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1. Introduction

Boundary conditions have sophisticated in
uence on behavior of reaction–di�usion
equations. Since di�usion is the underlying mechanism for the spatial pattern forma-
tion in chemical reactions, spatial structure of solutions of reaction–di�usion equations
can be sensitive to boundary conditions. Posing and realizing appropriate boundary
conditions, for instance, for chemical reactions in open and large systems, is delicate
(cf. [7]). Furthermore, components of a system of reaction–di�usion equations can be
imposed with di�erent boundary conditions. The behavior of system and that of scalar
equation are very di�erent in, for example, Hopf bifurcations, spiral waves and other
pattern formations. Typically multiple bifurcations occur more likely in systems. More-
over, stability of the bifurcating solution branches varies considerably from a scalar
equation to a system. To distinguish the in
uence of boundary conditions from that of
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interactions among the di�erent species (components) of systems, we consider a scalar
stationary reaction–di�usion equation

�u+ �u= f(u; �) in 
 := (0; �)× (0; �): (1)

We assume that the mapping f :R× R→R is su�ciently smooth and

f(0; �) = 0; Duf(0; �) = 0; (2)

that is, it describes the nonlinearity of problem (1) and implies that

u ≡ 0; �∈R
is a trivial solution of (1).
We are interested in impact of symmetry-breaking in boundary conditions on the bi-

furcation scenarios. To this end we consider a square domain and impose the following
conditions along its four sides

h0(�)u(x; 0)− h1(�) @u@y (x; 0) = 0;

h0(�)u(x; �) + h1(�)
@u
@y
(x; �) = 0;

@u
@x
(0; y) = 0;

@u
@x
(�; y) = 0:

(3)

Here h0; h1 : [0; 1]→R are smooth functions satisfying

h0(0) = h1(1) = 0; h0(�) 6= 0 for �∈ (0; 1];
h1(�) 6= 0 for �∈ [0; 1): (4)

Boundary conditions (3) break the D4-symmetry into D2-symmetry as � varies. More
precisely, properties of h0(�); h1(�) make (3) a homotopy from the homogeneous
Neumann boundary conditions along the four sides of 
 at �=0 to the mixed boundary
conditions at � = 1, which are of the Neumann type along the sides x = 0; �; and of
the Dirichlet type at y = 0; � (see Fig. 1).
Early application of symmetry to bifurcation analysis dates back to Othmer [14,15].

The studies in in
uence of boundary conditions upon the solution structure of partial
di�erential equation have been done by many scientists. For example, Mielke [13] has
shown that some typical patterns in Ginzburg–Landau equation are not dominated by
boundary e�ects. Homotopy of boundary conditions has been used by Fiedler [3] and
Gardner [4] to study global attractors and nonsingular solutions of a class of reaction–
di�usion equations. In these studies, detailed a�ection from boundary conditions on
the structure of global attractor has been analyzed in di�erent aspects. For example,
Fiedler showed that the class of global attractors is independent of boundary condi-
tions. Nevertheless, if the equilibrium is nonhyperbolic and a bifurcation occurs, the
bifurcation scenario, for example, the structure of attractors, may vary with respect
to boundary conditions. This has been observed by Dillon et al. [2] in the study of
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Fig. 1. A homotopy between homogeneous Neumann and mixed boundary conditions.

pattern formation in generalized one-dimensional Turing systems and by Mei and Theil
[12] in the analysis of steady state bifurcations as well as by Holder and Schae�er [9]
and Schae�er and Golubitsky [16] on mode-jumping of von K�arm�an equations. Using
(3) as an example we study in this paper how reaction–di�usion equations react to a
symmetry-breaking in boundary conditions.
An outline of this paper is as follows. In Section 2 we consider variational form and

symmetries of Eq. (1). Section 3 describes bifurcation points of (1) along the trivial
solution curve. In Section 4 problem (1) at bifurcation points is reduced to algebraic
equations via the well-known Liapunov–Schmidt method. We derive the bifurcation
scenario at simple and double bifurcation points in Section 5 and illustrate these with
a simple example in Section 6.

2. Variational equations and symmetries

The classical regularity theory of elliptic problems ensures the C2; s-H�older continuity
of solutions of the linear problem

�u+ �u= g

with boundary conditions (3) on the square 
 (cf. [17]). However, di�erentiability of
solutions at the four corners depends strongly on properties of g. This linear problem
is involved in the analysis of bifurcations of (1) with various right-hand sides. Here
we write problem (1) into variational form to avoid technicalities for the classical
solutions. That is, we study bifurcations of its weak solutions.
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2.1. Weak form

We consider the Sobolev space

X :=H 1(
) =
{
u∈L2(
); @u

@x
;
@u
@y

∈L2(
)
}

with the norm ‖·‖1;
, and for u; v∈X , �∈ [0; 1) the parameter-dependent bilinear form

b�(u; v) :=−
∫


(∇u∇v+ uv) dx dy − h0(�)

h1(�)

∫ �

0
[u(x; 0)v(x; 0)

+ u(x; �)v(x; �)] dx: (5)

For � = 1 we choose the bilinear form

b1(u; v) := −
∫


(∇u∇v+ uv) dx dy (6)

de�ned in the space X̃ × X̃ and

X̃ := {u∈H 1(
); u satis�es boundary conditions (3) for � = 1}:
The weak form of the linear problem

�u− u= g in 
 (7)

with boundary conditions (3) is

Find u∈H 1(
) such that b�(u; v) = (g; v) for all v∈H 1(
): (8)

In particular, weak form of the Neumann problem corresponds to � = 0.
For domains 
∈C0;1, typically rectangle and L-domains (cf. [8, pp. 118]), we have

‖u‖H 1=2(@
) ≤ C‖u‖1;
 for all u∈H 1(
);
∥∥∥∥@u@n

∥∥∥∥
H 1=2(@
)

≤ C‖u‖2;
 for all u∈H 2(
);

where C¿ 0 is a constant. Note that

‖�‖L2(@
) ≤ ‖�‖H 1=2(@
) = inf
u|@
=�

‖u‖1;
 for all �∈H 1=2(@
):

Thus the bilinear form b�(·; ·) is continuous and coercive on X × X . Moreover, if the
inequality h0(�)h1(�) ≥ 0 holds, it is elliptic. Therefore, problem (8) has a unique
solution u(�)∈X for every �∈ [0; 1) and all g∈H−1(
). The solution u(�) satis�es
boundary conditions (3).
Denote the solution operator of (8) as

T (�) : g∈H−1(
) 7→ T (�)g= u(�)∈H 1(
): (9)

The operator T (�) is linear and bounded for any �xed �∈ [0; 1). Furthermore, owing
to the symmetry of Laplacian it is self-adjoint. This can be seen from the following
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equalities for all f; g∈H−1(
):

〈T (�)f; g〉H 1(
)×H−1(
)

=
∫


(T (�)f)g dx dy

=
∫


(∇(T (�)f)∇(T (�)g) + (T (�)f)(T (�)g) dx dy

+
h0(�)
h1(�)

∫ �

0
[(T (�)f)(T (�)g)|y=0 + (T (�)f)(T (�)g)|y=�] dx

=
∫


(−�+ I)(T (�)f)(T (�)g) dx dy +

∫
@

(T (�)g)

@
@n
T (�)f ds

+
h0(�)
h1(�)

∫ �

0
[(T (�)f)(T (�)g)|y=0 + (T (�)f)(T (�)g)|y=�] dx

=
∫


f · (T (�)g) dx dy

= 〈f; T (�)g〉H−1(
)×H 1(
):

More importantly is the fact that together with the Gelfand relation

H 1(
)
c
,→L2(
) ,→ H−1(
)

the Riesz–Schauder theory is applicable to the operator T (�) for all �∈ [0; 1), so that
T (�) has the following properties.

• The spectrum of operator T (�) consists of eigenvalues. There are maximally count-
able eigenvalues and can be ordered as

�1 ≥ �2 ≥ · · · → 0:

The eigenspace associated to each eigenvalue �i; i = 1; 2; : : : is �nite dimensional.
• For i=1; 2; : : : the equation T (�)u−�u=f is solvable if and only if f⊥Ker(T (�)−
�I).

For � = 1 we obtain the same conclusions with bilinear form (6). In the sequel we
consider the weak form

G(u; �; �) := u+ (�+ 1)T (�)u− T (�)f(u; �) = 0: (10)

The mapping G :X×R→X is obviously as smooth as f in (u; �). It is also continuously
di�erentiable in � due to the following property of T (�).

Lemma 1 (Mei [11]). The operator T (�) is continuous and di�erentiable with respect
to � in [0; 1). Furthermore; the derivative u′(�) = T ′(�)g=: v(�) for all g∈Y is
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given as the weak solution of

�v− v= 0 in 
;

h0(�)
h1(�)

v(x; 0)− @v
@y
(x; 0) =−

(
h0(�)
h1(�)

)
′u(x; 0);

h0(�)
h1(�)

v(x; �) + @v
@y
(x; �) =−

(
h0(�)
h1(�)

)
′u(x; �);

@v
@x
(0; y) = 0;

@v
@x
(�; y) = 0:

(11)

To calculate T ′(�)g, we denote by u = T (�)g the weak solution of the equation
�u− u= g with boundary condition (3). De�ne

v̂ :=
(
h0(�)
h1(�)

)
′
(
−y

2

� + y
)
u(x; y): (12)

It is easy to verify that v̂ satis�es the boundary conditions in (11). Let v= w + v̂ and
substitute it into (11). We obtain the equation

�w − w =−(�v̂− v̂)
with boundary conditions (3). Furthermore,

−(�v̂− v̂) =−
(
h0(�)
h1(�)

)
′
[(

−y
2

� + y
)
g− 2

�u+ 2
(
−2y� + 1

)
@u
@y

]
:

Hence, the weak solution v of Eq. (11) is

v=−T (�)(�v̂− v̂) + v̂

=
(
h0(�)
h1(�)

)
′
{
T (�)

[
2
�T (�)g+ 2

(
2y
� − 1

)
@
@y
(T (�)g) +

(
y2

� − y
)
g
]

+
(
−y

2

� + y
)
T (�)g

}
: (13)

Remark. Note that T (�) is self-adjoint, so is its derivative T ′(�). Based on formulation
(11), one can calculate the higher-order derivatives of u(�) in a similar manner.

2.2. Symmetries

Let D4 be the dihedral group of the square 
 and

S1(x; y) = (�− x; y); R(x; y) = (�− y; x)
be its generators. With Z2 := {1;−1}, we de�ne Z2×D4={±�; �∈D4} and its actions
on Y :=L2(
) (⊃X ) as


u(x; y) =±u(�−1(x; y)) for all 
=±�; �∈D4 and u∈Y: (14)
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The function spaces X; Y are obviously Z2 × D4-invariant. Similarly, the L2-product
is also Z2×D4-invariant. Corresponding to boundary condition (3) we are particularly
interested in the subgroup

D2 := {S1; R2; S1R2; I}: (15)

Let

�:=




Z2 × D4 if f(u; �) is an odd function in u and � = 1;

D4 if f(u; �) is not odd in u and � = 1;

Z2 × D2 if f(u; �) is an odd function in u and � 6= 1;
D2 if f(u; �) is not odd in u and � 6= 1:

The �-equivariance of the mapping G, i.e.,

G(
u; �; �) = 
G(u; �; �) for all 
∈�; u∈X; �∈R
can be veri�ed directly via the generators ±S1 and ±R, respectively.

3. Bifurcation points

Since D�G(0; �; �) = D�G(0; �; �) ≡ 0 and DuG(0; �; �) = I + (� + 1)T (�) for all
�, �∈R, a bifurcation occurs at a point (0; �; �) on the trivial solution manifold
{(0; �; �); �∈R; �∈ [0; 1]} of (10) if the linearized problem

DuG(0; �; �)u= u+ (�+ 1)T (�)u= 0 (16)

has nontrivial solutions. By de�nition (9) of T (�) this equation is the weak form of
the eigenvalue problem

�u+ �u= 0 in 
 = (0; �)× (0; �)
with boundary condition (3). To solve this problem with the rule of separating variables,
we take the ansatz u(x; y) = u1(x)u2(y) 6≡ 0 and derive

u′′1
u1
+
u′′2
u2
+ �= 0 in 
 = (0; �)× (0; �):

Hence, u1 satis�es the equation

u′′1 + k1u1 = 0 for some k1 ∈R (17)

with boundary conditions u′1(0) = u
′
1(�) = 0. Similarly, u2 is a solution of

u′′2 + k2u2 = 0 for some k2 ∈R (18)

with the boundary conditions

h0(�)u2(0)− h1(�)u′2(0) = 0;
h0(�)u2(�) + h1(�)u′2(�) = 0:
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These are eigenvalue problems of the one-dimensional di�erential operator d2=dx2 with
two di�erent boundary conditions. Solutions of these problems are of the form

(u1; k1) = (cos nx; n2); n∈N;
(u2; k2) = (h0(�) sin(k(�)y) + h1(�)k(�) cos(k(�)y); k(�)2);

where k(�)∈R satis�es
2h0(�)h1(�)k cos (k�) + (h20(�)− h21(�)k2) sin(k�) = 0: (19)

Thus eigenvalues of the Laplacian −� are given as

�= n2 + k(�)2 (20)

with the corresponding eigenfunction

�(�) := �̃=‖�̃‖; �̃ := (cos nx)[h0(�) sin(k(�)y) + h1(�)k(�) cos(k(�)y)]: (21)

As a function of the homotopy parameter �, the function �(�) has the following
properties (cf. [12]).

Lemma 2. Under assumption (4); Eq. (19) does not have integer solution for
�∈ (0; 1). Moreover; if [h1(�)=h0(�)]′¡ 0 for all �∈ (0; 1); then the solution k(�) of
(19) increases monotonously from m∈N at � = 0 to (m+ 1)∈N at � = 1.

Note that after multiplying the factor sin (k�) to the both sides of Eq. (19) we can
rewrite it as

[h0(�) sin(k�)− h1(�)k(1− cos(k�))][h0(�) sin(k�) + h1(�)k(1 + cos(k�))] = 0:
We use the following de�nition of parities of k(�) in [1], which are consistent with
the parities of wavenumbers of the Neumann problem at � = 0.

De�nition 3. The parities of the wavenumber k(�) for Robin boundary conditions are
de�ned as

�(�) =



EVEN if h0(�) sin(k(�)�) = h1(�)k(�)[1− cos(k(�)�)]

for all �∈ [0; 1];
ODD if h0(�) sin(k(�)�) =−h1(�)k(�)[1 + cos(k(�)�)]:

(22)

In the rest of this paper we restrict the discussion to the case

h0(�)
h1(�)

¿0;
(
h1(�)
h0(�)

)
′¡ 0:

We conclude that bifurcation points of (10) on the trivial solution manifold are

{(0; �(�); �); �(�) = n2 + k(�)2; n∈N; and k(�) satisfying (19)} (23)

(see Fig. 2). The kernel Ker(DuG(0; �(�); �)) is generically one-dimensional and

Ker(DuG(0; �(�); �)) = span[�(�)]:

From statement (20) and Fig. 2 it is evident that two curves of bifurcation points
may intersect. In fact, these are generic as � approaches zero and one, respectively. An
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Fig. 2. Bifurcation points of (10) in the parameter space (�; �). Here we have chosen h0(�)=�; h1(�)=1−�.

intersection point corresponds to a multiple bifurcation of (10). At � = 0; 1 solutions
of Eq. (19) are integers. In particular, at � = 0 boundary conditions (3) reduce to
homogeneous Neumann type. Thus the eigenvalues of −� are of the form

�0 = n2 + k2; n; k ∈N ∪ {0}:

Such an eigenvalue is generically double and the associated eigenspace is

Ker(DuG(0; �0; 0)) = span[�1; �2];

where

�1 =
2
� cos(nx) cos(ky); �2 =

2
� cos(kx) cos(ny):

Consequently, as �→ 0, two di�erent curves of simple bifurcation points approach the
same double bifurcation point. However, with � as the bifurcation parameter, there is
exactly one solution branch bifurcating from the trivial solution curve at every simple
bifurcation point, while at a double bifurcation point for � = 0 the Neumann problem
has up to four di�erent nontrivial solution branches (cf. [10]). On the other hand, as
we have seen before, the D4-symmetry of the Neumann problem breaks into D2 ×
D2-symmetry as � moves away from 0. This leads to the question how the bifurcation
scenario reacts to such a symmetry-breaking in the boundary conditions. We want to
investigate which solution branches of the Neumann problem and what symmetries of
the solutions persist as the parameter � varies.



518 Z. Mei, C.-W. Shih / Nonlinear Analysis 44 (2001) 509–526

4. Liapunov–Schmidt reduction

To investigate the solutions of (10) at a bifurcation point (0; �0; �0) on the curve
(0; �(�); �) in (23), we use the well-known Liapunov–Schmidt method to reduce
problem (10) to an algebraic system (cf. [5,6]).
According to the Fredholm properties of DuG(0; �0; �0)= I +(�0 +1)T (�0); we have

the decomposition

X =Ker(DuG(0; �0; �0))⊕ Im(DuG(0; �0; �0)):
Suppose that the kernel Ker(DuG(0; �0; �0))=span[�1; : : : ; �l] is l-dimensional (l=1; 2
generically). We write elements (u; �; �)∈X × R× R as

u=
l∑
i=1

zi�i + w = z · �+ w;

�= �0 + �;

� = �0 + �;

where z=(z1; : : : ; zl); �=(�1; : : : ; �l); zi; �; �∈R and w∈ Im(DuG(0; �0; �0)). Consider
the projection Q := I −∑l

i=1〈�i; ·〉�i from X onto Im(DuG(0; �0; �0)). We rewrite the
equation G(u; �; �) = 0 into a system

QG(z · �+ w; �0 + �; �0 + �) = 0; (24)

(I − Q)G(z · �+ w; �0 + �; �0 + �) = 0: (25)

Solving w uniquely from (24) as a function of z, �, � and substituting it into (25), we
obtain the reduced bifurcation equation for z, �, �:

(I − Q)G(z · �+ w(z; �; �); �0 + �; �0 + �) = 0: (26)

We note that w(0; 0; 0) = 0; Dzw(0; 0; 0) = 0, from (24). In the coordinate system

z · �∈Ker(DuG(0; �0; �0))↔ z = (z1; : : : ; zl)∈Rl;
operator Eq. (26) becomes a system of l algebraic equations

B(z; �; �) := (〈�i; G(z · �+ w(z; �; �); �0 + �; �0 + �)〉)li=1 = 0: (27)

By de�nition the projection Q is �-equivariant. Thereafter the mapping B(z; �; �) is
also �-equivariant with respect to the induced action of � in Rl, i.e.,

B(
z; �; �) = 
B(z; �; �) for all (z; �; �)∈Rl × R× R; 
∈�:
We take the Taylor expansion of the components of (�0 + 1)B(z; �; �) = 0 at the point
(z; �; �) = (0; 0; 0) and consider the truncated form

−�zi + (�0 + 1)2〈�i; T ′(�0)(z · �)〉�

+

〈
�i;
1
2
Duuf0(z · �)2 + Duuf0(z · �)


1
2

∑
|�|=2

D�w0z�


+ 1

6
Duuuf0(z · �)3

〉

=0; i = 1; : : : ; l: (28)
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Here and in the sequel Duuf0 and Duuuf0 denote the derivatives of f at (u; �)=(0; �0);
�∈Nl is a multi-index and

1
2

∑
|�|=2

D�w0z�

represents the second-order terms in the Taylor expansion of w at (z; �; �) = (0; 0; 0).
We recall that in the singularity theory a problem B = 0 is �nitely determined if

there exists k ∈N, k ¡∞, such that the bifurcation scenarios of B = 0 and its k-jets
jk(B)= 0, the Taylor expansion of B truncated at kth order, are equivalent. The deter-
minacy of a general problem at a bifurcation point is characterized by its reduced
bifurcation equations. We refer to Golubitsky and Schae�er [5] for more detailed
discussions. For 3-determined problems solutions of system (28) correspond one-to-one
to those of original problem (10) and contain all information of bifurcations of (10) at
(0; �0; �0).
With the knowledge of the bifurcation point (0; �0; �0) and the kernel Ker(DuG0),

the terms 〈�i; Duuf0(z ·�)2〉 and 〈�i; Duuuf0(z ·�)3〉 in (28) can be calculated directly.
The other terms involve the derivatives T ′(�0) and Dzizjw0. Since the function w(z; �; �)
is de�ned implicitly by Eq. (24), the term Dzizjw0 is the unique solution v of the linear
problem

DuG0v= QT (�0)Duuf0�i�j; v∈ Im(DuG0): (29)

The term T ′(�0)(z · �) is calculated as a solution of Eq. (11). In fact, via (13) we
derive

〈�i; T ′(�0)(z · �)〉

= h̃(�0)
〈
�i;
(
−y

2

� + y
)
T (�0)(z · �)

+T (�0)
[
2
�T (�0)(z · �) + 2

(
2y
� − 1

)
@
@y
(T (�0)(z · �))

+
(
y2

� − y
)
(z · �)

]〉

= h̃(�0)
1

(�0 + 1)2

〈
�i;
2
� (z · �)− 2(�0 + 1)

(
2y
� − 1

)
@
@y
(T (�0)(z · �))

〉

= h̃(�0)
2

(�0 + 1)2

[
zi
� +

〈
�i;
(
2y
� − 1

)
@
@y
(z · �)

〉]
;

where h̃(�0) = ( h0h1 )
′(�0).
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5. Bifurcation scenarios

5.1. Simple bifurcations for �∈ (0; 1)

Let �(�) = n2 + k(�)2 be a homotopy of simple eigenvalues of the Laplacian and
�(0)= n2 +m2, �(1)= n2 + (m+1)2. Then (0; �(�); �) is a curve of simple bifurcation
points of (10) and

Ker(DuG)(0; �(�); �) = span[�]

is one-dimensional and � is given in (21). To obtain the generic bifurcation diagram
of (10) at (0; �(�0); �0) for an arbitrary �0 ∈ (0; 1), we consider Eq. (28), that is, the
3-jet of the reduced bifurcation equation,

0 =−�z + (�0 + 1)2〈�; T ′(�0)�〉�z
+ 〈�; 12 (Duuf0)�2〉z2 + 〈�; 12Duuf0(Dzzw0)�+ 1

6 (Duuuf0)�
3〉z3: (30)

Here z ∈R is a scalar and
〈�; T ′(�0)�〉= h̃(�0) 2

(�0 + 1)2

[
1
� +

〈
�;
(
2y
� − 1

)
@
@y
�
〉]
:

Theorem 4. Problem (10) undergoes a pitchfork bifurcation at all points on the curve
(0; �(�); �); �∈ (0; 1); that is; the simple bifurcation points. Moreover; the truncated
bifurcation Eq. (30) reduces to

j3[(�0 + 1)B(z; �; �)] = (−� + a�)z + cz3 = 0 (31)

with

a= 2h̃(�0)
[
1
� +

〈
�;
(
2y
� − 1

)
@
@y
�
〉]
;

c = 〈�; 12Duuf0(Dzzw0)�+ 1
6Duuuf0�

3〉:
(32)

Proof. It is easy to verify that the eigenfunction � of the Laplacian has the property
〈�; �2〉 = 0. Thus the z2 term in (30) vanishes. The conclusion follows directly from
Eqs. (30) and (31) consecutively.

The nontrivial solution of (31) is given as

z =±
(
� − a�
c

)1=2
:

5.2. Double bifurcations of the Neumann problem

For the Neumann problem (� = 0) a generic double bifurcation point (0; �0; 0) has
the property that �0 = n2 + k2(0) with the wavenumbers n, k(:=k(0)), (n 6= k) as
integers. Furthermore, we can choose

Ker(DuG0) = span[�1; �2]
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with

�1(x; y):=




2
� cos(nx) cos(ky) for n · k 6= 0;
√
2
� cos(nx) for n 6= 0; k = 0;
√
2
� cos(ky) for n= 0; k 6= 0;

and

�2(x; y):=�1(y; x):

On the other hand, taking into account the homotopy parameter � in the bound-
ary conditions, we see this double bifurcation point is split into two simple bifur-
cation points (0; �i(�); �), i = 1; 2 with �1(�) = n2 + k2(�) and �2(�) = k2 + n2(�) for
� 6= 0. We want to investigate bifurcation scenario of (10) at a double bifurcation point
(0; �0; 0) and its variation with respect to the homotopy parameter �.
Note that 〈�i; �j�l〉= 0 for all i; j; l= 1; 2. Eq. (29) can be solved analytically (cf.

[10]). Together with the statements

〈�4i ; 1〉=




9
4�2 for n · k 6= 0;
3
2�2 for n · k = 0; n

2 + k2 6= 0

and 〈�2i ; �2j 〉= 1=�2 for i 6= j, we simplify Eq. (28) into

−�z1 + (�0 + 1)2〈�1; T ′(�0)(z1�1 + z2�2)〉�+ c1z31 + c2z1z22 = 0;

−�z2 + (�0 + 1)2〈�2; T ′(�0)(z1�1 + z2�2)〉�+ c2z21z2 + c1z32 = 0:
(33)

Here c1; c2 are constants. More precisely, if n · k 6= 0, we have

c1 =
1
6�2

[
9
4
Duuuf0 − 1

4
(Duuf0)2

45(k2 − n2)2 + 4k2n2
(k2 − 3n2)(n2 − 3k2)(n2 + k2)

]
;

c2 =
1
6�2

[
3Duuuf0 − 6(Duuf0)2 1

n2 + k2

(
(k2 − n2)2 − 4k2n2
[(k2 + n2)2 − 16k2n2] −

1
2

)]
:

If n= 0; k 6= 0, then

c1 =
1
6�2

[
3
2
Duuuf0 +

5
2k2

(Duuf0)2
]
;

c2 =
1
2�2Duuuf0:

If � = 0, Eq. (33) coincide with those in [10], and yield four nontrivial solutions
of (10) with symmetries the isotropy subgroups of �1; �2 and �1 ± �2, respectively.
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For � 6= 0, the forced symmetry-breaking in boundary conditions introduces in (33) the
terms

(�0 + 1)2〈�i; T ′(�0)(z1�1 + z2�2)〉�

=2h̃(0)
[
zi
� +

〈
�i;
(
2y
� − 1

)
@
@y
(z1�1 + z2�2)

〉]

=:dizi; i = 1; 2:

Here,

d1 = d2 =
4
� h̃(0) if n · k 6= 0;

d1 =
4
� h̃(0) d2 = 0; if n= 0; k 6= 0:

System (33) reduces to

[− � + d1�+ c1z21 + c2z22]z1 = 0;
[− � + d2�+ c2z21 + c1z22]z2 = 0:

(34)

Remark. The coe�cients in Eqs. (32) and (34) are related as follows:

lim
�0 → 0

a= di for �= �i; i = 1; 2;

lim
�0 → 0

c= c1:

Solutions of system (34) are

(a)

(
±
(
� − d1�
c1

)1=2
; 0

)
;

(
0; ±

(
� − d2�
c1

)1=2)

(b)

(
±
(
(c1 − c2)� − (c1d1 − c2d2)�

c21 − c22

)1=2
; ±

(
(c1 − c2)� + (c2d1 − c1d2)�

c21 − c22

)1=2)
:

(35)

These lead to four bifurcating solution branches of original problem (10), that is,
(1). The solutions in (35a) are pure-mode solution branches with the isotropy groups
of �1; �2, respectively. They correspond to those bifurcating solutions at the simple
bifurcation points on the curves (0; �i(�); �); i = 1; 2. The solutions in (35b) involve
both �1 and �2 modes. They are called the mixed-mode branches.
If n · k =0, the terms d1�; d2� break the D4-symmetry of the Neumann problem and

the mixed-mode solution branches have merely the trivial symmetry. Moreover, the
pure mode and mixed-mode solution branches may intersect at

� =
(c1d1 − c2d2)�
(c1 − c2) or � =

(c2d1 − c1d2)�
(c1 − c2)

and induce a secondary bifurcation, respectively.
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If n ·k 6= 0, then d1 =d2 and the D4-symmetry is preserved in (34) and mixed-mode
solutions (35b) becomes

±
((

� − d1�
c1 + c2

)1=2
; ±

(
� − d1�
c1 + c2

)1=2)
:

Symmetries of these solutions are the isotropy groups of the eigenfunctions �1 + �2
and �1 − �2, respectively.
As a conclusion, we have seen that all four bifurcating solution branches of the

Neumann problem at a double-bifurcation point persist if we vary both � and � as
bifurcation parameters. Moreover, symmetry of these bifurcating solution branches is
preserved for those with the wavenumbers n · k 6= 0 and is broken for those with the
wavenumbers n= 0 or k = 0.

6. A simple example

Choose

f(u; �) = �(u2 + u3): (36)

We consider the bifurcation scenarios at the corank-2 bifurcation points u0 = 0; �0 = 0
and �0=5; 1, respectively. In particular, we aim to examine variations of the bifurcation
scenarios as the homotopy parameter � moves away from zero, that is, as the homo-
geneous Neumann boundary conditions with D4-symmetry are perturbed. To simplify
the discussion, we take h0(�) = �; h1(�) = 1− �. Note that at � = 0 we have

Ker(DuG0) = span[�1; �2]

and the inequalities c1 6= 0; c2 6= 0 and c21 − c22 6= 0 hold for all n; k ∈N ∪ {0}.
(1) Wavenumber n= 1; k = 2: For �(0) = 5 and n= 1; k = 2 we have

�1 = 2=� cos x cos 2y; �2 = 2=� cos 2x cosy:

Furthermore, d1 =d2 = 4=�; c1 = 5695=132�2; c2 = 110 220=132�2. Solutions (z1; z2) in
(35) become(

±
(
132�(�� − 4�)

5695

)1=2
; 0

)
;

(
0;±

(
132�(�� − 4�)

5695

)1=2)
;

±
((

132�(�� − 4�)
115 915

)1=2
;±
(
132�(�� − 4�)
115 915

)1=2)
:

Figs. 3 and 4 show the pure and mixed mode solution branches.
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Fig. 3. Two solution branches of pure �1 and �2 modes.

(2) Wavenumber n= 0; k = 1: For �(0) = 1 and n= 0; k = 1, moreover,

�1 =

√
2
� cosy; �2 =

√
2
� cos x:

Simple calculations show d1 = 4=�; d2 = 0; c1 = 19=6�2, and c2 = 3=�2. The solution
branches described by (z1; z2) in (35) are(

±
(
6�(�� − 4�)

19

)1=2
; 0

)
;

(
0;±

(
6�2�
19

)1=2)
;

±
((

6�(�� − 76�)
37

)1=2
;±
(
6�(�� + 72�)

37

)1=2)
:

The pure �2-mode solution branch meets a mixed-mode solution branch at � = 76�=�
and a secondary bifurcation is induced.
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Fig. 4. Two solution branches of mixed �1 and �2 modes.
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