
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001 251

Unified Functional Decomposition via Encoding for
FPGA Technology Mapping

Jie-Hong Jiang, Jing-Yang Jou, Member, IEEE, and Juinn-Dar Huang

Abstract—Functional decomposition has recently been adopted
for look-up tabel (LUT)-based field-programmable gate array
(FPGA) technology mapping with good results. In this paper we
propose a novel method to unify functional single-output and mul-
tiple-output decomposition. We first address a compatible class
encoding algorithm to minimize the number of compatible classes
in the image function. After applying the encoding algorithm, we
can therefore improve the decomposability in the subsequent de-
composition of the image function. The above encoding algorithm
is then extended to encode multiple-output functions through
the construction of a hyperfunction. Common subexpressions
among these multiple-output functions can be extracted during
the decomposition of the hyperfunction. Consequently, we can
handle multiple-output decomposition in the same manner as
single-output decomposition. Experimental results show that our
algorithms are promising.

Index Terms—Compatible class encoding, FPGA, functional de-
composition, technology mapping.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) can pro-
vide programmability for users to implement their own

logic. Because of the short turnaround time, FPGAs become in-
creasingly popular in rapid system prototyping. look-up table
(LUT)-based architecture is a prevalent one among many FPGA
architectures. LUT-based FPGAs consist of an array of LUTs,
each of which can implement any Boolean function with up to

(four or five in general) inputs, that is,-feasible. A Boolean
network can be directly realized by a one-to-one mapping be-
tween nodes and LUTs if every node in the network has up to
supports.

Functional decomposition [1]–[3] is a pivotal decomposition
technique for LUT-based FPGA logic synthesis. Three inter-
esting problems in functional decomposition should be noticed.

1) How to select bound set variables?
2) How to encode compatible classes?
3) How to extract adequate subexpressions among multiple-

output functions?
Algorithms proposed in [4] and [5] provide solutions to

choose good bound set variables. On the other hand, approaches

Manuscript received July 14, 1998. This work was supported in
part by the National Science Council of Taiwan ROC under Grant
NSC89-2215-E-009-009.

J.-H. Jiang was with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan. He is now with the Department
of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94720 USA.

J.-Y. Jou is with the Department of Electronics Engineering, National Chiao
Tung University, Hsinchu, Taiwan.

J.-D. Huang is with the UniChip Corporation, Hsinchu, Taiwan.
Publisher Item Identifier S 1063-8210(01)00702-8.

suggested in [6]–[11] deal with the second problem. These en-
coding algorithms can be classified into three classes according
to their objectives. The first kind of encoding algorithm, such
as [6], simplifies the image function. The second kind, such as
[7] and [8], makes multiple-output functions able to share some
decomposition functions. The third kind, such as [9]–[11],
minimizes the supports of the decomposition functions. As
Problem 3 is considered, approaches proposed in [7], [8], and
[12] extract common subexpressions among multiple-output
functions. Extracting common decomposition functions via
compatible class encoding was suggested in [7] and [8]. Sawada
et al. in [12] tried to resubstitute decomposition functions into
other functions to reduce their supports. In other words,
common subexpressions were extracted by resubstitution.

In this paper, we adopt the variable partitioning algorithm
proposed in [5], which takes advantage of binary decision di-
agrams (BDDs) [7], [13] to conduct functional decomposition
to solve Problem 1. We will thus focus on solving Problems 2
and 3 in this paper. A new encoding algorithm is proposed to
simplify the image function. Instead of reducing the number of
cubes or literals in the image function as suggested in [6], our
encoding algorithm aims at reducing the compatible class count.
Thus a more precise estimation of LUT-costs can be derived
during functional decomposition in FPGA technology mapping.
To deal with Problem 3, we transform multiple-output functions
into a single-output function by introducing the hyperfunction
approach. Consequently, multiple-output decomposition can be
reduced to an equivalent single-output decomposition. It unifies
the solutions of single-output and multiple-output decomposi-
tion. Besides, the extracted common subexpression can be large.

The rest of this paper is organized as follows. Section II
introduces preliminaries. In Section III, the compatible class
encoding algorithm is proposed. Hyperfunction decomposition
is then discussed in Section IV. After experimental results
are shown in Section V, concluding remarks will be given in
Section VI.

II. PRELIMINARIES

Let . A single-output function with input
variables and is denoted as . A func-
tion , is decomposableif it can be represented
by another function

,
where . The decomposition is disjoint if .
When is called thebound set and

is called thefree set. In this paper, only
disjoint decomposition is considered, that is, the bound set and
free set are disjoint. In this article, thefunction is referred to

1063–8210/01$10.00 © 2001 IEEE

252 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001

as theimage function and the functions are referred to as
thedecomposition functions.

Definition 1: Let and be two sets of binary variables,
. Given a completely specified function

, with being the set and being the set. We say
that arecompatiblewith respect to , denoted as

, if and such
that . All mutually compatible elements
form acompatible class.

Theorem 1:

(1)

holds if and only if

(2)

is a function with binary inputs and a symbolic output. The
number of the admissible values in , must be no less than
the number of compatible classes. To implementby binary
logic, at least binary functions, ,
are required to encode. When , we say that
this encoding isrigid . Otherwise when , the
encoding ispliable. Equation (1) can be rewritten as

. For a single-output function, if each
compatible class is encoded by just one code, then this encoding
is strict and (2) can be redefined as

In contrast, if there exists any compatible class encoded with
more than one code, then the encoding isnonstrict.

III. COMPATIBLE CLASS MINIMIZATION

Two important factors affect the decomposition quality: one
is variable partitioning and the other is compatible class en-
coding. We solve the variable partitioning problem by using
the algorithm proposed in [5]. Thereby we focus on compat-
ible class encoding to reduce the number of compatible classes
in the subsequent decomposition of the image function. Before
the discussion of the encoding technique in Section III-B, don’t
care assignment, which is used in the encoding, is introduced
first in Section III-A.

A. Don’t Care Assignment

Sawadaet al. in [12] used the don’t care assignment to mini-
mize the supports of an incompletely specified function. In con-
trast, we formulate the don’t care assignment problem as graph
clique-partitioning in order to reduce the number of compatible
classes instead of supports.

We record the compatible relationship amongset vertices
by using the compatibility graph. Eachset vertex corresponds
to a vertex in the graph. A pair of vertices are connected by
an edge if and only if these two vertices are compatible under
certain don’t care assignment. After constructing the graph, we
want to find the least number of cliques such that each vertex
is exactly covered by one clique. Since the clique partitioning

problem is NP-complete, we adopt the heuristics in [14] to have
a polynomial time approximation. After the graph is covered by
cliques, the number of cliques equals the number of compatible
classes after don’t care assignment.

B. Compatible Class Encoding

After set selection and don’t care assignment, compatible
classes are fully determined. The next step is to encode these
compatible classes.

Murgai et al. in [6] assumed that the fewer cubes or literals
in the image function, the better decomposition quality could
be obtained. As a result, the compatible class encoding problem
was modeled as the symbolic-input encoding problem to min-
imize the number of cubes or literals of the image function.
However, literal or cube counts may not be a good cost function
for LUT-based FPGA synthesis. In this paper, we formulate the
objective of the encoding problem as minimizing the number
of compatible classes in the subsequent decomposition of the
image function. The new cost function has better meaning for
LUT architecture. (In order to exploit more don’t care set, this
paper takes the strict encoding policy.)

Example 1 illustrates why an encoding is relevant to the
number of compatible classes in the decomposition of the
image function.

Example 1: Assume that the targeted LUT can implement
any function with up to four inputs. In addition, suppose the
function under decomposition is in Fig. 1(a) with as
the set variables.

According to the decomposition chart in Fig. 1(a), there are
three compatible classes with functions as shown in Fig. 1(b).
For rigid encoding, two -functions, and ,
are needed to encode three compatible classes. Suppose we fur-
ther choose , and as the set variables in the decomposi-
tion of . Examining the two encoding cases in
Fig. 2, we can see that the encoding may affect the number of
compatible classes in the decomposition of the-function. Note
that “ ” represents don’t care.

From Example 1, we can conclude the following theorems.
Theorem 2: If all of the -functions are selected together in

the set or set in the subsequent decomposition of the image
function, the encoding does not affect the number of compatible
classes in the subsequent decomposition of the image function.

Theorem 3: After the set variables used in the decompo-
sition of an image function have been selected, to reduce the
number of compatible classes of the image function, we only
have to determine which compatible class functions should be-
long to the same column or the same row in the encoding chart.
Exact codes of these columns and rows do not influence the
number of compatible classes of the image function.

According to Theorem 3, in order to reduce the number
of compatible classes when decomposing an image function,
we must reduce the column patterns in its decomposition
chart by assigning suitable compatible classes into the same
column or the same row in the encoding chart. Because the
encoding problem is too difficult to be solved exactly, we
propose a heuristic algorithm, which considers the assignments
of columns and rows separately. The encoding flow is shown in
Fig. 3. We detail the encoding algorithm with Example 2.

JIANG et al.: UNIFIED FUNCTIONAL DECOMPOSITION VIA ENCODING FOR FPGA TECHNOLOGY MAPPING 253

Fig. 1. (a) Decomposition chart off , (b) compatible class functions, and (c) symbolic representation of column patterns. (Symbols 0, 1, 2, and 3 represent column
patterns[00] ; [11] ; [01] , and[10] , respectively.)

Fig. 2. Encoding chart and decomposition chart.

In the rest of this paper, we will use symbolic notations (dec-
imal numbers) to represent column patterns. Some terminolo-
gies and notations are defined as follows.

Definition 2: A partition , is a symbolic
notation of column patterns. Element equals if and only
if the th column pattern equals theth column pattern.

For example in Fig. 1, partitions and in (c) are
symbolic notations of column patterns in the charts of
and in (b), respectively. Aconjunctive partition (dis-
junctive partition) of a set of partitions is a new parti-
tion which is a symbolic notation of column patterns formed by
stacking these partitions vertically in the same column (horizon-
tally in the same row) of the encoding chart. Themultiplicity of
a partition is the number of different symbols in this partition.

Example 2: Assume we have ten compatible class functions
(and) as the input of the encoding algorithm, and,
after variable partitioning in Step 3 of Fig. 3, their partitions be-
come

, and
respectively. Suppose we want to place these parti-

tions (or these compatible class functions) in an encoding chart
with # and # .

Step 5 in Fig. 3:Evaluate which compatible classes should
be bounded in the same column of the encoding chart.

To decide which partitions should be placed in the same
column in an encoding chart, we form conjunctive partitions
on them. Smaller multiplicity of a conjunctive partition of
partitions is preferred, especially when # (since # of
these partitions can be stacked in one column in an encoding
chart).

We represent positionin a partition as for convenience.
Since the contents of and in are the same, we
say that positions with the same content of is . For
the above ten partitions, Fig. 4(a) records the information.
Positions with the same content such as , we denote
it as . because there are two positions,

and , in . As there are two partitions and
having , we say #Partitions and

Partitions . The conjunctive partition of
and will thus have the same content in and . For all
’s in Fig. 4(a) (, or)

with #Partitions , we list them in Fig. 4(b). We then
build a column-graph as depicted in Fig. 5,
which is a bipartite graph. For each partition, there is a corre-
sponding vertex in ; for each with #Partitions ,
there are #Partitions # corresponding vertices,

’s, in . (It is because Partitions may be collected
in more than one column set when#Partitions #
is not less than two.) A vertex in corresponding to a
has #Partitions edges connecting this vertex with vertices
in which are corresponding to Partitions . The weight
of an edge connecting to equals (the number of
edges connecting to). We then find a -matching[15],

, of maximum weight for . After -matching, each vertex
in must be connected by at most one edge; each vertex in

must be connected by at most #edges. Finally, the corre-
sponding partitions of vertices connected with the same

254 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001

Fig. 3. The encoding procedure.

vertex in are grouped in the same column set. According
to the matching result in Fig. 5, we have six column sets,

and .
After applying the -matching, we can reduce the multiplicity
of the of partitions in the same column set.

Step 7 in Fig. 3:Evaluate which compatible classes should
be bounded in the same row and in adjacent columns of the
encoding chart.

We like to bound a set of partitions in the same row if the
multiplicity of their disjunctive partition is small. Because the
row is stacked with other rows eventually, the multiplicity of the
conjunctive partition of these stacked rows could be smaller.

Assume each partition initially occupies a separate row set.
We calculate the benefits of merging pairs of row sets. For
and in different column sets, we calculate the benefit of
merging them as . When and are
in the same column set, we don’t want to put them into different
columns. Therefore the benefit is calculated as (

—the weight of the edge connecting the vertex corre-
sponding to in of). The calculations of , and

are as follows:

S

of in and

of row sets so far

if

of column sets so far

if

where is the # of positions in the of and ; ,
and are the total numbers of distinct symbols in all partitions,
in of and , in and in , respectively.

According to the calculated benefits, we construct a
row-graph . Each partition has a corresponding
vertex ; each pair of vertices is connected by
an undirected edge whose weight is the benefit of merging

Fig. 4. Partitions and positions with the same contents.

and in the same row set. We then find themaximum-car-
dinality matching[15], , of . For each edge , the
corresponding partitions of its two end vertices are hopefully
to be combined together in a row set. We combine these
pairs of partitions iteratively with benefits from high to low
until the number of current row sets is not greater than #
or all edges have been selected. In this example,

and are
therefore selected in succession. According to column sets
derived in Step 5, we stack these pairs of partitions properly.
If there are some conflicts between the results of Step 5 and
those of Step 7, we assume that the decisions of Step 7 have
higher priority than those of Step 5. So far we have five row
sets
and four column sets

JIANG et al.: UNIFIED FUNCTIONAL DECOMPOSITION VIA ENCODING FOR FPGA TECHNOLOGY MAPPING 255

Fig. 5. Graph formulation of column-set combination.

. We have row-column relations as illustrated in
Fig. 6(a).

Step 7 must be repeated until the number of row sets#
and the number of column sets # . In this example so far,
since there are five row sets # , we thus iterate Step 7 to
calculate the benefits of combining pairs of row sets. For each
row set, we represent it by the disjunctive partition of the parti-
tions in this row set as shown in Fig. 6(b). For instance, row set

is represented as . After constructing the new
and finding the for it, we combine the pair

of row sets with maximum benefits into
a row set . Since the number of row sets be-
comes four # , we don’t have to combine row sets further.
Finally as shown in Fig. 7(a), we have four row sets and four
column sets. According to Theorem 3, we know that the codes
of columns and rows do not affect the number of compatible
classes in the decomposition of the image function. So we can
encode these compatible classes as that indicated in Fig. 7(b).
After encoding, we can derive the real image function. In the
decomposition of this image function, we will select and
the other two bound set variables in the previous variable par-
titioning (derived in Step 3) as the bound set variables. Conse-
quently, we will have four compatible classes in the subsequent
decomposition of the image function.

Because we look one step ahead to collect information in
the subsequent decomposition of the image function, we have
more chances to reduce the number of compatible classes. Note
that even when the number of bits needed to encode compatible
classes may not be reduced in some cases, reducing the number
of compatible classes produces larger don’t care set in the image
function and improves the decomposability.

IV. HYPERFUNCTIONDECOMPOSITION

To solve multiple-output decomposition in the same manner
as single-output decomposition, we propose a solution, which
is called the hyperfunction decomposition.

Definition 3: A set of distinct Boolean functions
, called ingredients, can be combined to-

Fig. 6. Row-column relation.

gether to form a single-outputhyperfunction by using
additional binary bits , called
pseudo primary inputs, to encode these ingredients. The
supports of a hyperfunction include pseudo primary inputs and
the union of supports of its ingredients.

A hyperfunction transforms multiple-output functions into
a single-output function. It can perform the functionality of
any individual ingredient by assigning the ingredient’s corre-
sponding code to pseudo primary inputs. In Section IV-A, we
discuss how to encode ingredients to construct a hyperfunction
with better decomposability.

A. Encoding of Ingredients

Actually, a hyperfunction can be considered as an image func-
tion, and its ingredients can be viewed as compatible class func-

256 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001

Fig. 7. (a) Final row-column relation and (b) final encoding.

tions. Consequently, Theorems 2 and 3 can be extended as fol-
lows.

Theorem 4: If all of the pseudo primary inputs are selected
together in the set or set in the decomposition of a hyper-
function, encoding does not affect the number of compatible
classes in the decomposition of the hyperfunction.

Theorem 5: After the set variables used in the decomposi-
tion of a hyperfunction have been selected, to reduce the number
of compatible classes of the hyperfunction, we only have to de-
termine which ingredients should belong to the same column
or the same row in the encoding chart. Exact codes of these
columns and rows do not influence the number of compatible
classes of the hyperfunction.

To construct a hyperfunction with better decomposability, we
thus can take the same encoding strategy to encode ingredients
as that used in compatible class encoding.

B. Decomposition of Hyperfunction

Methods for single-output decomposition can be easily ap-
plied to decompose a hyperfunction. Therefore, via hyperfunc-
tion decomposition, any algorithm proposed for single-output
decomposition can be easily extended for multiple-output de-
composition. Before detailing the process, we give the following
definitions.

Definition 4: The transitive fanout of a node , denoted as
, is defined as node or path from

to .
Definition 5: The duplication source (DS) after a hyper-

function decomposition is defined as node has at
least one pseudo primary input as its direct fanin.

Note that after we have decomposed a hyperfunction, every
node must be -feasible. However, every node
with pseudo primary inputs as its direct fanins must be

-feasible.
Definition 6: Theduplication cone(DC) after a hyperfunc-

tion decomposition is defined as TFO .
Definition 7: The th layer duplication set after

a hyperfunction decomposition is defined asSet {node
is in TFOsof pseudo primary inputs}.

After we have decomposed a hyperfunction, theDC should
be duplicated to implement its ingredients. Assume the hyper-
function has pseudo primary inputs andingredients. A node

Set must be duplicated additional
copies; a node Set must be duplicated to have additional

copies. To implement each ingredient, we then assign its
corresponding code to the pseudo primary inputs. These pseudo
primary inputs, assigned with constant values, can be collapsed
into their fanout nodes. Nodes are thus reduced by elimi-
nating the extra pseudo primary inputs. After hyperfunction de-
composition, all new generated nodes can be shared by
these ingredients. Consider the following example.

Example 3: Assume that four distinct Boolean func-
tions,

, and , form a
hyperfunction . Suppose the coding of each
ingredient is derived by applying the compatible class encoding
algorithm and is shown in Fig. 8(a). To implement with
five-input LUTs, assume that is decomposed as shown in
Fig. 8(b). Nodes in the duplication cone are filled with gray.
All other nodes can be shared by the ingredients of. After
duplicating the duplication cone, as demonstrated in Fig. 9(a),
we assign as to recover to recover

to recover and to recover .
After we collapse these constant input signals in Fig. 9(a) into

their fanout nodes, the resultant network will be independent
of these pseudo primary inputs. Further in this example, since

and are independent of , and according to their
original function expressions, we can further simplify the net-
work by collapsing nodes and into and as shown in
Fig. 9(b). Nodes duplication cone can be shared by the ingre-
dients of .

C. Properties of Hyperfunction Decomposition

Because nodes in the duplication cone must be duplicated,
fewer nodes DC are preferred. Consequently, we should keep
pseudo primary inputs as close to the output as possible during
the decomposition process. In other words, we prefer to keep
pseudo primary inputs in theset during decomposition. In the
extreme case, if we always select pseudo primary inputs in the

set, hyperfunction decomposition can be considered as the
column encoding[7]. Hence, the column encoding in [7] is a
special case of our hyperfunction decomposition. Hyperfunc-
tion decomposition provides a more generic and flexible means
to extract common sublogic. Since multiple-output functions
can be decomposed as easily as a single-output function, the
set size does not have to be restricted to a small value. More-
over, the shared logic can be across many levels; large common
subexpressions can be extracted.

Although a hyperfunction is decomposed by applying
single-output decomposition, two differences exist between
hyperfunction decomposition and single-output decomposition.
First, strict encoding for single-output decomposition may
become nonstrict for hyperfunction decomposition because
for each ingredient of a hyperfunction, a compatible class can
be encoded with more than one code. (When a hyperfunction
is constructed, conjunctive partitions may be performed on
the partitions of ingredients. So a symbol in a partition may

JIANG et al.: UNIFIED FUNCTIONAL DECOMPOSITION VIA ENCODING FOR FPGA TECHNOLOGY MAPPING 257

Fig. 8. (a) Hyperfunction and ingredients and (b) decomposition ofF .

be broken into several symbols in a conjunctive partition.)
Secondly, an encoding that is rigid for single-output decom-
position may become pliable for hyperfunction decomposition
because the compatible classes of an ingredient may be encoded
by more bits than necessary. IMODEC [8] provides a good
approach to guarantee that each function is rigidly encoded.
However, pliable encoding could save more areas than rigid
one in the cases discussed below.

Definition 8: A partition is containedby another partition
if the multiplicity of equals the multiplicity of the conjunc-

tive partition of .
Theorem 6: Given two partitions of function and

of function with respect to the same set selection, both
multiplicity of and multiplicity of are

less than the set size. is contained by if and only if the
decomposition functions of (which identify the column pat-
terns in by strict encoding) can be used as the decomposition
functions of .

Theorem 7: Given two partitions of function and
of function with respect to the same set selection both

multiplicity of and multiplicity of are
less than the set size. If is contained by , then the de-
composition functions of can be used as the decomposition
functions of .

Example 4: Given three functions ,
, and with

set selection as , assume we have three parti-
tions:

of

of

of

If and are combined to construct a hyperfunction with
set , then the hyperfunction has partition of

. Be-
cause of , has the same multiplicity as

is contained by by Definition 8. According to
Theorem 6 or Theorem 7, the decomposition functions of
can be used as the decomposition functions of. Therefore, if

, and are combined to form a hyperfunction withset
, there are three decomposition functions (be-

cause of the multiplicity of) shared by the three func-
tions as shown in Fig. 10(a). Becauseuses three decomposi-
tion functions instead of two decomposition functions to encode
four compatible classes, the encoding becomes pliable. On the
other hand, if the encoding is restricted to being rigid, such as
[8], it may derive the result as shown in Fig. 10(b). In this case,
two more LUTs are consumed.

V. EXPERIMENTAL RESULTS

Our algorithms have been implemented in the SIS environ-
ment [16]. Table I compares our new encoding algorithm with
random encoding. The benchmark circuits (in the first column)
are collapsed into two-level logic. Without any pre- or post-
processing, we then directly apply single-output decomposi-
tion, with both random and new encoding approaches, on these
benchmarks. The decomposed benchmark circuits are mapped
into five-input and one-output LUTs. Experiments are run under
a SUN SPARC 20 workstation. The results of random encoding
are shown in column 2 with consumed CPU time in column 3;
the results of our new encoding are shown in column 4 with CPU
time in column 5. As can be seen, in the majority of instances,
random encoding and new encoding generate almost the same
results for small functions. In contrast, larger functions are better
improved. Recall that the proposed encoding algorithm aims at
simplifying the image function. As nodes under decomposition
are not large enough, there is almost no room for improvement.
Therefore, for multilevel circuits (nodes in Boolean networks
may not be large enough), random encoding and our encoding
produce almost the same results. Nevertheless, as our proposed
encoding method suitable for large functions, it would be ben-
eficial to exploit this method on hyperfunction decomposition
because a hyperfunction is constructed by the combination of
several multiple-output functions and could thereby be large.

The overall technology mapping method, HYDE, is con-
ducted over a set of benchmark circuits. To prepare the initial
circuits for the following technology mapping, small circuits
are collapsed while large circuits are optimized by SIS algebraic
script. (Benchmark circuitdesis, in addition, partially collapsed
such that several nodes can share the same supports.) After the
initial circuits are derived, the technology mapping script used
for two-level circuits is: our decomposition, xlpartition-tm,
xl cover and the script for multilevel circuits is: (full)simplify,
our decomposition, xlpartition-tm, xl cover. For multilevel
circuits, the script is applied several times to improve results
by taking advantage of extracting the local don’t care set.
We compare experimental results with state-of-the-art FPGA
synthesis techniques [7], [8], and [12] in Tables II and III.

258 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001

Fig. 9. (a) Duplication for ingredients and (b) further reductions.

Fig. 10. (a) Pliable and (b) rigid encoding off .

TABLE I
COMPARISON OFRANDOM ENCODING AND OUR NEW ENCODING

In Table II, the target architecture is the Xilinx XC3000
FPGA. Our algorithm outperforms IMODEC [8] and FGSyn
[7] in most of the examples. Nevertheless, FGSyn produces
much better result in circuitalu4 than HYDE and IMODEC.
In Table III, the resultant circuits are constructed by five-input
one-output LUTs. Without much difference in the consumed
CPU time, it is not shown in Table III. In columns 2–4,

we repeat the results reported in [12]. Our algorithm does
not mapalu4 well. However, the results are still better than
those appearing in column 3. Exclusive ofalu4, our algorithm
produces slightly better results than those in column 4. Due
to the disability of handling large circuits such asC880 in
[12], our approach is considered more practical to handle
large circuits.

JIANG et al.: UNIFIED FUNCTIONAL DECOMPOSITION VIA ENCODING FOR FPGA TECHNOLOGY MAPPING 259

TABLE II
EXPERIMENTAL RESULTS FORXC3000 DEVICE

TABLE III
EXPERIMENTAL RESULTS FORFIVE-INPUT ONE-OUTPUT LUTS

260 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001

VI. CONCLUSION

Compatible class encoding and hyperfunction decomposi-
tion techniques have been proposed. The former improves the
decomposability of the image function and the hyperfunction,
while the latter extracts common subexpressions among
multiple-output functions. By transforming multiple-output
functions into a single-output hyperfunction, the problem of
multiple-output decomposition can thus be reduced to that
of single-output decomposition. As a result, previous efforts
intended for single-output decomposition can be easily ex-
tended to solve multiple-output decomposition. Experimental
results show that our encoding method performs well for large
nodes. In contrast, it does not provide much improvement for
small ones. Fortunately, our encoding method is suitable for
hyperfunctions, which are combined from small functions and
eventually could be large. The overall technology mapping is
promising.

For future research, it will be more powerful if compatible
class encoding simultaneously considers the image and decom-
position functions. On the other hand, to use the hyperfunc-
tion decomposition technique for common sublogic extraction
in technology independent logic synthesis, it would be relatively
time consuming and impractical. Further research is necessary
to make it efficient for this extension.

REFERENCES

[1] R. L. Ashenhurt, “The decomposition of switching functions,”Ann.
Computation Lab. Harvard Univ., vol. 29, pp. 74–116, 1959.

[2] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,”IBM
J., pp. 227–238, 1962.

[3] R. M. Karp, “Functional decomposition and switching circuit design,”
J. Soc. Indust. Appl. Math., vol. 11, no. 2, pp. 291–335, 1963.

[4] W.-Z. Shen, J.-D. Huang, and S.-M. Chao, “Lambda set selection in
Roth–Karp decomposition for LUT-based FPGA technology mapping,”
in Proc. ACM/IEEE Design Automation Conf., June 1995, pp. 65–69.

[5] J.-H. Jiang, J.-Y. Jou, J.-D. Huang, and J.-S. Wei, “BDD based lambda
set selection in Roth–Karp decomposition for LUT architecture,” in
Proc. Asia South Pacific Design Automation Conf., Jan. 1997, pp.
259–264.

[6] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Optimum
functional decomposition using encoding,” inProc. ACM/IEEE Design
Automation Conf., June 1994, pp. 408–414.

[7] Y.-T. Lai, K.-R. R. Pan, and M. Pedram, “OBDD-based function decom-
position: Algorithms and implementation,”IEEE Trans. Comput.-Aided
Design, vol. 15, pp. 977–990, Aug. 1996.

[8] B. Wurth, K. Eckl, and K. Antreich, “Functional multiple-output decom-
position: Theory and an implicit algorithm,” inProc. ACM/IEEE Design
Automation Conf., June 1995, pp. 54–59.

[9] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, “Compatible class encoding in
Roth–Karp decomposition for two-output LUT architecture,” inProc.
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1995, pp. 359–363.

[10] C. Legl, B. Wurth, and K. Eckl, “Computing support-minimal subfunc-
tions during functional decomposition,”IEEE Trans. VLSI Syst., vol. 6,
pp. 354–363, Sept. 1998.

[11] J. Cong and Y.-Y. Hwang, “Partially-dependent functional decomposi-
tion with applications in FPGA synthesis and mapping,” inProc. Int.
Symp. Field-Programmable Gate Arrays, Feb. 1997, pp. 35–42.

[12] H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis for look-up
table based FPGAs using functional decomposition and support mini-
mization,” inProc. IEEE/ACM Int. Conf. Computer-Aided Design, Nov.
1995, pp. 353–358.

[13] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers, pp. 677–691, Aug. 1986.

[14] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin,High-Level
Synthesis: Kluwer, 1992.

[15] G. L. Nemhauser and L. A. Wolsey,Integer and Combinatorial Opti-
mization. New York: Wiley, 1988.

[16] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,”IEEE Trans.
Comput.-Aided Design, pp. 1062–1081, Nov. 1987.

Jie-Hong Jiang received the B.S. and M.S. degrees in electronics engineering
from National Chiao Tung University, Hsinchu, Taiwan, in 1996 and 1998, re-
spectively. He is currently working toward the Ph.D. degree at the University of
California, Berkeley.

During the compulsory military service, from 1998 to 2000, he joined the
Taiwan Air Force as a 2nd Lieutenant.

Mr. Jiang is a member of Phi Tau Phi.

Jing-Yang Jou (M’96) received the B.S. degree in electrical engineering from
the National Taiwan University and the M.S. and Ph.D. degrees in computer
science from the University of Illinois at Urbana-Champaign.

He is a Professor and Chairman in the Department of Electronics Engineering
at National Chiao Tung University, Taiwan. He has worked in the GTE Labo-
ratories and Bell Laboratories. He has published more than 80 journal and con-
ference papers. His research interests include behavioral and logic synthesis,
VLSI designs and CAD for low power, design verification, and hardware/soft-
ware codesign.

Dr. Jou is a member of Tau Beta Pi and the recipient of the Distinguished
Paper Award of the IEEE International Conference on Computer-Aided Design,
1990. He served as the Technical Program Chair of the Asia-Pacific Conference
on Hardware Description Languages (APCHDL’97).

Juinn-Dar Huang received the B.S. and Ph.D. degrees in electronics engi-
neering from National Chiao Tung University, Hsinchu, Taiwan, in 1992 and
1998, respectively.

He is currently a Research and Development Deputy Manager with the
Global UniChip Corporation, Hsinchu, Taiwan. His current research interests
include logic synthesis, design verification, reusable IP authoring, and SoC
design methodology.

Dr. Huang is a member of Phi Tau Phi.

