frame sequences of clips U and V. E is a set of
possible mapping between frames of U and V. Fig. 3 illustrates a redundant mapping. The term ‘redundant’
means that the mapping between frame u;_; and frame v, (the edge u;_1v;) is redundant and can be removed.
This is because there has been one mapping between frames #,_; and v;_;, and another mapping between
frames u;, v;. It is not necessary to map frames u;_i,v;.

Lemma 1. Algorithm OMR never produces redundant mapping.

Proof. As in Fig. 3, the three matching u;-,v,_1, %,_1v;, %;0;_| constitute a redundant mapping. Therefore, in
the computation table,

Table 2
Computation of optimal mapping with replication of Example 2

2 6 4
v o0 s 0
J S e v
L 4 6 17
2 = 4 8 19
8 oo 10 6 17
L 11 9 4

V n
v
Fig. 2. Optimal mapping with replication of Example 2.
0 - -
O - BM - O

Fig. 3. Redundant mapping.



M.-K. Shan, S.-Y. Lee | Pattern Recognition Letters 22 (2001) 517-532 523

Dli,j—1]=Dli—1,j— 1] +d(u;,v,1),
D[i, j| = D[i,j — 1] + d(u:,v)),
Dli,j] < D[i — 1,j — 1]+ d(u;, v;)
= Dli,j— 1] +d(u;,v;) <D[i —1,j — 1] +d(u;,v;)
= Dl[i,j — 1] < D[i — 1,j — 1], which is a contradiction. [

The effect of video segmentation also affects the performance of sequence mapping. Video segmen-
tation with lower threshold produces clips with much variation. It is possible that clip U is very similar
to V except that some frames are very dissimilar. Using OM, these dissimilar frame pairs produce large
distance. Therefore, in the next definition, the mapping is constrained by a threshold 6. Two frames with
distance larger than ¢ are not allowed to map. In addition, each unmapped frame is associated with a
penalty value @w in the computation of clip distance. Otherwise, the result of the distance-constrained
optimal mapping with minimum cost would be no mapping at all. No mapping produces the distance of
Zero.

Definition 8. Given two video clips U = (uy,u, ..., uy) and V = (vy,v2,...,0y), the frame distance toler-
ance ¢, and the distance d(u;, v;) Vi, 1 <i<M,Vj, 1<j<N, adistance-constrained mapping between them
is a one-to-one relation Rpy from {1,2,... M} to {1,2,...,N}, such that

(1) for each ordered pair (i,/) in Rpm, d(u;,v;) < 0;

(2) for any two ordered pairs (i, ), (k,/) in Rpm, (j < !) if and only if (i < k).

Definition 9. Given two video clips U = (uy,uy,...,uy) and V = (vy,v,,...0y), the frame distance con-
straint J, and the penalty @ for unmapped frames, w = §/2, the distance between U and V for a given
distance-constrained mapping Rpm, Dy (U, V,0, @), is defined as

Dl

Rpm

(U V,6,m) =0 x (M+N—=2x[Rom|) + > d(u,vy),

V(ij)€ERpM

where |Rpy| denotes the cardinality of the relation Rpy.

In the last definition, if the penalty value is less than 6/2, it would be better not to map two frames with
distance less than 6. This is why Definition 9 sets the value of penalty .

Definition 10. Given two video clips U = (uy,us,...,uy) and V = (vy,va,...,vy), the distance between U
and V for distance-constrained optimal mapping is defined as

DDOM(U7 V, (3, W) = g}in{DRDM(U’ V7 57 ’W)}
DM

The algorithm DOM is adapted from the optimal correspondence of string subsequence (Wang and
Pavlidis, 1990). Let D[i,j] be the minimum cost of distance-constrained optimal mapping between
(ur,uz,...,u;), and (vy,vs,...,v;). There are three possible relations between D[m,n] and D[i, ] for some
combinations of smaller is and Js:

map: the key frame v, is mapped with the key frame u,,, Djm,n] = Dlm — 1,n — 1] + d(u,, v,);

ignore v,: the key frame v, is ignored and the penalty value is added, D[m,n] = D[m,n — 1] + 6/2;

ignore u,,: the key frame u,, is ignored and the penalty value is added, D[m,n] = D[m — 1,n] 4 §/2.
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Combining these three cases, we get the following recurrence relation for the solution of Dowr (U, V):

Dim — 1,n— 1] + d(uy, v,)
D[m,n] =min ¢ D[m —1,n]+6/2 ,
D[m,n—1]+0/2

with D[0,0] =0, D[0,;] = j*J/2, for all j, 1<j< N, and D[i,0] =i*d/2, foralli, 1 <i<M.

Algorithm (Distance-constrained optimal mapping (DOM)).
DI[0,0] = 0;
fori=1to M do D[i,0] =ix9/2;
for j =1to N do D[0,/] = j*0/2;
fori=1to M do
for j=1to N do
D[i,jl =min(D[i — 1,j — 1] + d(u;,v;),D[i — 1,j] + 6/2,D[i,j — 1] + 6/2);
return DM, N]

Example 3. For the same example as Example 1, for the frame distance constraint ¢ equals 3, the process
for computation of the distance of distance-constrained optimal mapping is described in the Table 3. One
such mapping is shown in Fig. 4. The value of penalty @w for unmapped frames is 3/2; then the distance
equals 11 — 4% 1.5+ 4« 1.5 = 11. The number of unmapped frames can be derived from the backtracking
of Table 3.

2.2. Asymmetric similarity measures

A similarity measure is asymmetric if D(U, V') # D(V, U). In general, asymmetric similarity measures are
used when users query video by some key frames. The simplest proposed asymmetric similarity measure is
the optimal subsequence mapping (OSM). The algorithm of OSM is similar to that of OM except that the
query video sequence must be the shorter sequence. Therefore, it is not necessary to compare the length
between the video clip U and query video clip Q.

Table 3
Computation of distance-constrained optimal mapping of Example 3

1 6 10 4
6 7.5 9 10.5
5 55 7 8.5
3l % | 15 9
2 65 8 9.5
8 7 | 85 | 10
3 75 9 10.5

mEogger
v

Fig. 4. One of the distance-constrained optimal mappings of Example 3.
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Definition 11. Given the query clip Q= (q1,92,...,q4) and the video clip V = (vj,va,...,0n),
M <N, a subsequence mapping is a one-to-one relation Rsy from {1,2,...,M} to {1,2,...,N}, such
that

(1) for each i, 1<i< M, there exists one j, 1< <N, such that (i,) € Rgum;

(2) for any two ordered pairs (i, /), (k, /) in Rsm, (j < ) if and only if (i < k).

Definition 12. Given the query clip O = (1,92, - - -, qu), the video clip V' = (v, v, ..., vy), and the distance
d(gq:,v;), Vi, 1<i<M, Vj, 1<j<N, the distance between O and V for a given subsequence mapping
Rsm, Dgrgy, (0, V), is defined as

DRSM Q7 Z d f]n Uj

V(irj)ERsm

Definition 13. Given the query clip O = (¢1, 92, - - -, qu) and the video clip ¥ = (vy,vs, ..., vy), the distance
between Q and V for optimal subsequence mapping is defined as

DOSM(Q7 V) = IVII%;\IAI{DRSM (Q’ V)}

Algorithm (Optimal subsequence mapping (OSM)).
for i =1 to M do DJi,0] = oo;
for j =0 to N do D[0, ] =0;
fori=1to M do
for j=1to N do
Dli,j] = min(Dfi — 1,j — 1] + d(g;,v)), Dli.j — 1))
return D[M, N]

Similar to the similarity measure OMR in symmetric measures, we defined the OSMR in asymmetric
measures as follows.

Definition 14. Given the query clip O = (q1,¢a, - - -, qu), the video clip V = (vy,0vs,...,0x), M <N, a sub-
sequence mapping with replication is a one-to-many relation Rgyr from {1,2,...,M} to {1,2,...,N}, such
that

(1) for each i, 1 <i< M, there exists at least one j, 1< j<N, such that (i, /) € Rsmr;

(2) for each j, 1 <j< N, there exists one i, 1 <i<M, such that (i,) € Rsmr;

(3) for any two ordered pairs (i, ), (k,[) in Rsmr, (j < /) if and only if (i <k).

Definition 15. Given the query clip O = (q1, 92, - - -, qu), the video clip ¥V = (v, v, ..., vy), and the distance

d(g;,v;) Vi, 1<i<M, Vj, 1<j<N, the distance between Q and V for a given mapping
Rsmr DRSMR(Q, V), is defined as

DRSMR(Q7 V) = Z d(q,-,vj).

V(i.j)ERsMR

Definition 16. Given the query clip O = (41, ¢», - - -, q)) and the video clip V' = (v1, v,, ..., vy), the distance
between U and V for optimal subsequence mapping with replication (OSMR) is defined as

Dosmr (0, V) = \ﬂ!msm{DRSMR (0, 7)}.
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Algorithm (Optimal subsequence mapping with replication (OSMR)).
DI[0,0] = 0;
for i =1 to M do D[i, 0] = oo;
for j =1 to N do D0, j] = oc;
fori=1to M do
for j=1to N do
cli,j) = min(Dli — 1,j — 1] + d(qi,v;), Dli.j — 1] + dlgi,v}):
return c[M, N|

Example 4. Given the query clip O = (5, 3,2,8,3) and one video clip V = (2,6,7,1,6,10,4), the compu-
tation process of the distance of optimal subsequence mapping with replication is described in Table 4. The
mapping is shown in Fig. 5.

Similar to the similarity measure DOM in symmetric measures, we also defined the distance-constrained
optimal subsequence mapping (DOSM) in asymmetric measures.

Definition 17. Given the query clip O = (q1,¢>, - - ., qu), the video clip V = (v, vs,...,vy), the frame dis-
tance tolerance ¢ and the distance d(g;,v;) Vi, 1 <i<M Vj, 1<j<N, a distance-constrained subsequence
mapping between them is a one-to-one relation Rpgy from {1,2,..., M} to {1,2,...,N}, such that

(1) for each ordered pair (i,/) in Rpsm, d(u;,v;) < 9;

(2) for each i, 1 <i< M, there exists one j, 1<j<N, such that (i,) € Rpsm;

(3) for any two ordered pairs (i, /), (k,/) in Rpsm, (j < I) if and only if (i < k).

Definition 18. Given the query clip O = (q1,¢>,- - -,qu), the video clip V = (v, vs,...,vy), the frame dis-
tance constraint J, and the distance d(q;,v;) Vi, 1 <i<M, Vj, 1 <j<N, the distance between Q and V for
a given mapping Rpsm, Dy . (O, V,0), is defined as

/
Rpsm

Table 4
Computation of optimal subsequence mapping with replication of Example 4

10 4

o oo 0

5 00 16 17
3 oo 18 17
2 o0 19 20
8 [ 13 : 17
3 0 18 14

Fig. 5. Optimal subsequence mapping with replication of Example 4.
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RDSM (Qv v 5) Z d q” U]

V(i./)ERpsM

Definition 19. Given the query clip Q = (1, ¢a, - - -, q)) and the video clip V' = (v1,vs, ..., vy), the distance
between Q and V for distance-constrained optimal subsequence mapping (DOSM) is defined as

DDOSM<Q7 V7 5) = \%&{D}DSM (Q7 Va 5)}

Note that, in DOSM, it is not necessary to add the penalty to the distance. The reason comes from the
fact that, according to Definition 17, each frame of query sequence must be mapped with a frame of video.
If there is no such mapping, the distance Dposm(Q, V', d) is set to oo.

Algorithm (Distance-constrained optimal subsequence mapping (DOSM)).
DI[0,0] = 0;
for i = 1 to M do DJi,0] = oo;
for j =1 to N do D[0,;] = 0;
fori =1 to M do
for j=1to N do
if d(q:,v;) < J then
D[ivj] = min(D[i - 17] - 1] + d(qh vj)vD[i>j - 1]>s
else D[i, j] = D[i,j — 1];
return DM, N]

Example 5. For the same example as Example 4, the frame distance constraint  being 3, the computation
process of the distance of distance-constrained optimal subsequence mapping is described in Table 5. Fig. 6

shows the mapping.

Table 5
Computation of distance-constrained optimal subsequence mapping of Example 5
2 6 7 1 6 10 4
0 0 0 0 0
5 1 1 I 1 1
3 6 3 3 3 2
2 00 1 7 5
8 o o o) o) 9

fn

EII/EI
° ﬂllll

Fig. 6. Distance-constrained optimal subsequence mapping of Example 5.
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Fig. 7. Romr (Q, ") and Romr (O, V2).
2.3. Normalization of similarity measures

In application of the proposed algorithms, it is necessary to normalize two measures. One is the distance
measure between key frames for distance-constrained algorithms. The other is the similarity measure be-
tween sequence of key frames for algorithms allowing frame replication.

Distance-constrained algorithms are helpful for video retrieval. However, one problem that arises is that
users have no idea about the frame distance constraint. People seldom describe color, texture and shape
similarities quantitatively. It is difficult for users to specify the constraint of frame distance.

If the frame distance is a normalized measure, it will be helpful for users in specifying the distance
constraint. In the previous section, we have described that the color feature is represented as a normalized
color histogram. Moreover, the texture and shape distance are also normalized by the inverse variances for
each texture, shape component. Therefore, these normalized distances are represented as real numbers
which range from 0 to 1.

In addition, sometimes, the threshold values of video segmentation and/or key-frame selection are also
useful for users. These threshold values give users hints for the selection of the frame distance constraint.
This depends on the availability of the threshold values. For example, threshold values are available in a
video information system incorporating functions of uncompressed video segmentation and non-uniform
sampling of key frame. The general approach of uncompressed video segmentation is to detect scene
changes by detecting significant quantitative color differences between frames. Non-uniform sampling
measures the difference between the last selected key frame and the remaining frames in the clip. Frames
with considerable variations are selected as key frames.

Concerning the normalization of similarity measures between sequences of frames, it is unfair for video
with more number of frames to be measured by the algorithms allowing replications. For example, con-
sidering two video sequence ¥}, V5> and the query sequence Q shown in Fig. 7, the distances Domr (Q, ¥;) and
Dowmr (Q, V5) both equal 8. However, intuitively, ¥ is more similar to Q, though there are more frames in 7;.
To deal with this unfairness, we normalize the distance by the cardinality of relation Ropmr. In this example,
the normalized Domr (Q, V1) becomes 8/6 while the normalized Domr (O, V2) becomes 8/2.

3. Experiments

To evaluate the performance of the proposed similarity measures and previous work done by Adjeroh
et al. (1999), we performed two experiments for the symmetric case. The first experiment measures the
performance for video scenes of consecutive shots while the second measures that for video sequence of
consecutive scenes. In each experiment, we have a database of 24 video clips. These video clips were ex-
tracted from movies “Analyze This”, “Dr. Dolittle”, “Titanic”, “Wild Wild West”, “Saving Private
Ryan”, and ““Visual Singer”. In the first experiment, the video clips are video scenes between adjacent scene
breaks. In the second experiment, the video clips are video sequences of consecutive scenes. For both
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experiments, each scene is decompressed first and is segmented into consecutive shots. For each shot, a
sequence of key frames is extracted by the process of non-uniform key-frame extraction presented in
(Yeung and Liu, 1995). Each key frame is represented as a 78-bin color histogram in HSV color space. The
number of key frames ranges from 3 to 6 and 5 to 21 for the first and second experiment, respectively.

The video clips in the database are used as the query video clip. That is, there are 24 query clips for each
experiment. Each query video clip is represented as a sequence of key frames.

We measure the performance by precision and recall. Precision is defined as the proportion of retrieved
video that is relevant, while recall is defined as the relevant video retrieved. The ground truth to determine
relevant video is judged by humans. For each query, the ground truth is established by choosing and
ranking a list of relevant clips from the video database. Besides the proposed similarity measure, we also
implement the measure proposed by Adjeroh et al. with alphabet size 4 and normalization of NORM?2
(Adjeroh et al., 1999). For DOM, the distance constraint is set to 0.15. Using each of these similarity
measure, each query returns L video clips, L = 1,...,20 and the 20 precision-recall pairs are calculated.
Then, the average precision and recall values are derived using the 11-point average which averages pre-
cision at 11 recall points. There exist a wide variety of measures for evaluating retrieval performance in
visual information retrieval research community (Smith, 1998). We adopt the 11-point average as 11 points
average each quantity performance with a single score.

Figs. 8 and 9 show the average precision—recall curves for the first and second experiment, respectively.
In Fig. 8, it can be seen that all the four measures perform well. OM performs better when the recall is less
than 0.5. However, when the recall increases from 0.7 to 1, the precision of DOM is better while that of OM
is the smallest. Despite that, there is no significant difference among these four measures. This is expected
since, in the first experiment, frames of consecutive shots are similar where the effect of temporal ordering is
not very significant.

On the other hand, in Fig. 9, the precision-recall curves of these measures are more different. DOM
performs best among the four different measures. This is because DOM prevents unqualified frame

Average precision vs. recall
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Fig. 8. The average precision—recall curve for the first experiment.
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Fig. 9. The average precision-recall curve for the second experiment.
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Fig. 10. The average precision-recall curve for the asymmetric case.

mapping. The performance of OMR is next to that of DOM. The performance of the measure proposed by
Adjeroh et al. is similar to that of OM. One of the possible reasons that Adjeroh’s approach is inferior to
OMR comes from the swap operation. In the second experiment with consecutive scenes, users are sensitive
to the temporal ordering of frames.
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For the asymmetric case, the database and query clips of the second experiment are utilized. However,
some of the shots are randomly eliminated from query video. Moreover, each of the remaining shot is
represented by only one key frame. Fig. 10 shows the precision-recall curve for the asymmetric case.

For the asymmetric case, it can be seen that distance-constrained-based measure DOSM still performs
best. OSM performs better than OSMR. This phenomenon can be realized as follows. OSM is one-to-one
mapping and leaves out unmatched frames while OSMR is one-to-many mapping. However, from the
human perception’s point of view, two key-frame sequences are similar only if there are similar frames
between them. Therefore, OSM behaves like human perception.

4. Conclusions

In this paper we have proposed a series of video similarity measures based on similarity of frame se-
quence. Similarity algorithms based on the approach of dynamic programming are also presented. In fact,
the performance is highly dependent on the extraction process of video content. We plan to measure
performance by considering the effect of the content extraction process. Furthermore, in this paper, the
frame sequence is discussed in the uncompressed domain. Another future work is the extension of the
proposed similarity measures to the compressed domain.
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