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Abstract

Two vertices A and B of a simple polygon P are (mutually) visible if AB does not intersect
the exterior of P. A graph G is a visibility graph if there exists a simple polygon P such that
each vertex of G corresponds to a vertex of P and two vertices of G are joined by an edge
if and only if their corresponding vertices in P are visible. No characterization of visibility
graphs is available. Abello, Lin and Pisupati conjectured that every hamiltonian maximal planar
graph with a 3-clique ordering is a visibility graph. In this paper, we disprove this conjecture.
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1. Introduction

Our terminology and notation in visibility problem are standard; see [14], except as
indicated. Polygons discussed in this paper are assumed simple (i.e., with no holes and
with no two edges crossing) and in general position (i.e., no three vertices collinear).
A polygon P in the plane is speci>ed by a cyclically ordered sequence of distinct points
V1; V2; : : : ; Vn (n¿3) called the vertices of P. The edges of P are the line segments
V1V2; V2V3; : : : ; Vn−1Vn and VnV1. The exterior of P is the open region of the plane
outside P. Two vertices A and B of a polygon P are (mutually) visible if AB does
not intersect with the exterior of P. The visibility graph of a polygon P is the graph
obtained by representing each vertex of P by a vertex of the graph and two vertices
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Fig. 1.

of the graph are joined by an edge if and only if their corresponding vertices in P are
visible. Suppose G is the corresponding visibility graph of P. Throughout this paper,
we use upper-case letters to represent the vertices of P and use lower-case letters to
represent the vertices of G. See Fig. 1 for an example. A graph G is a visibility graph
if there exists a polygon P such that G is isomorphic to the visibility graph of P.
No characterization of visibility graphs is available [1–3, 5–20]. For a survey of the

visibility problem, refer to [15].
Our terminology and notation in graphs are standard; see [4], except as indicated.

Graphs discussed in this paper are assumed simple and >nite. A graph is planar if
it can be drawn in the plane with no two edges crossing. A graph is maximal planar
if, for every pair of non-adjacent vertices a and b of the graph, adding the edge ab to
the graph results in a non-planar graph. A graph is hamiltonian if it has a hamiltonian
cycle. A k-clique is a complete graph with k vertices.
Suppose G is a graph and [v1; v2; : : : ; vn] is a vertex ordering of G. Aj is used to

denote the set of vertices in {v1; v2; : : : ; vj−1} that are adjacent to vj and G[Aj] is used
to denote the subgraph of G induced by Aj. A k-clique ordering of a graph is a vertex
ordering such that the >rst k vertices form a k-clique and for any other vertex v, the
subgraph of G induced by the vertices adjacent to v that precede v in the ordering con-
tains a k-clique. More precisely, a k-clique ordering of a graph G is a vertex ordering
[v1; v2; : : : ; vn] such that {v1; v2; : : : ; vk} forms a k-clique and for any other vertex vj,
G[Aj] contains a k-clique. For example, in Fig. 2, A4 = {v1; v2; v3}, A5 = {v1; v3; v4},
A6 = {v1; v2; v4}; it is not diIcult to verify that [v1; v2; v3; v4; v5; v6; v7; v8; v9; v10; v11; v12;
v13; v14] is a 3-clique ordering of the graph in Fig. 2.
Coullard and Lubiw [5] proved that every 3-connected visibility graph has a 3-clique

ordering starting from any 3-clique. Based on this result, Abello et al. [1] proved that
every 3-connected planar visibility graph is maximal planar and every 4-connected
visibility graph is non-planar. Abello et al. [1] then asked what are the necessary and
suIcient conditions for a 3-connected planar graph to be a visibility graph? They
conjectured that every hamiltonian maximal planar graph with a 3-clique ordering is a
visibility graph. In this paper, we disprove this conjecture.
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Fig. 2.

2. The main result

Given a polygon, we can traverse its boundary clockwise or counterclockwise. In this
paper, we always assume the clockwise order. Let A and B be two vertices of a polygon
P. AB-chain is the chain of vertices encountered after A but before B in a clockwise
traversal around P. For example, in Fig. 1(a), EB-chain = [F;G;H; A].

Theorem 1. There exists a hamiltonian maximal planar graph with a 3-clique order-
ing which is not a visibility graph.

Proof. Let G be the graph in Fig 2. G has a hamiltonian cycle [v1; v10; v6; v11; v2; v12; v4;
v14; v7; v13; v3; v8; v5; v9]. G is maximal planar and has a 3-clique ordering [v1; v2; v3; v4; v5;
v6; v7; v8; v9; v10; v11; v12; v13; v14]. Hence G is a hamiltonian maximal planar graph with
a 3-clique ordering. To prove that G is not a visibility graph, we >rst prove that G has
only six hamiltonian cycles; then, we prove that none of the six hamiltonian cycles
can form the polygon boundary.
Note that G has seven vertices of degree 3 and seven vertices not of degree 3.

Also note that no two vertices of degree 3 are joined by an edge. Hence vertices of
degree 3 and vertices not of degree 3 must occur alternately in any hamiltonian cycle
of G. We shall use this property to show that G has only six hamiltonian cycles.
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Let C be a hamiltonian cycle of G. Since v5 has exactly two neighbors of degree 3
(i.e., v8, v9), v5v8 and v5v9 must appear in C. Since v5v8 and v5v9 appear in C, v1v8
and v1v9 cannot appear in C simultaneously. Since v6 has exactly two neighbors of
degree 3 (i.e., v10, v11), v6v10 and v6v11 must appear in C. Since v2 has three neighbors
of degree 3 (i.e., v11, v12, v13), exactly two of v2v11 and v2v12 and v2v13 appear in C.
There are three cases:
Case 1: v5v8, v5v9, v6v10, v6v11, v2v11 and v2v12 appear in C. Since v2v11 and v2v12

appear in C, v13v2 cannot appear in C. Since v13 is of degree 3 and v13v2 cannot
appear in C, v13v7 and v13v3 must appear in C. Note that v1 has four neighbors of
degree 3, i.e., v8, v9, v10, and v11. Since v6v11 and v2v11 appear in C, v1v11 cannot
appear in C. Since v1v11 cannot appear in C and since v1v8 and v1v9 cannot appear
in C simultaneously, v1v10 must appear in C; moreover, exactly one of v1v9 and v1v8
must appear in C. To sum up, in Case 1, v13v7, v13v3, and v1v10 must appear in C and
exactly one of v1v9 and v1v8 must appear in C. There are two subcases:

Case 1.1: v1v9 appears in C. Since v8 is of degree 3 and v1v8 cannot appear in C,
v3v8 must appear in C. Since v3v8 and v13v3 appear in C, v3v14 cannot appear in C.
Since v14 is of degree 3 and v3v14 cannot appear in C, v14v4 and v14v7 must appear
in C. Since v14v7 and v13v7 appear in C, v12v7 cannot appear in C. Since v12 is of
degree 3 and v12v7 cannot appear in C, v4v12 must appear in C. Therefore, in this
subcase

C = [v1; v10; v6; v11; v2; v12; v4; v14; v7; v13; v3; v8; v5; v9]:

Case 1.2: v1v8 appears in C. Since v9 is of degree 3 and v1v9 cannot appear in C,
v4v9 must appear in C. Note that we cannot derive a hamiltonian cycle if v4v12 appears
in C. Since v12 is of degree 3 and v4v12 cannot appear in C, v7v12 must appear in C.
Since v13v7 and v7v12 appear in C, v14v7 cannot appear in C. Since v14 is of degree 3
and v14v7 cannot appear in C, v3v14 and v14v4 must appear in C. Therefore in this
subcase

C = [v1; v10; v6; v11; v2; v12; v7; v13; v3; v14; v4; v9; v5; v8]:

Case 2: v5v8, v5v9, v6v10, v6v11, v2v11 and v2v13 appear in C. Since v2v11 and v2v13
appear in C, v12v2 cannot appear in C. Since v12 is of degree 3 and v12v2 cannot
appear in C, v12v7 and v12v4 must appear in C. Note that v1 has four neighbors of
degree 3, i.e., v8, v9, v10, and v11. Since v6v11 and v2v11 appear in C, v1v11 cannot
appear in C. Since v1v11 cannot appear in C and since v1v8 and v1v9 cannot appear
in C simultaneously, v1v10 must appear in C; moreover, exactly one of v1v9 and v1v8
must appear in C. To sum up, in Case 2, v12v7, v12v4, and v1v10 must appear in C and
exactly one of v1v9 and v1v8 must appear in C. There are two subcases:

Case 2.1: v1v9 appears in C. Since v8 is of degree 3 and v1v8 cannot appear in C,
v3v8 must appear in C. Since v13 is of degree 3 and v2v13 appears in C, exactly one
of v13v7 and v13v3 appears in C. Note that we cannot derive a hamiltonian cycle if
v13v3 appears in C. Thus v13v7 appears in C. Since v13v7 and v12v7 appear in C, v14v7
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cannot appear in C. Since v14 is of degree 3 and v14v7 cannot appear in C, v14v4 and
v14v3 must appear in C. Therefore in this subcase

C = [v1; v10; v6; v11; v2; v13; v7; v12; v4; v14; v3; v8; v5; v9]:

Case 2.2: v1v8 appears in C. Since v9 is of degree 3 and v1v9 cannot appear in C,
v4v9 must appear in C. Since v1v8 and v5v8 appear in C, v3v8 cannot appear in C.
Since v3v8 cannot appear in C and v3 has to be adjacent to two vertices of degree 3 to
form a hamiltonian cycle, v3v13 and v3v14 must appear in C. Finally, v7v14 must appear
in C. Therefore in this subcase

C = [v1; v10; v6; v11; v2; v13; v3; v14; v7; v12; v4; v9; v5; v8]:

Case 3: v5v8, v5v9, v6v10, v6v11, v2v12 and v2v13 appear in C. Since v2v12 and v2v13
appear in C, v2v11 cannot appear in C. Since v11 is of degree 3 and v2v11 cannot appear
in C, v1v11 must appear in C. Note that we cannot derive a hamiltonian cycle if v1v10
appears in C. Since v10 is of degree 3 and v1v10 does not appear in C, v10v4 must
appear in C. Since v2v12 and v2v13 already appear in C, v7v12 and v7v13 cannot appear
in C simultaneously. Since v7 has to be adjacent to exactly two vertices of degree 3 to
form a hamiltonian cycle and since v7v12 and v7v13 cannot appear in C simultaneously,
v7v14 must appear in C; moreover, exactly one of v7v12 and v7v13 must appear in C.
To sum up, in Case 3, v1v11, v10v4, and v7v14 must appear in C and exactly one of
v7v12 and v7v13 must appear in C. There are two subcases:

Case 3.1: v7v12 appears in C. Then v13v7 cannot appear in C. Since v13 is of degree 3
and v13v7 cannot appear in C, v13v3 must appear in C. Note that we cannot derive a
hamiltonian cycle if v3v14 appears in C. Since v14 is of degree 3 and v3v14 cannot
appear in C, v4v14 must appear in C. Since v10v4 and v4v14 appear in C, v4v9 cannot
appear in C. Since v9 is of degree 3 and v4v9 cannot appear in C, v1v9 must appear
in C. Then v1v8 cannot appear in C. Since v8 is of degree 3 and v1v8 cannot appear
in C, v3v8 must appear in C. Therefore in this subcase

C = [v1; v11; v6; v10; v4; v14; v7; v12; v2; v13; v3; v8; v5; v9]:

Case 3.2: v7v13 appears in C. Then v7v12 cannot appear in C. Since v12 is of degree 3
and v7v12 cannot appear in C, v4v12 must appear in C. Note that we cannot derive a
hamiltonian cycle if v4v14 appears in C. Since v14 is of degree 3 and v4v14 cannot
appear in C, v3v14 must appear in C. Since v10v4 and v4v12 appear in C, v4v9 cannot
appear in C. Since v9 is of degree 3 and v4v9 cannot appear in C, v1v9 must appear
in C. Then v1v8 cannot appear in C. Since v8 is of degree 3 and v1v8 cannot appear
in C, v3v8 must appear in C. Therefore in this subcase

C = [v1; v11; v6; v10; v4; v12; v2; v13; v7; v14; v3; v8; v5; v9]:

From the above discussions, G has only six hamiltonian cycles. Note that the hamil-
tonian cycle in Cases 2.1, 3.1, and 3.2 is isomorphic to the hamiltonian cycle in
Cases 1.1, 2.2 and 1.2, respectively. Hence G has only three hamiltonian cycles up to
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Fig. 3.

isomorphism. To show that G is not a visibility graph, we shall show that none of the
hamiltonian cycles in Cases 1.1, 2.2 and 1.2 can form the polygon boundary.
We now show that the hamiltonian cycle in Case 1.1 cannot form the polygon bound-

ary. Let E(G) denote the edge set of G. Suppose G is a visibility graph and P is its
corresponding polygon. Since v1, v2, v4, v3 form a 4-clique in G, V1, V2, V4, V3 form
a quadrilateral subpolygon in P. Since C = [v1; v10; v6; v11; v2; v12; v4; v14; v7; v13; v3; v8;
v5; v9], we have V1V2-chain = [V10; V6; V11], V2V4-chain = [V12], V4V3-chain = [V14; V7; V13],
and V3V1-chain = [V8; V5; V9]. See Fig. 3(a).
Consider where to put V11: Since v11v3 =∈E(G), V11 and V3 are not visible in P. Since

V11 and V3 are not visible in P and V11 is on V1V2-chain, V11 lies either to the right

of
−−→
V3V2 or to the left of

−−→
V3V1. We claim that it is impossible for V11 to lie to the left

of
−−→
V3V1. Suppose this is not true and V11 lies to the left of

−−→
V3V1. Since v6v4 ∈E(G),

V6 and V4 are visible in P. Since V6 and V4 are visible in P and V6 is on V1V11-chain, V6
must lie to the right of

−−→
V4V1. Since v11v1 ∈E(G), V11 and V1 are visible in P. Since V11

and V1 are visible in P, V11 must lie to the right of
−−→
V1V6. Since there is no vertex

on V11V2-chain, V11 and V4 are visible in P; this contradicts the fact that v11v4 =∈E(G).
Therefore

(∗) V11 must lie to the right of
−−→
V3V2 (see Fig: 3(b)):

Consider where to put V14: Since v14v1 =∈E(G), V14 and V1 are not visible in P. Since
V14 and V1 are not visible in P and V14 is on V4V3-chain, V14 lies either to the right of−−→
V1V3 or to the left of

−−→
V1V4. We claim that it is impossible for V14 to lie to the right

of
−−→
V1V3. Suppose this is not true and V14 lies to the right of

−−→
V1V3. Since v2v7 ∈E(G), V2

and V7 are visible in P. Since V7 and V2 are visible in P and V7 is on V14V3-chain, V7
must lie to the left of

−−→
V2V3. Since v14v3 ∈E(G), V14 and V3 are visible in P. Since V14

and V3 are visible in P, V14 must lie to the left of
−−→
V3V7. Since there is no vertex on

V4V14-chain, V14 and V2 are visible in P; this contradicts the fact that v14v2 =∈E(G).
Therefore

(∗∗) V14 must lie to the left of
−−→
V1V4 (see Fig: 3(c)):
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Consider where to put V12: Since v12v1 =∈E(G), V12 and V1 are not visible in P. Since
V12 and V1 are not visible in P and V12 is on V2V4-chain, V12 lies either to the left

of
−−→
V1V2 or to the right of

−−→
V1V4. Since v12v3 =∈E(G), V12 and V3 are not visible in P.

Since V12 and V3 are not visible in P and V12 is on V2V4-chain, V12 lies either to the

left of
−−→
V3V2 or to the right of

−−→
V3V4. Therefore, V12 lies either to the left of

−−→
V3V2 or to

the right of
−−→
V1V4. Since P is simple, by (∗), V12 cannot lie to the left of −−→V3V2. Since

P is simple, by (∗∗), V12 cannot lie to the right of −−→V1V4. Therefore we have no place
to put V12. Hence P does not exist and G is not a visibility graph.
By similar arguments, we can prove that the hamiltonian cycle in Case 2.2 (or 1.2)

cannot form the polygon boundary. Therefore G is not a visibility graph.
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