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Abstract

Consider a line f (x)"mx#b, 0)m)1. Conventional line drawing algorithms sample (x, f (x)) on the line, where
x must be an integer, and then map (x, f (x)) to the frame bu!er according to the de"ned "lter and f (x). In this paper, we
propose to simulate a sampled point (x, f (x)) by the four pixels around it where x and f (x) are not necessary to be integers.
Based on the proposed low-pass "ltering, we show that the e!ect of sampling at in"nite number of points along a line
segment can be achieved since the closed form of the intensities assigned to pixels exists. Furthermore, we show the
coherence properties that can reduce the cost for computing these intensities. � 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Line drawing is the most primitive operation in com-
puter graphics. Currently, the most common display de-
vice is the raster display. Each pixel in the raster display
has integer coordinates but can display gray scales.
Drawing a line on the raster display simulates a continu-
ous curve y"f (x) by the set of points and the associated
gray values.
Assume that a line segment has slope m, 0)m)1.

A straightforward approach is to sample every point with
integer x-coordinate on the line segment and to calculate
the value y"f (x) where it is not necessary for y to be an
integer. An `all-or-nothinga approach is to simulate the
locus of the function y"f (x) by the set of pixels
�(x, g( f (x)))�, where g( f (x)) is either �f (x)� or �f (x)�
depending on which one is closer to f (x). The DDA and
the Bresenham's algorithms [1] are the implementation

of this approach which intensi"es one of the two points
(x,�y�) or (x,�y�) with constant brightness. In this case,
the curve shown in the raster display has `staircase
e!ecta. This annoying visual e!ect is known as aliasing.
An antialiasing technique involves low-pass "ltering.

A "lter function is designed to assign proper intensities
on the pixels close to the exact curve path to get a fuzzy
edge. An example of this approach is of Wu [2]. Wu
proposed an algorithm which simulates all the sampled
points by a two-pixel wide band bounding the true curve
y"f (x). Wu's algorithm is similar to Bresenham's one
which samples the integer points x and calculates f (x).
Both (x,�f (x)�) and (x,�f (x)�) receive intensities which
are assigned inversely proportional to the distance be-
tween the pair of pixels to (x, f (x)) as

I
��� �� �����

"I( f (x)!�f (x)�),

(1)
I
��� �� �����

"I(�f (x)�!f (x)),

where I Eq. (1) is the `intended intensitya for the sampled
point (x, f (x)) and I

�����
is the `received intensitya of pixel

(x, y).
Many people have concentrated on designing "lter

functions [3}5]. Very often, the computational cost
involved in producing a good "lter is very high. For
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Fig. 1. A sampled point p"(x, y) on a line segment in u
���������

.
x and y are not integers.

example, Gupta, Sproull and Barkans used a Conical
function and a Hamming function, respectively, and they
precomputed a set of "lter values which are stored in
a look-up table.
Each of the above-mentioned methods samples integer

values x then distributes intensities to the pixels neigh-
bouring to (x, f (x)) according to their own "lter functions.
In this paper, we propose to simulate a sampled point

(x, y) by the four pixels around (x, y) where x and y are
not necessarily to be integers. Based on this method, we
show that sampling in"nite number of points along a line
is possible since the closed-form solutions for the received
intensities of pixels can be derived.
In the next section, we shall "rst introduce the pro-

posed low-pass "ltering function and de"ne the intended
intensity. In Section 3, the closed form solutions for the
received intensities of pixels are derived and Section 4
concludes.

2. Preliminary

In this section, we present the method to simulate
a sampled point by the four pixels around the sampled
point. We also de"ne the intended intensity in this section.
A unit square, denoted u

��� ��
, in the raster display is

a square with four pixels (i, j), (i, j#1), (i#1, j) and
(i#1, j#1) as vertices. Consider a point p"(x, y) in
u
���������

where x and y are not integers as shown in
Fig. 1. We simulate the point p by the four pixels of
u
���������

as the following. Let I be the intended intensity
of p and y

�
, y

�
, x

�
and x

�
be

y
�
"y!�y� ,

y
�
"�y�!y,

(2)
x
�
"x!�x� ,

x
�
"�x�!x.

The received intensities of the four pixels are obtained by
"rst distributing I inversely proportional to the distance
in the vertical direction to t

�
and t

�
(Fig. 1), then distrib-

uting I
��
and I

��
inversely proportional to the distance in

the horizontal direction to the four pixels. The derived
received intensities of the four pixels are

I
����� ����

"Ix
�
y
�
, (3)

I
����� ����

"Ix
�
y
�
, (4)

I
���������

"Ix
�
y
�
, (5)

I
����� ����

"Ix
�
y
�
, (6)

The received intensity of a pixel is I times the area of the
rectangle opposite to the pixel with respect to the sam-
pled point p (Fig. 1).

The intended intensity I is designed to display line
segments with di!erent slopes at the same brightness
level [6]. Let l((x

�
,y

�
), (x

�
, y

�
)) denote the line segment

with two end points (x
�
, y

�
) and (x

�
, y

�
). Consider two

line segments S
�
"l((0, 0), (X, 0)) and S

�
"l((0, 0), (X,X)).

Since the length in Euclidean distance of S
�
is equal to

�2 times the length of S
�
, the number of pixels used to

simulate S
�
is �2 times the number of pixels used to

simulate S
�
. If we sampleN points in the interval [x

�
,x

�
]

and each sampled point has the same intended intensity
I, then the pixels simulating S

�
receive less intensity than

the pixels simulating S
�
do. This problem can be "xed by

giving di!erent intended intensities to the sampled points
on the lines with di!erent slopes.

Let the line segment p
�
, p

�
"l((x

�
, y

�
), (x

�
, y

�
)). We

de"ne the intended intensity, I
�
of a unit square to be

I
�
"

�p
�
, p

�
�
�

�p
�
, p

�
�
�

. (7)

In Eq. (7), �p
�
, p

�
�
�
is the length of p

�
, p

�
in ¸

�
metric (the

Euclidean distance) and �p
�
, p

�
�
�
is the length of p

�
, p

�
in

¸
�
metric. �p

�
, p

�
�
�
is max(�x

�
!x

�
�, �y

�
!y

�
�) which is

the number of points sampled in any of the previous scan
conversion line drawing algorithms.

Suppose we are drawing a line p
�
, p

�
with slope

0)m)1 by using the proposed "ltering function. We
can sample n points within a unit square, each point �x
distance apart along x-direction. The intended intensity
for a sampled point is then I

�
/n which should be distrib-

uted to the four pixels around it by Eqs. (3)}(6). Since
a pixel receives contribution from many sampled points,
the received intensity of a pixel is obtained by summing
the contributions from all the sampled points. We shall
show that it is possible to achieve the e!ect of the sample
at in"nite number of points since there are closed forms
for the received intensity.
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Fig. 2. A sample point p"(k�x, h#km�x) contributes inten-
sities to the four pixels on u

��� �������
.

3. Closed forms

In this section, we derive the closed forms of the re-
ceived intensities of pixels. For ease of presentation, we
consider only the case of drawing line segments having
slopes m, 0)m)1 (because the other cases are symmet-
ric). We also assume that the line segment is speci"ed by
two end points with integer coordinates. Thus, we can
assume, without loss of generality, that the line segment
is l((0, 0), (x, y)),x'0, y*0. The slope of l((0, 0), (x, y)) is
then m"y/x. Since 0)m)1,x*y.
Let �(i, f (i))�i"0,2,x� be the set of point on

l((0, 0), (x, y)) with integer x-coordinates. Each line seg-
ment l((i, f (i)), (i#1, f (i#1))) is an element, denoted s

�
.

Consider an element s
�
. If �f (i#1)�"�f (i)� or

�f (i#1)�"�f (i)� then s
�
is totally in the unit square

u
��� �������

. We call this Case 1. Case 2 occurs when
�f (i#1)�"�f (i)�#1. In this case, s

�
passes through

two unit squares, namely u
��� �� �����

and u
��� ��� �����

. Since
x*y, f (i#1)!f (i))1, these must be the only two
cases. The closed forms of the received intensities of
pixels for these two cases are discussed in the following.

3.1. Case 1

For a case 1 element s
�
in the unit square u

��� �������
as

shown in Fig. 2, there are four vertices which receive
intensities from the element s

�
"l((i, f (i)), (i#1, f (i#1))).

Let h"f (i)!�f (i)� .

Theorem 1. If we sample an inxnite number of points
along s

�
, the received intensities of the four vertices of

u
��� �������

are

I
��� �� �����

"I
��
1

2
!

m

6
!

h

2�,
I
��� �� �����

"I
��

m

6
#

h

2�,

I
��	�� �� �����

"I
��

m

3
#

h

2�,
I
��	�� �� �����

"I
��
1

2
!

m

3
!

h

2�.
Proof. Assume that we sample n points along s

�
. The

intended intensity of a sampled point is I
�
/n. The re-

ceived intensity for each pixel of u
��� �������

is obtained by
accumulating the products of I

�
/n and the area of the

rectangles opposite to the sampled points for all the
n sampled points (Fig. 2). The intensity contributed from
s
�
to the pixel (i,�f (i)�) is

I
��� �������

"


��
�
�	�

I
�
n
(1!k�x)(1!km�x!h)

"

I
�
n


��
�
�	�

(1!k�x!km�x#k�(�x)�m!h#hk�x)

"

I
�
n �n!

n(n!1)

2
�x!

n(n!1)

2
m�x

#

n(n!1)(2n!1)

6
(�x)�m!nh#

n(n!1)

2
h�x�.

If we sample an in"nite number of points, then we have

I
��� �� �����

" lim

��

I
�
n �n!

n(n!1)

2
�x!

n(n!1)

2
m�x

#

n(n!1)(2n!1)

6
(�x)�m!nh#

n(n!1)

2
h�x�

"I
��1!

1

2
!

m

2
#

m

3
!h#

h

2� since�x"

1

n

"I
��
1

2
!

m

6
!

h

2�
I
��� �� �����

, I
��	�� �� �����

, and I
��	�� �� �����

can be obtained in
a similar manner.

I
��� �� �����

" lim

��


��
�
�	�

I
�
n
(1!k�x)(h#km�x)

" lim

��

I
�
n


��
�
�	�

(h!hk�x#km�x!k�(�x)�m)

" lim

��

I
�
n �nh!

n(n!1)

2
h�x#

n(n!1)

2
m�x

!

n(n!1)(2n!1)

6
(�x)�m�

"I
��h!

h

2
#

m

2
!

m

3 �
"I

��
m

6
#

h

2�,

B.C. Chen, Y.-T. Ching / Computers & Graphics 25 (2001) 187}193 189



Fig. 3. q
�
, q



a case 2 element, passes through two unit squares

u
��� �� �����

and u
��� �� �����

. c"f ( j)!�f (i)� and ¸"x(q
�
)!j.

I
��	�� �� �����

" lim

��

I
�
n


��
�
�	�

((k�x)(km�x#h))

" lim

��

I
�
n


��
�
�	�

(k�(�x)�m#k�xh)

" lim

��

I
�
n �

n(n!1)(2n!1)

6
(�x)�m

#

n(n!1)

2
�xh�

"I
��

m

3
#

h

2�,
I
��	�� �� �����

" lim

��


��
�
�	�

I
�
n
((k�x)(1!km�x!h))

" lim

��


��
�
�	�

I
�
n
(k�x!k�(�x)�m!hk�x)

" lim

��

I
�
n �

n(n!1)

2
�x

!

n(n!1)(2n!1)

6
m(�x)�!

n(n!1)

2
h�x�

"I
��
1

2
!

m

3
!

h

2�. �

3.2. Case 2

Let s
�
be an element of case 2. s

�
passes through two

unit squares, u
��� �������

and u
��� �������

. There are about six
pixels which receive intensities from s

�
. We now show

that the closed forms for the received intensities of the six
pixels can still be derived.

Theorem 2. Let s
�
"q

�
, q



be a case 2 element passing

through two unit squares u
��� �������

and u
��� �������

as shown

in Fig. 3. q
�
is the intersection between q

�
, q



and

y"�f ( j)� . Let ¸"X(q
�
)!j and c"f (j)!�f (j)�

where X(q
�
) denotes the x-coordinate of q

�
. The received

intensities of six pixels are, respectively, the following:

I
� ���� � ����

"I
��

m

2
¸�!

m

6
¸
�,

I
� ����� ����

"I
��¸!

m

2
¸�!

¸�

2
#

m

6
¸
�

#I
��
(1!¸)�

2
!

m

6
(1!¸)
�,

I
� �� �� � ���	��

"I
��

m

6
(1!¸)
�,

I
� �	�� ��� ���	��

"I
��

m

6
¸
�,

I
� �	�� �� � ����

"I
��

¸�

2
!

m

6
¸
�

#I
��¸(1!¸)#

(1!¸)�

2

!

m

2
¸(1!¸)�!

m

3
(1!¸)
�,

I
� �	���� � ����

"I
��

m

2
¸(1!¸)�#

m

3
(1!¸)
�,

Proof. The complete proof is a lengthy and tedious work.
We only derive the received intensities for ( j,�f ( j)�) and
( j,�f ( j)�#1) in the proof.

The line segment q
�
, q

�
contributes intensities to the

four pixels of u
��� �������

and q
�
, q



contributes intensities

to the four pixels of u
��� �������

. Since, we have sampled
n points from q

�
to q



, we assume that there are r and

s points sampled from q
�
to q

�
and q

�
to q



, respectively.

Since ¸"X(q
�
)!X(q

�
) (1!¸"X(q



)!X(q

�
)), the

intended intensity of q
�
, q

�
(q

�
, q



) is I�

�
"¸I

�
(I��

�
"

(1!¸)I
�
). Note also that we sample r(s) points along

q
�
, q

�
(q

�
, q



), each pair of consecutive sampled point is

�x apart, thus ¸"r�x (1!¸"s�x).
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Fig. 4. If we place two case 1 elements in the same unit square.
Let p"(x, y) and q"(x, y#h). The di!erences of the contribu-
tions between these elements are the sum of the di!erences of the
contributions between p and q.

The pixel ( j,�f ( j)�) receives intensity contributed from

q
�
, q

�
. We have

I
� ���� � ����

" lim
��

I�
�
r �

��
�
�	�

(1!(c#km�x))(1!k�x)�
" lim

��

I�
�
r �

��
�
�	�

(1!k�x!c#ck�x

!k�xm#k�(�x)�m))

" lim
��

I�
�
r �r!�x

r(r!1)

2
!rc

#c�x
r(r!1)

2
!�xm

r(r!1)

2

#(�x)�m
r(r!1)(2r!1)

6 �
"I�

��1!
¸

2
!c#

c¸

2
!

m¸

2
#

m¸�

3 �
"I

��¸!

¸�

2
!c¸#

c¸�

2
!

m¸�

2
#

m¸


3 �
"I

��¸(1!c)!(1!c)
¸�

2
!

m¸�

2
#

m¸


3 �
"I

��¸¸m!¸m
¸�

2
!

m¸�

2
#

m¸


3 �
since 1!c"¸m

"I
��

m¸�

2
!

m¸


6 �.
The pixel ( j,�f ( j)�#1) receives contribution from q

�
, q



and the received intensity can be derived in a similar way.

I
� �� �� � ���	��

" lim
���

I��
�
s �

���
�
�	�

(1!(¸#k�x))km�x�
" lim

���

I��
�
s �

���
�
�	�

(km�x!¸km�x!k�m(�x)�)�
"lim

���

I��
�
s �m�x

s(s!1)

2
!m�x¸

s(s!1)

2

!m(�x)�
s(s!1) (2s!1)

6 �
"I��

��
m(1!¸)

2
!

m¸(1!¸)

2
!

m(1!¸)�

3 �
"I

��
m(1!¸)�

2
!

m¸(1! )̧�

2
!

m(1!¸)


3 �
"I

��
m

6
(1!¸)
�.

The pixels ( j#1,�f ( j)�#1) and ( j#1,�f ( j)�) receive

intensities from q
�
, q



and q

�
, q

�
, respectively. The

received intensities of these two pixels can be derived
in a way similar to that stated above. ( j,�f ( j)�)
and ( j#1,�f ( j)�) receive contributions from both

q
�
, q

�
, and q

�
, q



. Therefore, the received intensities of

these two pixels are the sum of the contributions from
the two. �

As shown in Theorems 1 and 2, the received intensities
of pixels depend on slope but have nothing to do with the
number of points sampled. We can achieve the e!ect of
sampling at in"nite number of points by simple arithme-
tic operations.
The above theorems give a simple line drawing algo-

rithm. For each element from 0 to x!1, we "rst deter-
mine to which case the element belongs. We then
compute the contributions from the element to the
vertices by the closed forms given above. The e$ciency of
this implementation does not depend on the number of
points sampled.
In what follows, we show that the e$ciency of the

algorithm can be further improved. We show that we can
calculate the contributions of case 1 elements with less
cost if the contributions of the previous case 1 elements
are available. For case 2 elements, we show that the
received intensities of 2 of the 6 vertices can be obtained
by simple arithmetic.
Let s

�
and s

�
be a pair of consecutive case 1 elements. If

the contributions of s
�
to the four vertices are known, the

contributions of s
�
to the four vertices can be obtained by

the following corollary.

Corollary 3. Given two parallel line segments p
�
, p

�
and

q
�
, q

�
, are totally in a unit square uv

�
. Let h be the distance

between these parallel line segments in the y-direction
(Fig. 4). The diwerences in the received intensities of v

�
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Fig. 5. Lines produced using di!erent algorithms, 1. upper left:
no antialiasing applied, 2. upper right: Gupta and Sproull ap-
proach, 3. lower left: Wu's algorithm, 4. lower right: the pro-
posed algorithm.

contributed from p
�
, p

�
and q

�
, q

�
, denoted

�
�
(h), i"0,2, 3, are

�
�
(h)"!

h

2
,

�
�
(h)"

h

2
,

�
�
(h)"

h

2
,

�


(h)"!

h

2
,

Proof. Immediate from Theorem 1. �

Corollary 3 shows that the di!erences of the contribu-
tions between two case 1 elements are a function of the
distance h. Since the "rst element s

�
is a case 1 element.

We can always compute the contributions of case 1 ele-
ment by subtraction from the contributions of s

�
.

A more e$cient method to calculate the contributions
of a case 2 element is obtained by simple arithmetic as
shown in the following corollary:

Corollary 4. For a case 2 element passing through two unit
squares u

����������
and u

������� ���
,

I
�
2

"I
��� �������

#I
��� �������

#I
��� ������	��

"I
���	�� �������

#I
��	�� �������

#I
��	�� ������	��

.

Proof. Immediate from Theorem 2. �

Since I
����������

and I
��	�� �������

are the two most expen-
sive terms to evaluate, we calculate these two terms by
applying Corollary 4.

4. Conclusion

In this paper, we presented a method for antialiased
line drawing. The method is based on a proposed low-
pass "ltering function. Under the proposed low-pass "l-
tering function, we can achieve the e!ect of sampling at
in"nite number of points along a line segment since the
closed forms of the received intensities of pixels exist. We
show that the cost for computing the received intensities
of pixels can be reduced by applying simple rules. We
also propose a way to de"ne the intended intensity which
can ensure that line segments with di!erent slopes are
displayed with the same brightness.

It is di$cult to give a mathematical judgment to verify
the quality of antialiasing e!ects in an image. Further-
more, there are many factors, for example the gamma
correction, that could a!ect the antialiasing e!ect. The
antialiasing e!ect is generally judged by human percep-
tion. Fig. 5 shows the lines obtained using di!erent algo-
rithms. The upper left image shows that the line segments
were drawn without any antialiasing technique applied.
The upper right image contains the line segments ob-
tained using Sproull and Gupta approach. The lower left
image shows line segments produced using Wu's algo-
rithm. The line segments obtained using the proposed
algorithm are shown in the lower right image. Gamma
correction was applied using the equation

I�"I�����

given in [7] where �"2.3. The proposed method can
achieve very good antialiasing e!ect.
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