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1. Introduction

Boundary conditions have sophisticated influence on behavior of reaction—diffusion
equations. Since diffusion is the underlying mechanism for the spatial pattern forma-
tion in chemical reactions, spatial structure of solutions of reaction—diffusion equations
can be sensitive to boundary conditions. Posing and realizing appropriate boundary
conditions, for instance, for chemical reactions in open and large systems, is delicate
(cf. [7]). Furthermore, components of a system of reaction—diffusion equations can be
imposed with different boundary conditions. The behavior of system and that of scalar
equation are very different in, for example, Hopf bifurcations, spiral waves and other
pattern formations. Typically multiple bifurcations occur more likely in systems. More-
over, stability of the bifurcating solution branches varies considerably from a scalar
equation to a system. To distinguish the influence of boundary conditions from that of
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interactions among the different species (components) of systems, we consider a scalar
stationary reaction—diffusion equation

Au+ Au= f(u,2) in Q:=(0,1) x (0, 7). (1)
We assume that the mapping f:R x R— R is sufficiently smooth and

f0,4)=0,  D,f(0,4)=0, (2)
that is, it describes the nonlinearity of problem (1) and implies that

u=0, 2€R

is a trivial solution of (1).

We are interested in impact of symmetry-breaking in boundary conditions on the bi-
furcation scenarios. To this end we consider a square domain and impose the following
conditions along its four sides

0
ho(t)u(x, 0) — hy (1) %(x, 0) =0,

A

ho(p)u(x, ) + hy () %(m) =0,

] (3)
u
A Oa = Oa
ax( »)
Oou
—(m, y)=0.
ax(?T »)
Here hg, h;:[0,1]— R are smooth functions satisfying
ho(0) = A1 (1) =0, ho(n) # 0 for pe (0,1], @

hi(u)#0 for uefo,1).

Boundary conditions (3) break the D4s-symmetry into D,-symmetry as p varies. More
precisely, properties of hg(u), h;(u) make (3) a homotopy from the homogeneous
Neumann boundary conditions along the four sides of {2 at ©=0 to the mixed boundary
conditions at p = 1, which are of the Neumann type along the sides x = 0,w; and of
the Dirichlet type at y =0, n (see Fig. 1).

Early application of symmetry to bifurcation analysis dates back to Othmer [14,15].
The studies in influence of boundary conditions upon the solution structure of partial
differential equation have been done by many scientists. For example, Mielke [13] has
shown that some typical patterns in Ginzburg-Landau equation are not dominated by
boundary effects. Homotopy of boundary conditions has been used by Fiedler [3] and
Gardner [4] to study global attractors and nonsingular solutions of a class of reaction—
diffusion equations. In these studies, detailed affection from boundary conditions on
the structure of global attractor has been analyzed in different aspects. For example,
Fiedler showed that the class of global attractors is independent of boundary condi-
tions. Nevertheless, if the equilibrium is nonhyperbolic and a bifurcation occurs, the
bifurcation scenario, for example, the structure of attractors, may vary with respect
to boundary conditions. This has been observed by Dillon et al. [2] in the study of
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ho(p)u + hl(u)% =0
dy

]

Fra
n - 0 — n
ou _
or

o
haliu = ha() 3o =0

Fig. 1. A homotopy between homogeneous Neumann and mixed boundary conditions.

pattern formation in generalized one-dimensional Turing systems and by Mei and Theil
[12] in the analysis of steady state bifurcations as well as by Holder and Schaeffer [9]
and Schaeffer and Golubitsky [16] on mode-jumping of von Karman equations. Using
(3) as an example we study in this paper how reaction—diffusion equations react to a
symmetry-breaking in boundary conditions.

An outline of this paper is as follows. In Section 2 we consider variational form and
symmetries of Eq. (1). Section 3 describes bifurcation points of (1) along the trivial
solution curve. In Section 4 problem (1) at bifurcation points is reduced to algebraic
equations via the well-known Liapunov—Schmidt method. We derive the bifurcation
scenario at simple and double bifurcation points in Section 5 and illustrate these with
a simple example in Section 6.

2. Variational equations and symmetries

The classical regularity theory of elliptic problems ensures the C>*-Holder continuity
of solutions of the linear problem

Au+u=g

with boundary conditions (3) on the square 2 (cf. [17]). However, differentiability of
solutions at the four corners depends strongly on properties of g. This linear problem
is involved in the analysis of bifurcations of (1) with various right-hand sides. Here
we write problem (1) into variational form to avoid technicalities for the classical
solutions. That is, we study bifurcations of its weak solutions.
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2.1. Weak form

We consider the Sobolev space

X=H'(Q)= {ueLz(Q); % u eLz(Q)}
ox’ dy
with the norm ||||1,q, and for u,v € X, p€[0, 1) the parameter-dependent bilinear form
T
bu(u,v) = — /(Vqu—i— uv)dxdy — hO('u)/ [2(x,0)v(x,0)
0 m(w) Jo
=+ u(x, T)v(x, )] dx. (5)
For y =1 we choose the bilinear form
bi(u,v):= — /(Vqu+uv)dxdy 6)
Q

defined in the space X x X and

X:= {uc H'(Q); u satisfies boundary conditions (3) for u=1}.
The weak form of the linear problem

Au—u=g¢g in (7)
with boundary conditions (3) is

Find u€ H'(Q) such that bu(u,v) =(g,v) forallv eH (D). (8)

In particular, weak form of the Neumann problem corresponds to p = 0.
For domains 2 € C%!, typically rectangle and L-domains (cf. [8, pp. 118]), we have

lell 1200 < Cllull1,0  for all ue HY(Q),

% < Cllulle for all ue HA(Q),

HI2(20)

where C > 0 is a constant. Note that
H¢||L2(69) < ||¢HH‘2(652) = u‘inf(/) lul1,o for all ¢€H1/2(69)-
=

Thus the bilinear form b,(-,-) is continuous and coercive on X x X. Moreover, if the
inequality /o(p)h (1) > 0 holds, it is elliptic. Therefore, problem (8) has a unique
solution u(u)€X for every n€[0,1) and all g € H~'(Q2). The solution u(u) satisfies
boundary conditions (3).

Denote the solution operator of (8) as

T(u): g€ H™(Q) — T(n)g = u(u) € H' (). 9)

The operator 7'(u) is linear and bounded for any fixed u € [0, 1). Furthermore, owing
to the symmetry of Laplacian it is self-adjoint. This can be seen from the following
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equalities for all f, g€ H~'(Q):
(T(w)f, g>H‘(Q)><H—‘(Q)

- /Q (T(0). g dx dy

= /Q(V(T(ﬂ)f)V(T(u)g) + (T NT(w)g)dxdy

ho(p)
hi(p)

0
- / (“A + IXTGOS )T (u)g) dxdy + / (T()9) - () f ds

; (TS NT (9l y=0 + (T() S UT(1)g)]y=n] dx

ho(ﬂ)
o 1(w)

- /Q - (T()g) dx dy

/ (TSNl y=0 + (T() S UT(1)g)]y=n] dx

=/, T(WG - @)xu'©)
More importantly is the fact that together with the Gelfand relation
H'(Q) <5 LA(Q) — H™'(Q)
the Riesz—Schauder theory is applicable to the operator 7'(u) for all £ €[0,1), so that
T(u) has the following properties.

e The spectrum of operator 7(u) consists of eigenvalues. There are maximally count-
able eigenvalues and can be ordered as

M> > —0.

The eigenspace associated to each eigenvalue 4;, i =1,2,... is finite dimensional.
e Fori=1,2,... the equation 7'(u)u— Au= f is solvable if and only if f 1 Ker(7T(u)—
Al).

For =1 we obtain the same conclusions with bilinear form (6). In the sequel we
consider the weak form

Gu, 2y ) =1 + (A + DT () — T() f(u, 1) = 0. (10)

The mapping G : X xR — X is obviously as smooth as f in (u, 4). It is also continuously
differentiable in p due to the following property of 7'(u).

Lemma 1 (Mei [11]). The operator T(w) is continuous and differentiable with respect
to w in [0,1). Furthermore, the derivative u'(u) = T'(u)g=:v(n) for all gevY is
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given as the weak solution of

Av—v=0 1inQ,

h 0 h

0~ 5 0=~ (h?EZ;)/”(X’O)’

ho(1) v [ h(w)Y, (11)
hl('u)v(x,n) + @(x,n) = — (hl(,u)) u(x, ),

ov

ov
&(07.)})_09 a(nsy)_o

To calculate 7'(u)g, we denote by u = T(u)g the weak solution of the equation
Au — u = g with boundary condition (3). Define

a ho() ), _)j )
0:= (hl(/l)) ( - + v ) ulx, y). (12)

It is easy to verify that ¢ satisfies the boundary conditions in (11). Let v =w + ¢ and
substitute it into (11). We obtain the equation

Aw —w=—(A0— 1)

with boundary conditions (3). Furthermore,

NN 2 (A 'S 2 2y du
oo (M) [ Boa( 2498

Hence, the weak solution v of Eq. (11) is

v=—T(u)(AB—8)+ 8

_ (W)Y, 2 2y 5 E
a <h1(u)> {T(”) [nT(“)ngz (n - 1) @(T(u)gw (n y> g]
y2
* (_n +y> T(ﬂ)g}. 13)

Remark. Note that 7'(u) is self-adjoint, so is its derivative 7’(u). Based on formulation
(11), one can calculate the higher-order derivatives of u(x) in a similar manner.

2.2. Symmetries

Let D4 be the dihedral group of the square €2 and
Sl(x:y):(n_xyy): R(X,J’):(TC_J/:X)

be its generators. With Z, := {1, —1}, we define Z, x Dy={=40; 6 € D4} and its actions
on Y:=L*()(DX) as

yu(x, y) = +u(d"'(x,y)) forall y==45, d€Dyand uc?y. (14)
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The function spaces X, Y are obviously Z, x Dy-invariant. Similarly, the Lz-product
is also Z, x Dy4-invariant. Corresponding to boundary condition (3) we are particularly
interested in the subgroup

Dy:={S,R*; S\R*I}. (15)
Let
Zy x Dy if f(u,2) is an odd function in u and u =1,
e Dy if f(u,2) is not odd in u and p =1,
Zy x Dy if f(u,Z) is an odd function in u and u # 1,
D, if f(u,A)is not odd in v and u # 1.

The T'-equivariance of the mapping G, i.e.,
G(yu, A, 1u) =yG(u, A, u) forall yel, ueX, 1eR

can be verified directly via the generators +S; and £R, respectively.

3. Bifurcation points

Since D,G(0,4, 1) = D,G(0,2,11) = 0 and D,G(0,4, 1) =1 + (4 + 1)T(u) for all
A, w€R, a bifurcation occurs at a point (0,4, ) on the trivial solution manifold
{(0, 4, 1); A€R, uel0,11} of (10) if the linearized problem

DuG(0, 7, =u+ (A + DT (u=0 (16)

has nontrivial solutions. By definition (9) of T'(x) this equation is the weak form of
the eigenvalue problem

Au+u=0 in Q=(0,m)x (0,7)

with boundary condition (3). To solve this problem with the rule of separating variables,
we take the ansatz u(x, y) = u;(x)uz(y) # 0 and derive

u// u//
L4224 )=0 inQ=(0,m) x (0,m).
uj U

Hence, u; satisfies the equation

u +kiuy =0 for some k; €R (17)
with boundary conditions u}(0) = u}(n) = 0. Similarly, u, is a solution of

uy + kyuy =0  for some ky €R (18)
with the boundary conditions

ho()u2(0) — hi(n)uz(0) =0,
ho(p)uz(m) + hy(pyus(m) = 0.
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These are eigenvalue problems of the one-dimensional differential operator d?/dx? with
two different boundary conditions. Solutions of these problems are of the form
(u1,k1) = (cosnx, n2), neN,
(2, k2) = (ho() sin(k(u)y) + hi k() cos(k(1)y), k(1)*),
where k(u) € R satisfies

2ho () ()k cos (k) + (hy(p) — hi(u)k?) sin(km) = 0. (19)
Thus eigenvalues of the Laplacian —A are given as
ho=n? 4 k() (20)

with the corresponding eigenfunction

¢(1):= /D], & :=(cos nx)[ho(u) sin(k(u)y) + m(u)k(p) cos(k(u)y)]. (21)

As a function of the homotopy parameter u, the function x(u) has the following
properties (cf. [12]).

Lemma 2. Under assumption (4), Eq. (19) does not have integer solution for
€ (0,1). Moreover, if [h(n)/ho(p)] < 0 for all ue(0,1), then the solution k(u) of
(19) increases monotonously from meN at p=0 to (im+1)eN at u=1.

Note that after multiplying the factor sin (km) to the both sides of Eq. (19) we can
rewrite it as

[7o(p) sin(km) — hy()k(1 — cos(kn))][ho(u) sin(km) 4~y (u)k(1 + cos(km))] = 0.

We use the following definition of parities of k(u) in [1], which are consistent with
the parities of wavenumbers of the Neumann problem at u = 0.

Definition 3. The parities of the wavenumber k(u) for Robin boundary conditions are
defined as

EVEN if ho(u) sin(k(p)m) = by ()k(p)[1 — cos(k(p)m)]
K(u)= for all p€0,1], (22)
ODD if ho(p)sin(k(p)m) = —hi(p)k(p)[1 + cos(k(p)m)].

In the rest of this paper we restrict the discussion to the case

ho(p) h(u)\,
T R (ho(ﬂ)) <0

We conclude that bifurcation points of (10) on the trivial solution manifold are
{0, Aw), p); Au)=n*+k(u)*, n€N, and k(u) satisfying (19)} (23)
(see Fig. 2). The kernel Ker(D,G(0,A(u), 1)) is generically one-dimensional and
Ker(D,G(0, (1), 1)) = span[¢(u)].

From statement (20) and Fig. 2 it is evident that two curves of bifurcation points
may intersect. In fact, these are generic as p approaches zero and one, respectively. An
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0 0.2 0.4 0.6 0.8 1

homotopy parameter

Fig. 2. Bifurcation points of (10) in the parameter space (4, it). Here we have chosen Ag(u)=u, hi(n)=1—pu.

intersection point corresponds to a multiple bifurcation of (10). At = 0,1 solutions
of Eq. (19) are integers. In particular, at 4 = 0 boundary conditions (3) reduce to
homogeneous Neumann type. Thus the eigenvalues of —A are of the form

do=n*+k*, n, keNU{0}.
Such an eigenvalue is generically double and the associated eigenspace is

Ker(D,G(0, A9,0)) = span[¢1, ¢, ],

where
2 2
o1 = - cos(nx) cos(ky), b2 = - cos(kx)cos(ny).

Consequently, as u— 0, two different curves of simple bifurcation points approach the
same double bifurcation point. However, with 4 as the bifurcation parameter, there is
exactly one solution branch bifurcating from the trivial solution curve at every simple
bifurcation point, while at a double bifurcation point for ;=0 the Neumann problem
has up to four different nontrivial solution branches (cf. [10]). On the other hand, as
we have seen before, the D4-symmetry of the Neumann problem breaks into D, x
D;-symmetry as pu moves away from 0. This leads to the question how the bifurcation
scenario reacts to such a symmetry-breaking in the boundary conditions. We want to
investigate which solution branches of the Neumann problem and what symmetries of
the solutions persist as the parameter p varies.
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4. Liapunov—Schmidt reduction

To investigate the solutions of (10) at a bifurcation point (0, ¢, o) on the curve
(0, A(u), p) in (23), we use the well-known Liapunov—Schmidt method to reduce
problem (10) to an algebraic system (cf. [5,6]).

According to the Fredholm properties of D,G(0, A, o) =1+ (Ao + 1)T (o), we have
the decomposition

X = Ker(D,G(0, 20, o)) & Im(D,, G(0, Ao, o))

Suppose that the kernel Ker(D,G(0, 2o, to))=span[¢y, ..., ¢;] is [-dimensional (/=1,2
generically). We write elements (u,2,4)€X X R x R as

i
u:Zz,-q,'),-+w:z~gb+w,

i=1
A=Ay + o,

W= o+,
where z=(zy,...,2z;), ¢=(b1,...,¢1), zi, o,vER and w € Im(D,G(0, Ay, ty)). Consider

the projection Q:=1 — Zf:1<¢,», ¢; from X onto Im(D,G(0, Lo, tto)). We rewrite the
equation G(u,/, u) =0 into a system

QG(Z¢+W’ ;”O+O-a ,u0+v):07 (24)

I-0)G(z-d+w, lg+a, up+v)=0. (25)

Solving w uniquely from (24) as a function of z, g, v and substituting it into (25), we
obtain the reduced bifurcation equation for z, o, v:

I —-0)G(z ¢+ w(zo0,v), g+0, to+v)=0. (26)
We note that w(0,0,0) =0, D,w(0,0,0) =0, from (24). In the coordinate system

z- ¢ €Ker(D,G(0, 4, o)) < z = (z1,...,z/) R,
operator Eq. (26) becomes a system of / algebraic equations

B(z,0,v):=((¢1, G(z- p+w(z,0,v), do+ 0, 1o+ )))i=; =0. 27)

By definition the projection Q is I'-equivariant. Thereafter the mapping B(z,0,v) is
also T-equivariant with respect to the induced action of I' in R/, i.e.,

B(yz,0,v)=yB(z,0,v) forall (z,0,v)€ R’ xR xR, yel.

We take the Taylor expansion of the components of (X9 + 1)B(z,a,v) =0 at the point
(z,0,v)=(0,0,0) and consider the truncated form

—0zi + (Jo + 1) (i, T'(1o)(z - §))v

+ <¢)i, %Duufo(z N ¢)2 + DuufO(Z : ¢) % Z DzWOZO‘ + éDuuufO(Z : ¢)3>

o] =2

=0, i=1,...,1 (28)
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Here and in the sequel Dy, fo and D,,, fo denote the derivatives of f at (u, 4)=(0, 4p);
2 €N’ is a multi-index and

1
E Z D(XWOZ“
\

o|=2

represents the second-order terms in the Taylor expansion of w at (z,4,v) =(0,0,0).

We recall that in the singularity theory a problem B = 0 is finitely determined if
there exists £ € N, k < oo, such that the bifurcation scenarios of B =0 and its k-jets
Jx(B)=0, the Taylor expansion of B truncated at kth order, are equivalent. The deter-
minacy of a general problem at a bifurcation point is characterized by its reduced
bifurcation equations. We refer to Golubitsky and Schaeffer [5] for more detailed
discussions. For 3-determined problems solutions of system (28) correspond one-to-one
to those of original problem (10) and contain all information of bifurcations of (10) at
(0, 2o, o )-

With the knowledge of the bifurcation point (0, Ao, o) and the kernel Ker(D,Gy),
the terms (¢, Dy fo(z - $)?) and (¢py, Dy fo(z - ¢)?) in (28) can be calculated directly.
The other terms involve the derivatives T’(uo) and D, wo. Since the function w(z, g, v)
is defined implicitly by Eq. (24), the term D.; wy is the unique solution v of the linear
problem

DuGOU = QT(.HO )Duuf0¢i¢_/a ve Im(DuGO) (29)

The term T'(po)(z - ¢) is calculated as a solution of Eq. (11). In fact, via (13) we
derive

(61 T'(uo)z - )
~ y2
=h(uo) <¢ia (n + y> T(uo)(z - @)
0
+T0) [iT(Mo)(z )42 (iy - 1) 5 (TG )
yZ
+<n—y><z~¢>}>

b
(4o + 1)?

_i 2z (9,
—h(ﬂo)m [n + <¢1> ( . 1) 6y(z ¢)>] >

where fi(jt0) = (22 (1o).

. 0
— (o) <¢>i, 269200+ 1) <2y - 1) = (Tn) <z>))>

T
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5. Bifurcation scenarios
5.1. Simple bifurcations for ue(0,1)

Let A(u) = n* + k(n)* be a homotopy of simple eigenvalues of the Laplacian and
M0)=n>+m?, A(1)=n*>+ (m+ 1)?. Then (0, /(u), ) is a curve of simple bifurcation
points of (10) and

Ker(D,G)(0, A(1), ) = span[¢]
is one-dimensional and ¢ is given in (21). To obtain the generic bifurcation diagram
of (10) at (0, A(uo), uo) for an arbitrary po € (0,1), we consider Eq. (28), that is, the
3-jet of the reduced bifurcation equation,

0=—0z+ (o + 1)*(¢, T'(o) ) vz
+ <¢a % (Duuf() )¢2>22 + <¢a %DuufO(DzzWO)(f) + é (Duuuf0)¢3>z3- (30)
Here z € R is a scalar and

07000 = o [+ (0. (2 -1) o))

Theorem 4. Problem (10) undergoes a pitchfork bifurcation at all points on the curve
(0, A(p), 1), we(0,1), that is, the simple bifurcation points. Moreover, the truncated
bifurcation Eq. (30) reduces to

J3[(Ao + DB(z,0,v)| = (=0 +av)z + ¢z =0 (31)

a = 20(0) Llc 4 <¢, (Zny - 1) jyd)ﬂ ,

c= <¢’ %DuufO(DzzW0)¢ + %Duuuf0¢3>'

with

(32)

Proof. It is easy to verify that the eigenfunction ¢ of the Laplacian has the property
(¢,¢*) = 0. Thus the z? term in (30) vanishes. The conclusion follows directly from
Egs. (30) and (31) consecutively. [

The nontrivial solution of (31) is given as

o —av\"?
z:l:( ) .
c

5.2. Double bifurcations of the Neumann problem

For the Neumann problem (x = 0) a generic double bifurcation point (0, 49,0) has
the property that 1y = n®> + k*(0) with the wavenumbers n, k(:=k(0)), (n # k) as
integers. Furthermore, we can choose

Ker(D,Gp) = span[¢1, $]
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with
2
- cos(nx)cos(ky) forn-k #0,
2
d1(x, )= % cos(nx) forn #0, k=0,
2
% cos(ky) forn=0, k #£0,
and

d)Z(x: y)::¢l(y3x)'

On the other hand, taking into account the homotopy parameter u in the bound-
ary conditions, we see this double bifurcation point is split into two simple bifur-
cation points (0, 4;(), 1), i = 1,2 with A;(u) =n?> + k*(n) and Jo(p) = k> + n?(u) for
u # 0. We want to investigate bifurcation scenario of (10) at a double bifurcation point
(0, 40,0) and its variation with respect to the homotopy parameter .

Note that (¢, ¢;¢;) =0 for all 7,7,/ =1,2. Eq. (29) can be solved analytically (cf.
[10]). Together with the statements

9
— fi -k#0

(@ 1) =1 4™ orn k70

12 3
ﬁforn'kzo,nz‘FkZ#O

and (¢7,¢7) = 1/n* for i # j, we simplify Eq. (28) into

—oz1 + (Ao + X1, T' (o) 2191 + 2202))v + €12} + c2z123 = 0 33)
—0z3 + (Ao + 1)* (2. T'(mo)z191 + 2262))v + 22122 + 123 = 0

Here ¢y, ¢, are constants. More precisely, if n-k # 0, we have

9 I
=— | “Duufo — 7 (D
c 3 Jo 4( Jo)

45(k? — n?)? + 4i*n?
(k% — 3n?)(n% — 3k2)(n2 + k)|’

1 [ 1 (k* — n?)? — 4k*n? 1
=_— [3D — 6(Dy fo)? -~ 1.
2 -3 uuuf() 6( uufO) n2 ¥ k2 <[(k2 ¥ n2)2 — 16k2n2] 2

If n=0, k # 0, then

1 [3 5
= — | zDuuu =5 (D 2 5
=3 P f0+2k2( fo)}
1
= =Dy fo.
Q=5 Jo

If v=20, Eq. (33) coincide with those in [10], and yield four nontrivial solutions
of (10) with symmetries the isotropy subgroups of ¢y, ¢, and ¢ + ¢,, respectively.
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For v # 0, the forced symmetry-breaking in boundary conditions introduces in (33) the
terms

(Zo + )i, T' (o )z1 01 + 22692))v

=2h(0) [n + <¢>,-, (iy - 1) %(mbl +zz¢z)>]
::dl'zl'a 1= 1,2

Here,

4.
dy=dy=_h(0) if n-k#0,

4.
di=—i(0)  dy=0, ifn=0,k#0.

System (33) reduces to
[—o+div+ clzf + czz§]21 =0,

(34)
[—o+dyv+ czzf + clzg]zz =0.

Remark. The coefficients in Eqs. (32) and (34) are related as follows:
lim a=d; for p=¢; i=1,2,

o —0

lim c¢=c¢.
o — 0

Solutions of system (34) are
_ 1/2 _ 1/2
@ (i(o dw) ,0>, (O, i(a m))
1 C1
(35)

. ( N ((cl — )0 — (e1d) — czdm)”2 N ((cl — )0 + (ed) — cldz)v>”2> '

f—a d-a
These lead to four bifurcating solution branches of original problem (10), that is,
(1). The solutions in (35a) are pure-mode solution branches with the isotropy groups
of ¢1, ¢, respectively. They correspond to those bifurcating solutions at the simple
bifurcation points on the curves (0,4;(u), 1), i = 1,2. The solutions in (35b) involve
both ¢ and ¢, modes. They are called the mixed-mode branches.
If n- k=0, the terms d,v, dyv break the Ds-symmetry of the Neumann problem and
the mixed-mode solution branches have merely the trivial symmetry. Moreover, the
pure mode and mixed-mode solution branches may intersect at

_ (ady —cady)v of o— (c2dy — c1dr)y
(c1 —¢2) (c1 —¢2)

and induce a secondary bifurcation, respectively.
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If n-k # 0, then dy =d, and the D4-symmetry is preserved in (34) and mixed-mode
solutions (35b) becomes

(8 ()
c1+ o c1+
Symmetries of these solutions are the isotropy groups of the eigenfunctions ¢; + ¢»
and ¢, — ¢, respectively.

As a conclusion, we have seen that all four bifurcating solution branches of the
Neumann problem at a double-bifurcation point persist if we vary both 1 and u as
bifurcation parameters. Moreover, symmetry of these bifurcating solution branches is

preserved for those with the wavenumbers n - k£ # 0 and is broken for those with the
wavenumbers n =0 or £k =0.

6. A simple example
Choose
fu, ) = 2?4+ ud). (36)
We consider the bifurcation scenarios at the corank-2 bifurcation points uy =0, g =0
and 49=35, 1, respectively. In particular, we aim to examine variations of the bifurcation
scenarios as the homotopy parameter y moves away from zero, that is, as the homo-

geneous Neumann boundary conditions with D4-symmetry are perturbed. To simplify
the discussion, we take Ag(p) = u,h(u) =1 — p. Note that at u =0 we have

Ker(D,Gy) = span[¢1, ¢»]

and the inequalities ¢; # 0,¢; # 0 and ¢} — ¢3 # 0 hold for all n,k € N U {0}.
(1) Wavenumber n=1, k=2: For A(0)=5 and n=1, k=2 we have

¢1 =2/mcosxcos2y, ¢2 = 2/mcos2x cos y.

Furthermore, d| =d, =4/n, ¢; =5695/1321%, ¢, =110220/132n%. Solutions (z;,2;) in
(35) become

132 — 4y)\"? 132 — 4y)\"?
n 32n(ne — 4v) o). (o0« 32n(no V) ’
5695 5695

L [ (132n(no — 4v) 12 L (132n(no — 4v) 12
115915 ’ 115915 '

Figs. 3 and 4 show the pure and mixed mode solution branches.
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Two pure mode solution branches

0.064
0.04F
0.02+ A £

u(i/2,1/4) of \k
~0.02+ SN

~0.04+

-0.06

0.10.1

Fig. 3. Two solution branches of pure ¢; and ¢, modes.

(2) Wavenumber n=0, k=1: For 4(0)=1 and n=0, k=1, moreover,

2 2
¢ =-—cosy, ¢y = — cosx.
T T

Simple calculations show d; =4/r, dy =0, ¢; = 19/6n?, and ¢, = 3/n%. The solution
branches described by (z;,z;) in (35) are

6n(na — 4v)\'? 6o\
. [ (6n(no —76v) 172 . (6n(no +72v) 172
37 : 37 ‘

The pure ¢,-mode solution branch meets a mixed-mode solution branch at ¢ = 76v/n
and a secondary bifurcation is induced.
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Two mixed mode solution branches

0.02+

u(l/2,1/4) O

-0.01+ —— e

-0.02
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Fig. 4. Two solution branches of mixed ¢; and ¢, modes.
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