
Ordered lookup with bypass matching for scalable per-¯ow classi®cation
in layer 4 routers

Ying-Dar Lin*, Huan-Yun Wei, Kuo-Jui Wu

Department of Computer and Information Science, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Received 4 January 2000; accepted 27 July 2000

Abstract

In order to provide different service treatments to individual or aggregated ¯ows, layer 4 routers in Integrated Services networks need to

classify packets into different queues. The classi®cation module of layer 4 routers must be fast enough to support gigabit links at a rate of

millions of packets per second. In this work, we present a new software method OLBM to lookup multiple ®elds of a packet, in a dynamically

pre-de®ned order, against the classi®cation database. This algorithm also uses a technique called bypass matching and can classify packets at

a rate of well over one million packets per second while scaling to support more than 300k ¯ows. Complexity analysis and experiment

measurements are also presented in this study. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Classi®cation; Layer 4 router; Packet ®ltering; Lookup; Match; Scalability

1. Introduction

In order to support QoS in Integrated Services (IntServ)

[1±3] networks, several traf®c control modules need to be

added into the layer 4 routers that examine not only IP

headers but also transport-layer headers. The admission

control, in the control-plane, and the classi®er and the sche-

duler, in the user-plane, are three basic modules for QoS

traf®c control. The classi®er, which distinguishes an incom-

ing packet into different ¯ows, becomes essential. Besides

QoS processing, ®rewall and VPN, [4] for example, also

need the classi®er to classify packets based on multiple

®elds. In this work, we focus on the classi®cation for per-

¯ow QoS processing.

There are three key components in the classi®cation

module: the ®lter database, the classi®cation database,

and the classi®er. The ®lter database consists of ®ltering

rules updated by the admission control module at run-

time. Then the ®lter database inserts its information to

the classi®cation database as search indexes for the

classi®er to refer. Fig. 1 shows the role of the classi®-

cation module and its process. Once a packet comes to

a classi®er, the classi®er checks the ®ve ®elds against

the existing classi®cation database. A packet is said to

match a ®ltering rule if the values of all the ®ve ®elds

in the packet are exactly the same as those speci®ed by

the ®ltering rule. If a matched ®ltering rule is found, the

packet is put into the corresponding queue for special

processing.

Three methods have been proposed for fast classi®cation.

One is hardware based, which uses the hardware parallel

processing power for multi-dimension range matching [5],

and the other two are software based. The one of Ref. [6]

combines destination±source tries and cross-producting,

while that of Ref. [7] take TSS (Tuple Space Search) as

its main technique. Table 1 is a summary comparing these

three methods.

All these methods lookup all the ®ve ®elds of a packet

against each ®ltering rule. In addition, they do not seem to

be scalable enough to meet the high scalability requirement.

Thus, we provide a scalable method: Ordered Lookup with

Bypass Matching (OLBM). Ordered Lookup (OL) may save

unnecessary work without looking up all the ®ve ®elds.

Bypass Matching (BM) can help to ®nish the OL more

quickly.

The rest of this work is organized as follows. We give our

design objectives and motivation in Section 2. Section 3

presents the OLBM algorithm. Section 4 draws the analy-

tical results of the worst case. Experimental performance

studies, in terms of memory usage, throughput, sensitivity

to locality, lookup order, scalability, and extensibility, are

presented in Section 5. Finally, a conclusion and future

work are given in Section 6.

Computer Communications 24 (2001) 667±676

0140-3664/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(00)00305-4

www.elsevier.com/locate/comcom

* Corresponding author. Tel.: 1886-3-573-1899; fax: 1886-3-572-1490.

E-mail address: ydlin@cis.nctu.edu.tw (Y.-D. Lin).

2. Objectives and motivation

2.1. The design objectives of a classi®cation algorithm

There are three objectives for designing a classi®cation

algorithm:

1. Throughput. The algorithm must be able to process at

least one million packets per second. For an OC-3 link

of 155 Mbps, considering that all incoming packets are as

small as 64 bytes, the classi®er must process 317,440

packets in 1 s. Thus, for a router with multiple interfaces,

the processing rate of over one million packets per

second is required.

2. Scalability. The algorithm must be scalable. Recent

studies have shown that an OC-3 link might have an

average of 240k ¯ows [8], which implies that there

would be as many as 240k ®ltering rules in the data

structures of a classi®er.

3. Extensibility. The algorithm must be ¯exible enough to

be extended to lookup using more ®elds, or even payload,

against IP pre®x type ®lters.

2.2. The design motivation of ordered lookup

The motivation for us to design OL is that the classi®er

could use fewer ®elds of the packet header to ®nd the

matched ®ltering rule, if any. It needs fewer memory

references and CPU instructions, which means that the clas-

si®er can achieve the same function faster.

This algorithm is designed for software implementation.

Since the classi®er has to sequentially compare all the ®ve

®elds of the packet header with the ®ltering rules, it can pre-

de®ne an order for these ®elds to lookup, and may ®nd the

matched ®ltering rule before all the ®ve ®elds are looked up.

Now, how to design this pre-de®ned lookup order to

minimize the classi®cation time is an important issue.

There are two ways to determine the lookup order. One is

to try the 5! � 120 combinations of lookup orders and select

the one that has minimal classi®cation time, which is

impractical. The other is that the classi®er considers the

distribution of the ®ltering rules for each ®eld, selects the

®eld where the ®ltering rules are distributed most evenly,

and compares the packet against that ®eld ®rst. We will

describe the strategies to determine the lookup order accord-

ing to the distribution of the ®ltering rules in Section 3.3.

3. Ordered lookup with bypass matching

3.1. Data structures of the classi®cation database

The date structures of our classi®cation database are

constructed by two primitive tables, named 64k-table and

256-table, as shown in Fig. 2. The detailed data structures

for each ®eld are shown in Fig. 3. The index of the tables

corresponds to the value of the ®eld. Each table entry stores

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676668

Fig. 1. The role of the classi®cation module and its process.

Table 1

Summary and comparison of several classi®cation methods

High-speed policy based packet forwarding

using ef®cient multi-dimensional range

matching [5]

Fast and scalable layer 4 switching [6] Fast packet classi®cation using Tuple

Space Search [7]

Method Multi-dimension matching, bit-parallelism Dest-src tries, cross-producting Tuple Space Search, Tuple pruning

Style Hardware Software Software

Scalability Thousands to tens of thousands of ®lters Tens of thousands of ®lters Not validated beyond 278 ®lters

Throughput About 1 Mpps At least 1 Mpps N/A

Features Using special hardware, low memory space Using general processor, high memory

space

Fast database update time

a list of 3-byte pointers to the ®ltering rules in the ®lter

database.

The data structures for the ®elds of src/dest IP address

require more explanations. The index value of each entry in

the ®rst 64k-table represents a 16-bit IP pre®x. The index

value of each entry in the second 64k-table represents a 16-

bit IP suf®x.

3.1.1. Insertion operations

A ®ltering rule is inserted into an entry of the table for a

speci®c ®eld, according to its value for that ®eld. The inser-

tion operation for src/dest IP address ®eld needs more expla-

nations. When a ®ltering rule is to be inserted into the

classi®cation database, its IP address ®eld is split into two

parts: a 16-bit IP pre®x and a 16-bit IP suf®x. The ®ltering

rule is inserted into the ®rst and the second 64k-table using

the pre®x part and the suf®x part of the IP address,

respectively. The advantage of this scheme is that we do

not have to use a 32-bit ¯at table but needs merely two 64k-

tables to index an IP address ®eld. The disadvantage is that

the lookup operation is a little more complex than that of the

32-bit ¯at table.

Now we give an example to show how to insert ®lters into

our classi®cation database. Table 2 lists ®ve examples of

®ltering rules to be inserted into the classi®cation database.

Fig. 3 shows the classi®cation database after inserting ®lter-

ing rules from Table 2.

3.1.2. Lookup operations

To clarify the description of the lookup operation, we ®rst

de®ne some terms.

De®nition: ordered lookup

Ordered lookup is the process of performing a lookup

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676 669

Fig. 2. The data structure of the 64k-table and the 256-table.

Fig. 3. The classi®cation database after inserting ®ltering rules from Table 2.

operation with the ®ve ®elds of a packet, one by one, in

a pre-de®ned order.

De®nition: lookup operation

A lookup operation is to take the value of one ®eld of a

packet header as the index into the tabular data struc-

tures for the ®eld.

De®nition: match operation

A match operation is to compare all the ®ve ®elds of a

packet with the corresponding ®elds of one ®ltering

rule.

The advantage of using tables is fast access to the ®eld-

matched ®ltering rules through indexing. As shown in Fig.

3, the port number value or protocol identi®er value are used

as indexes to the tables. When the classi®er wants to get the

®eld-matched ®ltering rules for the source/destination IP

address, it uses the 16-bit pre®x part and 16-bit suf®x part

of the IP address in the packet header as indexes to the two

basic tables, respectively, to retrieve the corresponding

®ltering rules. If the sets of ®ltering rules found in the ®rst

64k-table and the second 64k-table are denoted as FR1 and

FR2, the classi®er performs the operation (FR1 > FR2).

The result of the operation is the ®eld-matched ®ltering

rules collected for the IP address ®eld.

3.2. Ordered lookup

We introduce the Ordered Lookup algorithm here. First,

we de®ne some terminologies to clearly describe the algo-

rithm.

De®nition: ®eld-matched ®ltering rule

A ®eld-matched ®ltering rule is a ®lter retrieved by

looking up only one ®eld of the packet header.

De®nition: matched ®ltering rule

A matched ®ltering rule is ®lter that contains exactly

the same values for the ®ve ®elds as the incoming

packet at the end of the classi®cation process.

De®nition: partially-matched ®ltering rule

A ®lter is said to be a partially-matched ®ltering rule if

some of its ®elds are the same as those in the incoming

packet.

Following is the description of the Ordered Lookup

algorithm.

The classi®er lookups the ®rst ®eld of a packet, speci®ed

by a pre-de®ned order, against the tabular data structures

and obtains a set of partially-matched ®ltering rules, which

forms a candidate set of matched ®ltering rules. If the size

of the set is 0, surely the packet does not match any ®ltering

rules; if the size of the set is 1, which means the packet may

or may not match that ®ltering rule, the classi®er performs a

match operation with the packet and that ®ltering rule to see

whether the packet really matches the ®ltering rule; if the

number of the set is more than 1, the classi®er continues to

lookup the second ®eld and obtains another set of ®ltering

rules. If the number of this set is more than 1, the classi®er

intersects this set with the candidate set and results in a new

candidate set of ®ltering rules. If the new candidate set

contains only one ®ltering rule, a direct match is performed;

if there are more than one ®ltering rule, subsequent lookups

and intersections are performed.

Tables 3 and 4 describe the required functions and vari-

ables in our pseudocode. Fig. 4 shows the pseudocode of

this algorithm.

Fig. 5 gives some example operations of the Ordered

Lookup algorithm. There are ®ve ®lters in the classi®cation

database. When packet A comes, the classi®er uses two

lookups and ®nds that it matches ®lter 1. Packet B matches

®lter 3 with only one lookup. The classi®er uses two lookups

and ®nds that packet C does not match any ®lters.

3.2.1. Decision strategies for lookup order

It may happen that different lookup orders will result in

different classi®cation speeds. The best lookup order is the

one that uses the least lookups on the average to ®nd the

matched ®ltering rule, if any. To minimize the number of

lookups, it is straightforward that the classi®er should ®rst

lookup the tabular data structures for the ®eld in which the

average number of ®eld-matched ®ltering rules per table

entry is the least among all the ®ve ®elds. Because the

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676670

Table 3

Function de®nition of our algorithm

Function Description

Lookup(PF,FF) Lookup the ®eld PF of a packet against the tabular

data structures for the ®eld FF

Match(PKT,FR) Match a packet PKT with a set of ®ltering rules FR

Table 4

Variable description of our algorithm

Variable Description

Packet The incoming packet

LO[0±4] The lookup order of the ®ve ®elds

CFR[] The candidate set of ®lters rules for a packet

FR[] One-®eld lookup resulting set of ®lters for a packet

Destination_port The tabular data structures for the dest port number

Destination_IP The tabular data structures for the dest IP address

Source_port The tabular data structures for the src port number

Source_IP The tabular data structures for the src IP address

Protocol_id The tabular data structures for the protocol

Table 2

The example ®ltering rules for insertion operation

Dest port Src port Dst IP Src IP Prot.

Filter 1 1 2 1.1.1.1 1.1.1.1 6

Filter 2 2 2 2.2.2.2 2.2.2.2 17

Filter 3 3 1 3.3.3.3 3.3.3.3 17

Filter 4 1 4 3.3.3.3 2.2.2.2 6

Filter 5 4 4 2.2.2.2 3.3.3.3 17

classi®er might get the minimal number of ®eld-matched

®ltering rules on the average after each lookup, the lookup

sequence is more likely to terminate midway.

There are other ways to determine a good lookup order.

We de®ne the average number of ®eld-matched ®ltering

rules per entry as avg, and the standard deviation of the

number of ®eld-matched ®ltering rules per entry as sdv.

We provide the following three strategies for the classi®er

to determine the lookup order. The lookup order is

according to the sorted results, from minimum to maximum,

of the ®ve ®elds.

MAF: minimum average-length ®rst

The classi®er ®rst lookups the tabular data structures for

the ®eld that has the minimal avg. Thus the classi®er is

likely to get the least ®eld-matched ®ltering rules on the

average after each lookup. However, in the worst case the

classi®er may index to the entry that has the maximum

number of ®ltering rules among all entries. This maximum

number could be large if sdv of the ®eld is large.

MSF: minimum standard deviation ®rst

The classi®er ®rst lookups the tabular data structures for

the ®eld that has the minimal sdv. Thus the classi®er is

likely to get a similar number of ®eld-matched ®ltering

rules after each lookup.

MASF: minimum average and standard deviation ®eld

®rst

The classi®er ®rst lookups the ®eld that has the mini-

mal avg´sdv. That means the ®eld has the minimal

product of the average and standard deviation of the

number of ®ltering rules per entry. Thus the classi®er

may, not only on the average case but also on the worst

case, get the least ®eld-matched ®ltering rules after each

lookup.

We compare the throughput of different lookup orders

determined by these three strategies in Section 5.

3.3. Bypass matching

As mentioned in Section 3.2, the classi®er terminates the

lookup process by a direct match when the number of ®eld-

matched or partially-matched ®ltering rules is one. In fact,

the lookup process might be terminated more quickly.

Assume that the number of ®eld-matched or partially

matched ®ltering rules is k; then the classi®er matches the

packet directly with the k ®eld-matched or partially-

matched ®ltering rules if the cost of k matches is less than

that of the remaining lookups. We call this operation bypass

matching, and de®ne the maximum value of k that satis®es

the above criteria for direct matching as K. Fig. 6 is the

modi®ed pseudocode for the OLBM algorithm.

The threshold K for bypass matching is a machine depen-

dent threshold. We now describe how to determine the

bypass matching threshold. There are two major kinds of

CPU instructions in our algorithm. One is memory

reference, and the other is compare, with costs Cm and

Cc. If there are k ®lters left after lookup of some ®elds,

whether to directly match k ®lters or to continue to lookup

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676 671

Algorithm: Ordered_Lookup
Input: packet, LO[0~4] /* lookup order */
Output: CFR[] /* candidate set of filtering rules */

CFR[] = NULL
for I = 0 to 4

switch LO[I] /* lookup the 5 fields by the given order */
case Destination_Port:

FR[] = lookup(packet.destination_port, Destination_port)
goto Match

case Destination_IP:
FR[] = lookup(packet.dstination_IP, Destination_IP)
goto Match

case Source_Port:
FR[] = lookup(packet.source_port, Source_port)
goto Match

case Source_IP:
FR[] = lookup(packet.source_IP, Source_IP)
goto Match

case Protocol_Identifier:
FR[] = lookup (packet.protocol_id, Protocol_id)
goto Match

Match:
if sizeof FR[] = 0, return NULL
if sizeof FR[] = 1 and match(packet, FR[]) = TRUE, return FR[]
else CFR[] = CFR[] FR[]
if I=4, return CFR[] /* last lookup order */
if sizeof CFR[] = 1 and match(packet, CFR[]) = TRUE, return CFR[]

end switch
end for

Fig. 4. Pseudocode of ordered lookup algorithm.

remaining ®elds is up to the following inequality:

k�Cm 1 5Cc� , 2Cm 1 k
N

E
Cc 1 �Cm 1 5Cc�

where E is the number of entries in the tables for a ®eld and

N is the number of ®lters.

The left part of the inequality is the cost of k direct match-

ings, each of which contains one memory reference to

retrieve the ®lter from the ®lter database and ®ve compar-

isons to compare the ®ve ®elds. The right part of the

inequality is the least cost to lookup the remaining ®elds,

which happens in the following situation: the next ®eld

lookup ®rst uses two memory references to take the next

®eld of the packet to index to the corresponding table, and

retrieves (N/E) ®eld-matched ®ltering rules, in the average

case. Then the (N/E) ®lters intersect with the k ®lters to form

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676672

Fig. 5. Examples for the ordered lookup algorithm.

Match:
if sizeof FR[] = 0 return NULL
if sizeof FR[] <= K

for each J in FR[]
if match(packet, J) = FALSE

remove (J, FR[])
return FR[]

else CFR[] = CFR[] FR[]
if I=4, return CFR[] /* last lookup order */
if sizeof CFR[] <= K

for each J in CFR[]
if match(packet, J) = FALSE

remove (J, CFR[])
return CFR[]

Fig. 6. Modi®ed pseudocode for OLBM.

a new candidate set of matched ®ltering rules, which costs

k�N=E�Cc: The least cost situation happens where the result-

ing candidate set contains only one ®lter, and its remaining

cost is simply a match operation of that ®lter, which costs

�Cm 1 5Cc�:
Thus,

k ,
3Cm 1 5Cc

Cm 1 5 2
N

E

� �
Cc

So the maximum number of k, denoted by K, is equals to

3Cm 1 5Cc

Cm 1 5 2
N

E

� �
Cc

666664
777775:

In brief, once you have decided to run this algorithm on

some machine, given the costs of memory references and

compare instructions, with the knowledge of the current

number of ®ltering rules, N, and the current number of

entries in the table, the machine dependent threshold K

can be determined.

Let the bypass matching threshold be two for the example in

Fig. 2. When packet A arrives, the classi®er uses only one

lookup and two matches, and ®nds that the packet belongs to

®lter 1. As for packet C, the classi®er uses one lookup and two

matches and ®nds that packet C does not match any ®lters.

4. Complexity analysis: time and space

Our Ordered Lookup with Bypass Matching algorithm is

concerned with ®ve ®elds. It has at most ®ve lookups for the

®ve ®elds in the classi®cation process. Because each ®eld is

basically the same, we show the time and space complexity

of this algorithm by analyzing one ®eld.

Let us look at Fig. 3(a) and (b). The lookup operation in

the ®gure is where the classi®er takes the port number as an

index and retrieves the ®eld-matched ®ltering rules. This

operation takes O(N) in the worst case where N is the

total number of ®ltering rules. The worst case happens

when all of the ®ltering rules in this ®eld are stored in

only one table entry. After retrieving the ®eld-matched

®ltering rules, the classi®er either lookups into the next

®eld and then intersects the resulting ®eld-matched ®ltering

rules with those from the previous lookup, if any, or matches

the packet with the currently candidate set of matched ®lter-

ing rules. Both of them take O(N) time in the worst case.

As we have mentioned that there are at most ®ve lookups

and four matches in our method, the time complexities of

lookups and matches for F ®elds are O(N´F) and O�N´�F 2
1��: And the time complexity of our algorithm is O�N´F�:

The minimal space requirement happens when all the

®ltering rules stored in the classi®cation database specify

exact values because each ®ltering rule is stored in exactly

one table entry in each ®eld. Thus the classi®cation database

requires N´F´3 bytes, where 3 is the size of a pointer to one

®ltering rule. But the maximum requirement happens when

all the ®ltering rules are of a range type or pre®x type that

needs to be expanded. Then the space requirement becomes

N´F´M, where M is the maximum number of expanded

entries over F ®elds. Thus the space complexity for our

classi®cation database is O(N´F). Note that the situation

where our classi®er requires maximum space rarely

happens. The space requirement for our classi®cation

method in the Integrated Service networks, with per-¯ow

®ltering rules, always approximates the minimum.

Table 5 shows the time and space complexity of three

classi®cation methods. The time complexity of our method

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676 673

Table 5

The time and space comparison of three classi®cation methods

Description Time complexity Space complexity

Ordered Lookup with Bypass

Matching

O(N´F) O(N´F)

High-speed policy based packet

forwarding using ef®cient multi-

dimensional range matching [5]

O(N´F) O(N2´F2)

Fast and scalable layer 4

switching [6]

O�log W 1 �W =k�� O(N´W)

Fast packet classi®cation using

Tuple Space Search [7]

O(W) O(N´W)

number of filtering rules

m
em

o
ry

(K
B

)

classification
database
filter database

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

50000 10000 150000 200000 250000 300000

Fig. 7. Memory usage of the ordered lookup algorithm.

is the same as the one in Ref. [5]. But the space complexity

of our method is much lower than the one of Ref. [5]. The

method of Ref. [6] needs very large memory space and

cannot scale to 300k ®ltering rules (W denotes the maximum

bit length of any destination or source pre®x, k denotes the

number of ®elds to be checked by the classi®er).

5. Performance study

We have implemented and experimented our algorithm

on two platforms. One is the Intel Pentium-II 350 Mhz

CPU platform and the other is the Sun UltraSparc

300 Mhz CPU platform. The hit ratio for arriving packets

is 80%, i.e. 80% of arriving packets will hit one ®ltering

rule and the remaining 20% will not. The default strategy

for deciding lookup order is MAF. In this section we show

the numerical results on these two platforms plus some

implementation issues.

5.1. Memory usage

Fig. 7 shows the memory usage of our algorithm. We

randomly generate these ®ltering rules and add them into

the classi®cation database. The portion of classi®cation

database in Fig. 7 is the total size of memory usage for

the tabular data structures for all the ®ve ®elds. And the

portion of the ®lter database is the size of memory used to

store the ®ltering rules. Our classi®cation algorithm uses

quite a reasonable amount of memory, e.g. 10 MB for

300k ®ltering rules. The algorithm by Srinivasan et al. [6]

uses 7.489 MB memory for only 20k ®ltering rules.

5.2. Throughput

Fig. 8 shows the throughput of the ordered lookup and the

improvement of bypass matching. In this experiment the ®lter-

ing rules are randomly generated. Note that without bypass

matching the throughput drops more rapidly because the

number of lookups for each packet increases when the number

of ®ltering rules increases. We can see that from Fig. 9.

Considering the memory references and compare costs on

the two selected platforms, we set the bypass matching

threshold to two.

5.3. Sensitivity to locality

In routers, both incoming packets and ®ltering rules might

have some degree of address locality and could affect the

performance of the classi®er. We use three simple address

locality models to simulate the address patterns observed at

a router.

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676674

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

number of filtering rules

th
ro

u
g

h
p

u
t

(M
p

p
s)

UltraSparc - OL

UltraSparc OLBM

PentiumII - OL

PentiumII - OLBM

10000 20000 30000 40000 50000 60000 70000 80000 90000

Fig. 8. The effect of ordered lookup and bypass matching on two platforms.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

number of filtering rules

n
u

m
b

er
o

f
lo

o
ku

p
s

O L

10000 20000 30000 40000 50000 60000 70000 80000 90000

Fig. 9. Number of lookups used by the ordered lookup algorithm.

Considering each ®eld except the protocol identi®er ®eld,

for the ®rst locality model, we let 80% of the ®ltering rules

generated concentrate in 30% of the address space of that

®eld, and the remaining 20% of the ®ltering rules are

randomly generated. The second locality model is that we

let 80% of the ®ltering rules concentrate in 20% of the

address space of that ®eld, and the remaining 20% are

randomly generated. The third locality model is that we

let 80% of the ®ltering rules concentrate in 10% of the

address space of that ®eld, and the remaining 20% are

randomly generated. From Fig. 10 we can see that higher

address locality leads to lower throughput, especially when

the number of ®ltering rules is large. It is because the aver-

age number of ®eld-matched ®ltering rules after each lookup

increases, as both the address locality and the number of

®ltering rules increase. But overall, the throughput sensitiv-

ity to locality is not very high.

5.4. Decision strategy for lookup order

We use the ®rst locality model to generate the ®ltering

rules for this experiment. In Section 3.3 we provided three

decision strategies for lookup order. In Fig. 11 it is seen that

MSF and MASF result in almost the same throughput. The

lookup orders decided by these two strategies are almost the

same in the repeated runs. The standard deviation appears to

be the more dominant factor than the average. But the

throughput of MAF is a little lower, because of the worst

case we described in Section 3.3. MSF and MASF turn out

to be better strategies for our algorithm.

5.5. Scalability

Fig. 12 shows that our Ordered Lookup with Bypass

Matching algorithm is scalable. Even with 300k ®ltering

rules in the classi®cation database, the throughput is still

above 1.1 Mpps, compared to 1.1 Mpps with 20k ®ltering

rules in Ref. [6]. 300k is already larger than the design

objective, 240k [8], set in Section 2. The bypass matching

threshold is set to 8 for this experiment. When the number of

®ltering rules increases, the number of ®ltering rules per

table entry becomes larger, which increases the cost of inter-

section operations. The intersection operation dominates the

performance of our algorithm.

5.6. Extensibility

Although our algorithm is mainly for per-¯ow classi®ca-

tion, it can be extended to lookup more ®elds or even the

payload of a packet. Once you decide to extend it to support

more ®elds, you simply analyze the extra memory reference

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676 675

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

number of filtering rules

th
ro

u
g

h
p

u
t

(M
p

p
s)

w / o loca lity

loca lity 1

loca lity 2

loca lity 3

10000 20000 30000 40000 50000 60000 70000 80000 90000

Fig. 10. The effect of address locality (on Pentium-II platform).

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

number of filtering rules

th
ro

u
g

h
p

u
t

(M
p

p
s)

M A F

M SF

M A SF

10000 20000 30000 40000 50000 60000 70000 80000 90000

Fig. 11. The effect of different lookup order decision strategies on Pentium-II platform.

and compare instructions to lookup that ®eld, and then re-

compute the machine dependent threshold K as the criterion

for bypass matching. In this way, the algorithm is capable of

being extended to lookup various ®ltering rules for VPN or

®rewall layer 4 routers, while preserving high performance

features such as scalability and throughput.

5.7. Implementation issues

There are some important issues that should be noted

during implementation. When this algorithm is implemen-

ted in a Linux router, since the kernel memory cannot be

paged out, the data structures should be as compact as possi-

ble. Suf®cient physical memory should be available to

support the scale of ®ltering rules. In the control plane the

®lter updating process can be written as a daemon and can

update the ®lters in kernel space through a netlink socket

(like the routing socket in BSD).

When this algorithm is implemented in a router device,

some network processor could be adapted to speed up some

operations such as intersection. The throughput and scale

could be largely enhanced by doing intersection in an O(1)

fashion.

6. Conclusions

In this work we presented a new multi-®eld classi®cation

algorithm. Our Ordered Lookup with Bypass Matching

algorithm can dynamically determine the lookup order

according to the length distribution of ®ltering rules in the

table entries for each ®eld. Following the pre-de®ned

lookup order the classi®er lookups tables for a packet and

may ®nd the matching ®ltering rule without looking up

tables for all the ®ve ®elds. It also uses bypass matching

to terminate the lookup process when direct match with the

current matching ®ltering rules is more cost effective. This

algorithm is traf®c-aware and adaptive. It can be extended to

classify packets based on more ®elds.

This algorithm scales well to support 300k ®ltering

rules using 10 MB memory at a rate over one million

packets per second, compared to 1.1 Mpps with 20k

®ltering rules in Ref. [6]. When there are 20k ®ltering

rules in our classi®cation database, our algorithm is

50% faster than the algorithm proposed by Srinivasan

et al.[6], which needs a very large memory space and

cannot scale to 300k ®ltering rules. A recently proposed

algorithm RFC (Recursive Flow Classi®cation) [9] can

achieve up to 31.25 million packets per second, but it

cannot scale well over 6k ®lters. Even with its optimi-

zation scheme, it can only scale to 15k ®lters.

There is some future work to be done. First, we plan to

embed and integrate our algorithm into a layer 4 router to

see its performance, and how it interacts with other modules

in the router. Second, we will try to extend our algorithm to

classify packets based on more ®elds.

References

[1] J. Wroclawski, The use of RSVP with IETF integrated services, RFC

2210, September 1997.

[2] J. Wroclawski, Speci®cation of the controlled-load network element

service, RFC 2211, September 1997.

[3] S. Shenker, C. Partridge, R. Guerin, Speci®cation of guaranteed quality

of service, RFC 2212, September 1997.

[4] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, A. Malis, A framework

for IP based virtual private networks, Internet Draft, draft-gleeson-vpn-

framework-01.txt, February 1999.

[5] T.V. Lakshman, D. Stiliadis, High-speed policy-based packet forward-

ing using ef®cient multi-dimensional range matching, in: Proc. ACM

Sigcomm'98, September 1998.

[6] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, Fast and scalable

layer four switching, in: Proc. ACM Sigcomm'98, September 1998.

[7] V. Srinivasan, S. Suri, G. Varghese, Packet classi®cation using tuple

space search, in: Proc. ACM Sigcomm'99, September 1999.

[8] K. Thompson, G.J. Miller, R. Wilder, Wide-area Internet traf®c

patterns and characteristics, IEEE Network 11 (6) (1997) 10±23.

[9] P. Gupta, N. McKcown, Packet classi®cation on multiple ®elds, in:

Proc. ACM Sigcomm'99, September 1999.

Y.-D. Lin et al. / Computer Communications 24 (2001) 667±676676

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

50000

n m ber of filtering r les

th
ro

u
g

h
p

u
t

(M
p

p
s)

P en t iu m II

U lt ra Sp a rc

100000 150000 200000 250000 300000

Fig. 12. At least one million packets per second for 300k ®ltering rules.

