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Abstract

There are many methods for nested loop partitioning. However, most of them perform poorly when partitioning loops with non-
uniform dependences. This paper proposes a generalized and optimized loop partitioning mechanism to exploit parallelism from
nested loops with non-uniform dependences. Our approach, based on dependence convex theory, will divide the loop into variable
size partitions. Furthermore, the proposed algorithm partitions a nested loop by using the copy-renaming and the optimized
partitioning techniques to minimize the number of parallel regions of the iteration space. Consequently, it outperforms the previous
partitioning mechanisms of nested loops with non-uniform dependences. Many optimization techniques are used to reduce the
complexity of the algorithm. Compared with other popular techniques, our scheme shows a dramatic improvement in the pre-
liminary performance results. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The dependence of loops can be classified into two categories: uniform dependences and non-uniform dependences
(Banerjee, 1988). A pattern of dependence vectors (namely, distance vectors), which are expressed by constants, will be
known as uniform dependence vectors. Other dependence vectors in a regular pattern cannot be expressed by constants
and belong to non-uniform dependences. Example 1 (a) below explicates a non-uniform dependence loop, which has
non-uniform dependences in the iteration space (see Fig. 1(a)). Example 1 (b) below shows an uniform dependence
loop, which has uniform dependences in the iteration space (see Fig. 1(b)).

Example 1. (a) A non-uniform dependence loop. (b) An uniform dependence loop.

forl =1,10 for I =1,10
for J =1,10 for J=1,10
AR * T+3,J+1)=... ALY = ...
o= AQ x JHTH+ 1,1+ +3) =AU+ L)+ AT - 1L,T)+ AT+ 1)+ AU, T - 1)
endfor endfor
endfor endfor

Because there is a rich parallelism of loops in scientific programs, current parallelizing compilers have been written to
exploit the parallelism (Banerjee, 1988). However, most of them fail in parallelizing nested loops with non-uniform
dependences because of irregular and complex dependence constraints. Although there have been many analyses for
identifying the cross-iteration dependences in nested loops, most of them fail when analyzing with coupled subscripts
(Berger, 1987).
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Fig. 1. Iteration space of Example 1: (a) A non-uniform dependence loop, (b) An uniform dependence loop.

According to an empirical study on array subscripts and data dependences (Shen et al., 1989), nearly 45% of two-
dimensional array references are coupled, and most of them generate non-uniform dependences. In this paper, we
emphasize the parallelization of nested loops with non-uniform dependences. Loop partitioning is an important op-
timization issue and requires exact and effective data dependence analysis (Zima and Barbara, 1990). However, ir-
regularity in the dependence pattern makes dependence analysis very difficult for nested loops. A number of techniques
based on convex hull theory have been proposed, such as dependence uniformization (Tzen and Ni, 1993; Shang et al.,
1996), minimum dependence distance tiling (Punyamurtula and Chaudhary, 1994; Tseng et al., 1992; Chen and Yew,
1996; Tseng et al., 1996; Punyanurtula et al., 1997) three-region partition (Zaafrani and Ito, 1994), unique set oriented
partitioning (Ju and Chaudhary, 1996), and improved three-region partitioning (ITRP) (Cho and Lee, 1997). However,
all of these do not extract total parallelism from non-uniform dependence loops.

We employ a mechanism called optimized dependence convex hull partitioning (ODCHP), which divides the iter-
ation space into many and variable sized parallel regions. The ODCHP mechanism can be combined with other non-
uniform parallelization techniques such as three-region partitioning, ITRP, and unique set oriented partitioning
mechanisms to exploit as much parallelism as possible. Our approach provides more accurate information about the
iteration space and finds more parallelism. It is based on Convex Hull theory in order to reduce the complexity of our
algorithm. Because dependence must appear in the dependence convex hulls, the complexity of searching algorithm for
dependences must be bounded by the size of dependence convex hulls. On the other hand, some dependences are
eliminated results from the execution of previous partitions. This property makes the partition of our method effective.
Finally, the iterations that must be executed in lexicographical execution order result in the reduction of the checking
procedure for dependences. Combining with integer programming technique, our mechanism is effective in partitioning
iteration apace with non-uniform dependences.

We evaluate our scheme in the real multiprocessor system CONVEX SPP-1000 with eight processors. Our scheme
performs much better than other famous mechanisms such as uniformization, minimum dependence distance tiling,
ITRP, and ITRP combined with minimum dependence distance tiling mechanisms as the loop bounds increase from 10
to 100. However, as the loop bounds increase to 1000, our approach performs slightly better than other mechanisms
due to large parallelism exploited and small number of available processors. In order to make effective use of large
parallelism exploited, we construct a multiprocessor system environment called SEESMA (Su et al., 1996) that likes
CONVEX SPP series machines to show the performance of our mechanism. Mean while, we also implement famous
different mechanisms in four popular models and two real program kernel code segments to see the effectiveness of our
scheme. In our SEESMA system with 128 processors, our scheme also performs better than other mechanisms. Thus,
our mechanism is superior than any other existed method.

The rest of this paper is organized as follows. Section 2 describes our program model and reviews the concept of
dependence convex hull, unique head and tail sets, and several related work. Section 3 presents the concept and
principle of our new partitioning mechanism, the ODCHP. The preliminary performance results are illustrated in
Section 4. Finally, in Section 5 we give some conclusions with suggestions for future work.

2. Preliminaries and related work

Most loops with complex array subscripts are two-dimensional loops (Shen et al., 1989). For a simplification of the
explanation, the program under consideration in this paper is a doubly nested loop with coupled subscripts. The
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Jor I=L; U,
for J=L], U]

Sa A(fi(L J), (1, J)) = ...
Su e = A(fy(1J), f(1J))

Fig. 2. A doubly nested loop program model.

solution to multilevel nested loops can be obtained by enhancing our mechanisms. The model of a doubly nested loop
is depicted in Fig. 2, where f1(1,J), f2(I,J), f3(I,J), and f4(I,J) are all linear functions of loop variables. The di-
mension of the nested loop is equal to the number of nested loops in it. In loop I(J), L;(L;) and U;(U;) indicate the
lower and upper bounds, respectively. Both the lower and upper bounds of indices should be known at compile time.
At first, we will define a program and its data dependence formally in the following.

Definition 1. A sequential program is represented as P = (3, 0,7, p, »,7, 1), where

e Jis the set of instructions. An instruction is an indivisible unit such as a simple arithmetic operation on program
variables.

e g, is the depth, or the number of surrounding loops, of instruction s.

9,(7) is an affine expression derived from the loop bounds such that i is a valid loop index for instruction s, if and

only if ¥,(i) = 0.

p.-(7) 18 the affine array index expression in the rth array reference to array z in instruction s.

.- 1s true if and only if the rth array reference to array z in instruction s is a write operation.

7., 18 true if and only if the rth array reference to array z in instruction s is a read operation.

N, 18 the number of common loops shared by instruction s and s'.

The access patterns in a program define the constraints of program transformations. The notion of data dependences is
well understood. Informally, there is a data dependence from an access function g to another access function ¢/, if and
only if some instance of p uses a location that is subsequently used by ¢’, and one of the accesses is a write operation. A
data dependence set of a program contains all pairs of data-dependent access functions in the program. We define them
formally as below. The formal definitions of flow- and anti-dependence are shown in Definitions 3 and 4, respectively.
The data dependence set of a program is given in Definition 5.

Definition 2. [Zima and Barbara, 1990] We define < to be the ‘lexicographically less than’ operator for program
P =(3,0,9,p,w,7,n) such that i <. /' if and only if the iteration i of instruction s is executed before the iteration i’ of
s’ in P. That 1s,

oy ,
B im = By Ny <1, for 0<m <.

Definition 3. The flow-dependence set of a program P = (3, 0,9, p, w,7, 1), denoted as Rf, can be defined as:

Rg = (250 Oz ) (@20 A 720) A ((Fi € 37,07 € Sw) 3 ((i <o 1A .
(Pzor() = z0r (') = O) A (95(D)O A I5'(7) = 0)))

Definition 4. The anti-dependence set of a program P = (3, 0,9, p, w,7, 1), denoted as R3, can be defined as:

Ra — <pzsr7 pzs’r’>|<’yzsr A wZS/V’) ((Hl SN 9"” / 6 ) > ((l s’ l)
’ (90 (1) — e (1) = 0) A (6,()0 A D7) > 0))
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Definition 5. The data dependence set of a program P = (3, 0,9, p, »,7, 1), denoted as R can be defined as:

R= <pzsra @zs’r’>|(wzsr \ (Uzs’r’) A ((Hl S SUS; i, S Sml) 2> ((l s’ l,)/\ .
(@zsr'(i) - @m’r’(il) = O) A (19S(i) = 0A 19_9/(1") > O)))

Usually, an iteration denoting a series of statements in the loop body is a unit of work assigned to a processor.
Therefore, the dependence constraints inside the iteration can be ignored when parallelizing a nested loop. The de-
pendence constraints between different iterations, called cross-iteration dependence, are our major concern. All the
dependences discussed in this paper include only cross-iteration dependences. In our program model, shown in Fig. 2,
statement S, defines elements of array 4, and statement S, uses them. Dependence exists between S; and S, whenever
both refer to the same element of array A4. If the element defined by S, is used by S, in a subsequent iteration, there is a
cross-iteration flow dependence between S, and S, and will be denoted by (S, S,) € Rg. On the other hand, if the
element used in S, is defined by S, at a later iteration, the dependence is called cross-iteration anti-dependence and will
be denoted by (S,, S,) € R:.

One of the most common method for computing data dependences involves solving a set of linear Diophantine
equations (Zima and Barbara, 1990) with a set of constraints formed by the iteration boundaries as shown in Defi-
nition 5. The data dependence set R contains two pairs of access functions: {11, @21} and (pa11, pa21). The constraints
are ¥y, = 0 and ¥y > 0, respectively. The loop in Fig. 2 carries cross-iteration dependences if and only if there exists
four integers i1, ji, i», j» satisfying the system of linear Diophantine equations given by (1) and the system of inequalities
given by Eq. (2).

N 1) = f3(ia,72) and - folin, 1) = falia, j2), (i, 1) and  (iz, /2) € (1,J)), (1)

Li<iy,ib<Uy and L, <ji,j»<Us. (2)

The dependence convex hull (DCH) (Tzen and Ni, 1993) is a convex polyhedron and a subspace of the solution space.
There are two approaches for solving the system of Diophantine equations in (1). One way is to set i; to x, j; to y;, and
then solve i, and j,, respectively. Here, iy, ji, i, j» and its inequalities can be represented as shown in Eq. (3), which
forms DCH and is denoted by DCHI1.

(i1, 1,02, j2) = (X1, 01,81 (1, 0), &2(x1, 1))
L1<X1,g1(x1,y1)<U1 and L2<J’1a82(x1aJ’1)<U2

(3)

The other way is to set i, to x,, j» to ), and then solve i; and jj, respectively. Here, i}, ji, i, j, and its inequalities can be
represented as shown in Eq. (4), which forms DCH and is denoted by DCH2.

(i1, 15125 72) = (&3(x2,12), 84(x2,32), X2, 12),
Li<g(x2,0),%<U; and L, <gu(x2, 1), < Us.

(4)

Clearly, if we have a solution 71, j; in DCHI1, we will have a solution #,, j, in DCH2 because each of them is derived
from the same set of equations. If iteration (i, j») is dependent on iteration (iy, j;), we will have a dependence vector
D(x,y) with d;(x,y) = i, — i; and d;(x,y) = j» — ji. Therefore, for DCHI1, we have

di(iy, 1) = @1(i, ) — i1 and  d;(i1, j1) = g (i1, /1) — ji- (5)
For DCH2, we have
di(iz, o) = iy — g3(i, /o) and  d;(ia, j2) = ja — ga(iz, J2)- (6)

Here we briefly describe some techniques for solving non-uniform dependence problems. The dependence uniformi-
zation scheme (Tzen and Ni, 1993) constructs two basic dependence vector sets, using dependence slope theory, and
adds them to every iteration in the iteration space. The loop can then be parallelized by current parallel compilation
techniques to uniform dependence loops. It is parallelized according to the two uniform dependence vectors, resulting
in a do across type of loop execution. However, this mechanism always imposes too many additional dependences on
the iteration space.

The minimum dependence distance tiling method (Punyamurtula and Chaudhary, 1994; Punyanurtula et al., 1997)
exploits the parallelism using minimum distances computed from the dependence vectors of the integer DCH (IDCH)
extreme points. Minimum distances are used to partition the iteration space into tiles of regular size and shape, but
irregularity of non-uniform dependence distances is ignored.
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The three-region partitioning technique (Zaafrani and Ito, 1994) divides the iteration space into two parallel regions
and one serial region. The first region represents the part of iteration space where the anti-dependence exists. Hence,
iterations in this area can be fully executed in parallel, provided that copy-renaming is performed. The second region
represents the part of iteration space with flow-dependence heads and corresponding tails in the first region. The
second region will be executed in parallel after the first region is executed. The serial region then represents the rest of
the iteration space to which the dependence uniformization scheme can be applied. However, if this serial region
increases, the performance of the loop will be significantly degraded.

A unique set-oriented partitioning mechanism (Ju and Chaudhary, 1996) divides the iteration space into the de-
pendence unique head and tail sets. In this partitioning method, there are various combinations of overlap of these sets.
The execution order of partitioned regions depends on these combinations. The iterations within the unique set can be
executed in parallel, but the unique tail sets must be executed before the unique head sets. This technique provides
more accurate information for the iteration space. However, it also suffers from several disadvantages. First, it does
not present an exact partitioning scheme, and therefore, it is difficult to know the best scheme at compile-time. Second,
it inevitably leaves some parallelism unexplored since the method of minimum dependence distance is applied to
parallelize the rest of the iteration space that contains both dependence tails and heads. Increasing the iterations in
such a region will degrade the speedup of the method.

The optimized three-region partitioning (OTRP) scheme (Pean and Chen, 1999) and the improved three-region
partition (ITRP) scheme (Cho and Lee, 1997) are similar to three-region partitioning in the sense that the iteration
space is divided into two parallel regions and one serial region. The size of a parallel region in the ITRP and OTRP
schemes are not less than for the three-region partitioning mentioned above. On the other hand, it is simple to divide
the iteration space into three regions, where the execution order of partitions is always the same. However, each of
these mechanisms still leaves some unexplored parallelism in the partitioned serial region. Moreover, variable size
partitioning in the serial region also has high time complexity. In the next section, we will present the detailed de-
scription of our new mechanism.

3. Optimized dependence convex hull partitioning

In the previous section, we briefly discussed advantages and disadvantages of conventional techniques. Here, we
present an effective technique, called optimized dependence convex hull partitioning (ODCHP), to improve the
drawbacks of those techniques. We use an arrow to represent dependence in an iteration space. We call the arrow’s
head as the dependence head, and the arrow’s tail is known as the dependence tail. In order to explain our method
clearly, we will give formal definitions about unique head (tail) set (Ju and Chaudhary, 1996) as follows.

Definition 6 (Flow-dependence head set). The flow-dependence head set of a program P = (3, 0,9, p, , 7, 1), denoted
Head(RY), is defined as

cad (8 — { V1 € T (@ A1) A (B € 37,1 €37) 5 (1 = N |
Head (1) { (920 (0) = e (1) = 0) A (91(0) = 0 A 0(7)0))) }

Definition 7 (Flow-dependence tail set). The flow-dependence tail set of a program P = (3, g,9, p, w,y, 1), denoted by
Tail (Rf), is defined as

Tail (R = 4 (V7 € 3N (@ A 7:00)) A((Gi € 37, € I =w N |
’ (9250 (1) = o0 (i') = 0) A (05(i) Z 0 A D (1) = 0)))

Definition 8 (Anti-dependence head set). The anti-dependence head set of a program P = (J, 0,9, p, »,y, 1), denoted
by Head(R3), is defined as

Head (RY) = { (1 € 3Ny A o)) A (B

j o’s, v SD’S')((i < i/)/\ .
(pzsr(i) - pzs’r’(il) = O) A (19?(1) /

Definition 9 (Anti-dependence tail set). The anti-dependence tail set of a program P = (3, 0,9, p, »,y, 1), denoted by
Tail(R3), is defined as
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Tuit (&%) = | (V1 € (G A A (i € 37,0 € 37 (0 <0 )0 |
° (920 (1) = @2en () = 0) A (0,(0) = O A Dy (i) = 0)))

Definition 10 (Ju and Chaudhary, 1996). (Unique head (tail) set). The unique head (tail) set is a set of integer points in
the iteration space that satisfies the following conditions: (1) it is the subset of one of the DCHs (or is the DCH itself);
(2) it contains all the dependence arrows’ heads (tails), but does not contain any other dependence arrows’ tails (heads).

We will first examine the concept of DCHI1 and DCH2 because it can partition the iteration space into unique sets.

Lemma 1. For a nested loop, DCH]1 contains all flow-dependence tails and all anti-dependence heads (if they exist), and
DCH? contains all anti-dependence tails and all flow-dependence heads (if they exist). Thus,

Vi € 3”|i € (Tail(R) V Head(R3))} C DCH1  and
Vi € 3”|i € (Tail (R%)V Head(RY))} C DCH?2.

Proof. The iterations in DCH1 and DCH?2 can be obtained from Egs. (3) and (4). The dependence vectors of DCHI1
and DCH2 can also be calculated from Eqgs. (5) and (6). The iterations inside DCH1 can be constructed by using
functions g (i1, j1) and g,(i, j1). Thus, if there is any iteration inside DCHI and its corresponding array reference is a
write reference, the array reference of the iteration must become a flow-dependence tail. Otherwise, if there is any
iteration inside DCH1 and its corresponding array reference is a read reference, the array reference of the iteration
must become an anti-dependence head. Hence DCH1 contains all flow-dependence tails and all anti-dependence heads
(if they exist). Similarly, DCH?2 contains all anti-dependence tails and flow-dependence heads (if they exist).

Lemma 1 tells us that DCH1 and DCH2 may contain more than one unique set and two kinds of unique sets in
DCHI1 and DCH2 are also given. On the contrary, the following lemma states the condition for DCH1 and DCH?2 to
be unique sets. [

Lemma 2. For a nested loop if di(x,y) = 0 does not pass through any DCH, there will be only one kind of dependence,
either flow- or anti-dependence, and DCH itself is the unique head set or the unique tail set.

Proof. If d;(x,y) = 0 does not pass through any DCH, then DCH is on the side of either d;(x,y) < 0 or d;(x,y) > 0. If
DCH1 and DCH2 are on the side of d;(x,y) > 0, then DCH1 and DCH2 contain flow-dependence unique tail and head
sets, respectively, because based on Lemma 1 the iterations in DCHI1 and DCH2 are derived from Egs. (5) and (6),
respectively. Similarly, if DCH1 and DCH2 are on the side of d;(x,y) < 0, then DCH1 and DCH2 contain an anti-
dependence unique head set and anti-dependence unique tail set, respectively, because based on Lemma 1 the iterations
in DCHI1 and DCH2 are derived from Egs. (5) and (6), respectively. Thus, if d;(x,y) = 0 does not pass through any
DCH, there will be only one kind of dependence, either flow- or anti-dependence, and DCH itself is the unique head set
or tail set. [

DCHI1 and DCH2 are constructed from the same system of linear Diophantine equations and inequalities. Lemma 3
highlights their common attributes.

Lemma 3. For a nested loop, if di(x1,y1) = 0 does not pass through DCH]1, then d;(x;,y,) = 0 will not pass through
DCH?2.

Proof. If d;(x;,y;) = 0 does not pass through DCHI, then there is only one kind of dependence, either flow- or anti-
dependence according to Lemma 2. Now assuming d;(x,, y,) = 0 passes through DCH2, then DCH2 contains both a
flow-dependence head set and an anti-dependence tail set. Thus, there must be a corresponding flow-dependence tail
set and an anti-dependence head set inside DCH1 by Lemma 1. Consequently, this means that d;(x;,y;) = 0 does pass
through DCH1 by Lemma 2. Henceforth, if d;(x;, ) = 0 does not pass through DCHI, then d;(x,,,) = 0 will not pass
through DCH2. O

Lemma 4. For a nested loop, if d;(x1, 1) = 0(d;(x2, ) = 0) does not pass through DCH1 (DCH?2), and DCH1 (DCH?) is
on the side of d;(x1,y1) > 0(d;(x2,12) > 0), then DCH1 (DCH2) is a flow-dependence unique tail (head) set. Otherwise, if
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DCH]1 (DCH?) is on the side of d;(x,y1) < 0(d;(x2,),) < 0), then DCH1 (DCH?) is an anti-dependence unique head (tail)
set.

Proof. If d;(x;,y1) = 0(di(x2,»,) = 0) does not pass through DCH1 (DCH2), and DCHI (DCH?2) is on the side of
di(x1,y1) > 0(di(x2,,) > 0), then DCH1 will be a flow-dependence unique tail set according to Lemmas 1 and 2. On the
other hand, DCH2 is a flow-dependence unique head set by Lemma 3. Otherwise, if DCHI1 (DCH?2) is on the side of
di(x1,y) < 0(di(x2,»,) < 0), then DCH1 will be an anti-dependence unique head set based on Lemmas 1 and 2. And
thus DCH2 is an anti-dependence unique tail set by Lemma 3. O

Now, we have found that if d;(x;, y;) = 0 does not pass through DCH1, then both DCH1 and DCH2 are unique sets
and the points in them have the same property. DCH1 (DCH2) may contain dependence heads and tails when
di(x1,y) = 0(di(x2,»,) = 0) passes through it. This makes it difficult finding unique head and tail sets. Lemmas 5 and 6
will show some common attributes when d;(x;,y;) = 0 passes through DCH1 (DCH?2).

Lemma 5. For a nested loop, if d;(x,y) = 0 passes through a DCH, it will divide DCH into a unique tail set and a unique
head set. Furthermore, d;(x,y) = 0 determines the inclusion of d; (x,y) = 0 in one of the sets.

Proof. If d;(x,y) = 0 passes through DCHI1 (DCH?2), then the DCH1 (DCH?2) contains both a flow-dependence tail
(head) set and an anti-dependence head (tail) set, and the sets are divided by the line d;(x, y) = 0 according to Egs. (3)-
(6). The points in the line d;(x,y) = 0 can be further categorized into different sets according to the line d;(x,y) = 0. If
these points are on the side of d;(x,y) > 0, they belong to a flow-dependence unique tail set (low-dependence unique
head set) in DCH1 (DCH?2). Otherwise, if these points are on the side of d;(x, y) < 0, they belong to an anti-dependence
unique head set (anti-dependence unique tail set) in DCH1 (DCH?2) according to the results obtained using Egs. (5)
and (6). Furthermore, if the point is in d;(x,y) =0 and d;(x,y) =0, it has no cross-iteration dependence. Thus,
d;(x,y) = 0 determines the inclusion of d;(x,y) = 0 in one of the sets. [

Lemma 6. For a nested loop, if d;(x;,y1) = 0 passes through DCH1 (DCH?2), then DCH1 (DCH?2) is the union of a flow-
dependence unique tail (head) set and an anti-dependence unique head (tail) set.

Proof. If d;(x, y) = 0 passes through DCH1 (DCH2), then DCH1 (DCH2) contains both a flow-dependence unique tail
(head) set and an anti-dependence unique head (tail) set, and the sets are divided by the line d;(x,y) = 0 according to
Lemmas 1 and 5. Thus, if d;(x;,y) = 0 passes through DCH1 (DCH?2), then DCH1 (DCH?2) is the union of a flow-
dependence unique tail (head) set and an anti-dependence unique head (tail) set. [

Based on the properties described above, there are various combinations of overlaps of these unique sets. We will
illustrate these properties by the following example:

Example 2. Consider the doubly nested loop
forl = 1,10
forJ = 1,10
A2 « J+3,I+J+5)=...
o =AQ2 x« I+J—-1,3 « I —1)

endfor
endfor
The set of inequalities and dependence distances of the loop in Example 2 are computed as follows:
DCH1 : DCH?2 :
1<i; <10 and 1<i, <10 and
1<j; <10 and 1<, <10 and
1<2+442<10and  1<2i, —2—-4<10and
I< —% 4% <l0and 1<ih+2-2<10 )
di(iy, i) = =2 +4 42, di(i, o) =~ +%+4,
di(iv, j1) = —2%‘*"%1 di(ir, o) = =i +5 + 2,

Fig. 3 shows DCHs and the unique head (tail) sets of the loop in Example 2. Clearly, d;(x;, ) = 0 divides DCH1 into
two areas. The area on the side of d;(x;,)) < 0 is an anti-dependence unique head set, which is on the right side of
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flow dependence  d(x,,y,)=0 :
unique tail set ji1=2i-6

di(xp,y)=0:
ji=2i,-6

anti dependence
unique head set

flow 7 - anti
dependence i del')enden.ce
unique head DCHI1 unique tail

set

di(X,y,)=0 :
j2=2i,-8

set

di(x2,y2)=0 :
j2=2i,-8

e e

> >

1 I

(a) (b)

Fig. 3. Unique head sets and unique tail sets of: (a) flow-dependence, and (b) anti-dependence.

di(x1,y1) = 0 as shown in Fig. 3(b). Similarly, the area on the side of d;(x;,y;) > 0 is a flow-dependence unique tail set,
which is on the left side of d;(x1,1) = 0 as shown in Fig. 3(a). d;(x,,,) = 0 also divides DCH2 into two areas. The area
on the side of d;(x»,),) < 0 is an anti-dependence unique tail set, which is on the left side of d;(x,,),) = 0 as shown in
Fig. 3(b). The area on the side of d;(x,),) > 0 is the flow-dependence unique head set, which is on the right side of
di(x2,12) = 0 as shown in Fig. 3(a).

Our approach is based on convex hull theory (Tzen and Ni, 1993). We use the lines d;(i, /) = 0 and d;(i,j) = 0 to
partition the iteration space into four unique sets. All possible sets partitioned by d;(i, /) and d(i, /) are summarized in
Table 1 according to the above lemmas. Table 2 shows each set that is part of a line segment, which is partitioned
according to the sign of d,(i, 1) and d;(iz, j»).

At first, we use memory space to gain the benefits of parallel execution because the anti-dependence can be avoided
by the concept of copy-renaming (Zima and Barbara, 1990). Lemma 7 below, introduces the condition where copy-
renaming can be used.

Lemma 7. [Elimination of anti-dependence] For a nested loop, if there is an anti-dependence between two statements S,
and S, (denoted as (S;,S,) € R}) in the iteration space, these two statements can be executed in parallel after copy-
renaming.

Proof. If (S,,S,) € R}, we can assume that there are two accesses, 4, € S; and 4, € S, referencing the same memory
location. For copy-renaming, we copy 4, into another memory location 4/, before execution of the iteration. There-
fore, access 4, in the statement S, can be changed into A’ . Thus, the two accesses, 4, € S, and 4!, € S, will not refer to
the same memory location and the two statements S; and S, can be executed in parallel.

Our goal is to develop an algorithm to identify non-uniform partitions with variable sizes so as to maximize par-
allelism from a doubly nested loop with non-uniform dependence. If we can find the dependence head iteration, (x,y),
that occurs first (i.e., its execution order is lexicographically the first) in the range of the loop given by /; <x <u; and
I, <y <uy, then all the iterations, (i, j), in the range of (/; <i<x—1)and L, <j<u) plus(=xand I, <j<y—1)can
be executed in parallel since there are no dependences between these iterations. Thus, we can make the iterations in the
range of (/; <i<x—land I, <j<u) plus i =x and I, <j<y— 1) into a partition with size (x — 15)(un — L + 1) +

Table 1
The different sets partitioned by d;(i, ;) and d,(i, j)*
di(ir, i) >0 di(in, i) <0 di(iy, 1) =0
di(iz, j2) > 0 Head (RY) Head (RY) Refer to Table 2
Tail (R;) Head (RY)
di(ir,j») <0 Tail (RE) Tail (RE)
Tail (R3) Head (R})
di(i, j2) =0 Refer to Table 2

* Tail (RL): flow dependence tail; Head (RY): flow dependence head; Tail (R3): anti dependence tail set; Head (R%): anti dependence head.

Table 2
The case of d;(i1, j1) = 0 or d;(ia, j2) = 0*
dj(l‘],j]) >0 dj(il,j]) <0 dj(l‘],j]) =0 dj(l‘g,jg) >0 dj(iz,jz) <0 dj(iz,jz) =0
Tail (R) Head (R}) No cross-iteration dependence Head (RY) Tail (RY) No cross-iteration dependence

* Tail (RL): flow dependence tail; Head (R): flow dependence head; Tail (R3): anti dependence tail set; Head (R%): anti dependence head.
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(y — ). Therange of (x =i =x — 1 and I, <j <uy) plus (i = x and y < j < u,) can then be partitioned in the same way.
We can repeat this procedure for the rest of the loop iterations. However, there is no dependence if the tail of the
dependence head is located at one of the previous partitions. Formally, we give the following definitions of ODCHP at
first. And then some important properties are also investigated. [

Definition 11 (Optimized dependence convex hull partition (ODCHP)). For a nested loop, the kth partition of the
ODCHP method, ODCHP,, begins from the end of the next iteration of the previous partition to the previous iteration
of the first head node with a tail node that belongs to the current partition. Formally, the new ODCHP partition of a
program P = (3, 0,9, p, w,7,1) is defined as

(Vi € 3™)|((Fig, 1 € I” 3 iy <5 ia) N (Vi) € ODCHP;_| 3 iy <154 i4)

AN Biz € 3™ 3 iy <5 i3 <4 14)) A ((Fig € I™ 3 i <8 is)N

(Biz € 3%, is <y67 i1 <s6s8 B3) A (Jis € 3% 3 (is,ig) € RE) A (i2 <2s5 is <58 Is))
(Biro, i1 € 3% 1y <as1011 1105 111 <s10.11s8 I8 A (10, 711) € RE) A (iy <5 i <58 73)

ODCHP, =

Now, consider two processes, P, and P, executing iterations /; and I, respectively. These two processes can be exe-
cuted in parallel and are denoted by P,|P; if they are independent and do not create confusing results. Formally, the
condition is (/;,,) € R = .

Theorem 1. [Inclusion property] For a nested loop, if all the corresponding dependence tails of dependence heads belong to
the previous ODCHP partitions, then the iterations from the source node of the current ODCHP partition to the node of
the last dependence head with lexicographical execution order can be executed in parallel. Formally, for a program

P=(3,0,9,p,0,y,n) if

(Vi ia € 3% 2 (i1,12) € RYA ((Vis, i € 37)(is, is <s.604 14))A
(Fis,is € 3%(i3,is) € RE) A (i2 <254 is) = (is,i¢ € ODCHPF;) =
(iz, iy € ODCHPk) = ((i17i3 € ODCHPkl) A (Kl < K)) P(ls)”P(l())

Proof. For a program P = (J,0,9, 0, ®,7,n),Vi € Head(R5) if their tails j € Tail(RY) belong to previous ODCHP
partitions and (i, j) € RY, then as a result of Definition 2, their tails must be executed before the partition to which their
heads belong. Thus, the iterations from the source node of the current ODCHP partition to the node of the last
k € Head(R) with lexicographical execution order can be executed in parallel because the dependence of all heads has
been resolved in the execution of previous partitions.

The iteration space in Example 1 (a) is partitioned by the minimum dependence distance tiling method as shown in
Fig. 4(a). Even the corresponding dependence tails of dependence heads a, b, c, d belong to the previous tiles, they are
also tiled with less dependence distance than the ODCHP scheme. By Theorem 1, we find that the number of iterations
being executed in parallel are greatly increased by using ODCHP scheme. We explain the inclusion property and
demonstrate it by partition the loop nest in Example 1 (a). As shown in Fig. 4(b), all the corresponding dependence
tails of dependence heads a, b, ¢, d belongs to the previous ODCHP partition, ODCHP3. Thus, the iterations from the
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Fig. 4. (a) An example partitioned by the minimum dependence distance tiling without inclusion property, (b) an example of ODCHP partitioning
with the inclusion property.
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source node of the ODCHP; partition to the node of the last dependence head ¢ with lexicographically execution order
can be executed in parallel. O

Theorem 2. For a nested loop, the iterations inside the same ODCHP partition can be executed in parallel. Formally, for
a given program pP= <3’ g, 1197 £, @, 7, 17> lf

(i monny | = (PP}

Proof. As indicated by the inclusion property, for a program P = (J,a,9, p, »,7,1), the iterations from the source

node of the ODCHP partition to the node of the last i € Head(RY) that belong to the current partition with lexico-

graphical execution order, can be executed in parallel. Thus, the following is a proof that the iterations from the last

i € Head(RY) to the node before the next head can be executed in parallel with the nodes that are included by the

inclusion property. This is indicated as the iteration space 3°°. The proof of this is as follows.

1. If there are dependence heads in the iteration space 3%, then it contradicts Definition 2.

2. If there are dependence tails in the iteration space 3™, then their heads must not be in the iteration space 3 because
there is no dependence head as indicated in Definition 2. Thus, due to the constraint of lexicographical execution
order, their corresponding dependence heads must be in later ODCHP partitions.

3. There is no dependence head or tail in the iteration space 3. O
As indicated above, the iterations in an ODCHP partition can be executed in parallel.

Theorem 3. For a nested loop, the number of iterations inside each partition tiled by the ODCH P mechanism is a greedy
maximum under the constraint of lexicographical execution order.

Proof. If we tile the partition with more iterations than the ODCHP partition, then we have to include a dependence
head with a tail inside the same ODCHP partition as shown in Theorem 2. Thus, the iterations inside the same
ODCHP partition cannot be executed in parallel and the original ODCHP partition defined in Definition 2 is a greedy
maximum. [J

Theorem 4. [Bounded property] For a given program P = (J,0,9,p,»,y,n),Vi € Head(RL) must be in the iteration
space {{{(x2,32)|di(x2,2) > 0} U {(x2,32)|di(x2,32) = 0 and d;(x2,32) > 0}} N {DCH2}}. In addition, Vj € Tail(R) must
be in the iteration space {{{(x1,1)|d:(x1,31) > 0} U {(x1,»1)|d:(x1,1) = 0 and d;(x1,m) > 0}} N {DCH1}}. Formally,

(Vi € 37,/ € 3”)(i,j) € RY)

(i € Head (RY) =

i€ {{{0x2, 22)|di(x2,32) > 0} U{(x2,32)|(dli(x2,2) = 0) A (dj(x2,32) > 0)}} N DCH2}
(j € Tail (RY) =

€ (el ) > 0} U L@, ) = 0) A e, 1) > 0))) 1 DCH)

Proof. As shown in Table 1 and above lemmas, for a given program P = (3, 5,9, p, », y, 1), the flow-dependence head
set can only appear in the set of Head(R%) = {{{(x2,12)|di(x2,12) > 0} U{(x2,1)|di(x2,32) = 0 and d,(x2,),) > 0}} N
{DCH2}}, and the flow-dependence tail set can only appear in the set of Tail(R}) = {{{(x1,31)|di(x1,31) > 0} U
{(xl,y1)|d[(x1,y1) =0 and dj(xl,yl) > O}} n {DCHl}}

As depicted in Theorem 4, the set of Head(RY) is where the flow-dependence head may appear and 7ail(RY) is where
the flow-dependence tail may appear. Thus, if we want to check where the flow-dependence heads and tails might
occur, we have only to check the set of Head(RL) and Tail(RL). This greatly reduces the complexity of the checking
procedures. Fig. 5 is the dependence sets of Example 1 (a). The shadow area contains all the flow dependence head and
tail sets and covers only a little part of the iteration space. Thus, if we want to check dependences for the ODCHP
partitioning, we only have to check iterations in this shadow area. [

Theorem 5. [Forwarding property] For a given program P = (3, 6,9, o, w,7,1),Vi € Head (RS and Vj € Tail(RY), if we
want to check the dependence relation between i and j, then we only have to check those iterations after the j iteration with
lexicographical execution order as a consequence of the following property:

{(Vi,j € 3%) A ((i € Head(RY),j € Tail(RY)) A (i,)) € Ry)} = {j <y i}
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Flow dependence unique tail set

di(x1,y1)=0

di(Xz,Y2)=0

Flow dependence
unique head set

Fig. 5. The dependence relations of Example 1 with bounded property.

Proof. Vi € Head(RY) and Vj € Tail(R), if there is dependence between iteration i and j, then iteration j must be ex-
ecuted before iteration i. On the other hand, due to the property of lexicographical execution order, iteration j must
appear before iteration i. Thus, if we want to check the dependence relation between iterations 7 and j, then only the
iterations that are after iteration j with lexicographical execution order must be checked. [

We explain the forwarding property and demonstrate it by partitioning the loop nest in Example 2. As shown in
Fig. 6, the shadow area is the iteration space where we have to check for dependence after implementation of the
forwarding property. The shadow area is decreasing as the partitioning algorithm is executing. Thus, the complexity of
the ODCHP partitioning algorithm is successfully reduced.

By using an improved integer programming technique and concepts defined by theorems from Theorems 1-5, we
obtain the generalized and optimized algorithm to exploit any parallelism available in nested loops with non-uniform
dependences. On the other hand, before performing our improved integer programming technique, we should obtain

di(x1,y1)=0 : d 10 di(x1,y)=0 :
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P |
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Fig. 6. The partitioning procedure of the ODCHP algorithm with the forwarding property of Example 2.
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the general solution of dependence equations, the dependence vector function, DCH1, and DCH2. Let us consider the
loop shown in Fig. 2. By applying Egs. (3) and (4), we can obtain the general solution.

Hence, we extend the algorithm given by Tzen and Ni (Tzen and Ni, 1993) to form both DCH1 and DCH2. Their
algorithm forms the convex hull as a ring connecting the extreme points (nodes of the convex hull). It starts with a
large solution space and applies each half space from the set defined by Eqgs. (3) and (4) and then they divide the
iteration space to form two bounded dependence convex hulls. The extreme points of the convex hulls may have real
coordinates because these points are intersections of a set of hyper-planes. Therefore, Punyamurtula and Chaudhary
(1994) proposed an algorithm to convert these extreme points with real coordinates to extreme points with integer
coordinates called the integer dependence convex hull (IDCH). An IDCH contains more accurate dependence
information than a DCH. After constructing the initial DCH1 and DCH2, their algorithm checks if there are any
real extreme points for the DCH1 and DCH2. If there are none, then DCH1 and DCH2 are IDCH1 and IDCH2,
respectively.

By the above analysis, we can compute a dependence head iteration using an integer programming method com-
bined with an inclusion property, a bounded property, and a forwarding property as indicated in Theorems 1, 4 and 5,
respectively. Thus we can greatly reduce the complexity of our method by simplifying the detecting mechanism and
skipping unnecessary constraints. Formally, these algorithms are shown in Fig. 7. The procedure Find-
ing_IDCH_Flow_Head & Tail finds the minimum possible iteration space where dependence heads and tails may
occur. It uses the concepts from Lemmas 1-7. Thus, the procedure Integer_Program_ij and Integer Program_j
finds dependence heads and tails of axis i and axis j only in the iteration space where the procedure

Procedure Finding_IDCH_Flow_Head&Tail
/* Input Parameter: A list of 18 half spaces
Output Parameter: IDCH2_Flow_Head & IDCH1_Flow_Tail */
Begin
HSs = { Alist of 9 half spaces }
/* As indicated in Table 1
8 half spaces from Equation (3)
1 half space from Equation (5) for di(x;, y;) >0 or (di(x;, y1)=0 and dj(x;,y;)>0)*/
IDCH1_Flow_Tail = call Finding_IDCH( HSs );
HSs = { Alist of 9 half spaces }
/* As indicated in Table 1
8 half spaces from Equation (4)
1 half space from Equation (6) for di(x2, y2) >0 or (di(x2, y2)=0 and dj(x2,y2)>0)*/
IDCH?2_Flow_Head = call Finding_IDCH( HSs );
End Finding_IDCH_Flow_Head&Tail

Procedure Integer_Program_ij
/* Input parameter: IDCHI_Flow_Head, IDCH2_Flow_Tail, fi(x,y) for 1<i<4
Output parameter: the solution of IP: minf, x, y, " infeasible" if no solution */
Begin
Minf p Minimize f3(x,y)
Subject to fi(x,y), f>(x,y)e IDCH2_Flow_Tail
f3(x,y), fa(x,y) € IDCHI_Flow_Head
where x,y are integers
End Integer_Program_jj
Procedure Integer_Program_j
/* Input parameter: IDCHI_Flow_Head, IDCH2_Flow_Tail, fi(x,y) for 1<i<4
Output parameter: the solution of IP: minf, x, y, " infeasible" if no solution */
Begin
Minf p Minimize fy(x,y)
Subject to fi(x,y), f>(x,y) € IDCH2_Flow_Tail
f3(x,y), fa(x,y) € IDCHI_Flow_Head
where x,y are integers
End Integer_Program_j

Fig. 7. Algorithm of the enhanced integer programming mechanism.
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Procedure Optimized_Dependence_Convex_Hull_Partitioning
/* To maximize parallelism from doubly nested loops with non-uniform dependences™*/
Begin
/* to find the first iteration in the k™ partition (iP[k], jP[k]) */
step 1: /* the process for dependence extraction */
call Partition(fi(x, y) for 1< i < 4,iP[], jP[], fk);
/* To transform the loop into partitions with size,
(jP[k-1], up ) plus (iP[k+1] - iP[k]-1, uz - I +1) plus (O, jP[k+1] - jP[k]) */
step 2: /* code generation */
If anti-exist = 1 /* there exists anti-dependence */
/* generate code of copy-renaming */
then Generate: " Dependence_Array’ = Dependence_Array; "'/* copying renaming */
k=1;
While (iP[k] [u; ) Do
Line = iP[k+1] - iP[k];
If (anti-exist = 1) then /* there exists anti-dependences*/
{ Generate:" Doall I = iP[k]-1, iP[k+1]
DoallJ =1, u,
If ((I=iP[k]-1) and (J<jP[k])) or((=iP[k+1]) and (J>jP[k+1]))
return;
... = Dependence_Array’; /* copying renaming */
/* The instructions in the nested loop*/. "'}
else
If (jP[k] = ) then
{ Generate:" Doall I = iP[k], iP[k+1]-1
Doalll =1, u;
If ((I= iP[k]-1) and (J<jP[k])) or((= iP[k+1]) and (J>jP[k+1]))
return;
/* The instructions in the nested loop™/. "'}
k=k+1,;
EndWhile
End Optimized_Dependence_Convex_Hull_Partitioning

Fig. 8. Algorithm of the ODCHP mechanism.

Finding_IDCH_Flow_Head & Tail exploits. Hence, the complexity of the main integer programming algorithm is the
size of the dependence head iteration space multiply the size of the dependence tail iteration space where the procedure
Finding_IDCH_Flow_Head & Tail exploits. The worst case of the algorithm is bounded by the general integer pro-
gramming algorithm.

The ODCHP algorithm is described by the procedure called Optimized_Dependence_Convex_Hull_Pliieas shown in
Fig. 8. The procedure called Partition in procedure Optimized_Dependence_Convex_Hull_Partitioning produces an
array of the first iteration in each partition (iP[k], jP[k]) based on the concepts of inclusion property and the procedure
Integer_Program_ij and Integer_Program_j. fk — 1 is the number of partitions for flow dependences. In the presence of
anti-dependence, anti-exist is set to 1 and copy-renaming is implemented in step 2 according to Lemma 7. In addition,
step 2 transforms the loop into partitions with size (jP[k — 1],uy) plus (iP[k + 1] —iP[k] — 1,u — I, + 1) and plus
(0, jP[k + 1] — jP[k]). Because the core procedure of the ODCHP algorithm is the procedure Integer_Program_ij and
Integer_Program_j, its complexity is also bounded by these two procedures. By using both bounded property and
forwarding property in it, the complexity is greatly reduced.

4. Performance evaluations

So far, we have illustrated the properties of the ODCHP mechanism in detail. In the following, performance
evaluations are studied to practically verify effectiveness of our mechanism. The experimental programs include ex-
amples (Cho and Lee, 1997; Pean and Chen, 1999) discussed above, program models used by other related popular
papers and some practical code segments. Table 3 shows four popular non-uniform loop models, which are widely used
in several previous work (Tseng et al., 1992; Tzen and Ni, 1993; Shang et al., 1996; Tseng et al., 1996). Table 4 shows
two popular code segments. They are Propogate code segment which are widely found in Linpack (Dongarra et al.,
1979) and Swap code segment which serves as kernel of Fishpack Swarztrauber and Sweet, 1979). Linpack is a col-
lection of Fortran programs for solving various types of linear systems and is supported on the Cray. Fishpack is a
package of FORTRAN subprograms for solving those separable Elliptic partial differential equations and is also
supported on the Cray.
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Procedure Partition (fi(x, y) for 1 < i <4, P[], jP[], k);

/* get the solution of IP from Procedure Integer_Program_ij : minf, x, y, " infeasible" if no solution */

Begin
lb/ = l],' Mb/ =Uuj lbz = lz, sz = Uy,
k= 1; anti-exist = 0; iP[1] = l;; jP[1] = L5; inclusion = 0;
While (iP[k] [u; ) Do
L1:Call Integer_Program_ij;
Inclusion = 0;
Call Inclusion_Check(Inclusion);
If (Inclusion = 1) then goto L1;
If " infeasible" then
{ If (k y 1) then /* the last partition */
{k=k+1;iP[k] = u; +1; jP[k] = |,; Retuen;}
k =k +1; iP[k] = minf;
/* Not in the same j dimension */
If (fi(x, y) ¥iP[k] ) then jB[K] = L;
/* In the same j dimension */
else { jP[k] =L,y k=k + I;
iP[k] = iP[k-1]; jP[k] = fu(x, y);}
L2: Ib, = iP[k]; b, = jP[k];
/* Partition in the jth dimension and not the first one */
If (jP[k] yl,) then
{ L3: call Integer_Program_j;
Inclusion = 0;
Call Inclusion_Check(Inclusion);
If (Inclusion = 1) then goto L3;
k=k +1;
If " infeasible" then
{ lb] = lb/ + 1,’ lbg = lz,'
iP[k] = Ib; ; jP[k] = I;; Continue;
/* No Dependence in the j dimension */}
iP[k] = Ib; ; jP[k] = minf, goto L.2;
/* Next j partition */ }
EndWhile
End Partition

Procedure Inclusion_Check (Inclusion)

/* The property of this procedure is to discard dependences which is unnecessary in partitioning*/

Begin
/* Tf(x, y) = Tail node of minf can be obtained by Equation (1) */
Tfi(x, y) = fi(x, y);
Tfi(x, y) = fa(x, y);
/* This dependence is included in the previous partition and can be omitted
as proved in Theorem */
If (Tfi(x, y) < iP[k] ) or ((Tfi(x, y) = iP[k]) and (Tfi(x, y) < jP[K]))
then inclusion = 1; Return;

End
Fig. 8. (Continued).
Table 3
The standard models
Model 1 Model 2 Model 3 Model 4
for I =1,N do for 7 =1,N do for I =1,N do for I =1,N do
for J =1,M do for J =1,M do forJ =1,M do for J =1,M do
sl: A(21,20) = ... st AT+ J,3I+J+3)=... sliA2J +3,1+1)=... sl A(31,5J) = ...
$2: ... =A(J + 10,1 +J + 6); 2 ... =AI+J+1,14+2J +4); s2i.=A(+J+ 3,2 +1); s2t ..., =A(l,J);
enddo enddo enddo enddo
enddo enddo enddo enddo

4.1. Overview of evaluation environment

The CONVEX Exemplar (Richardson, 1994) uses scalable parallel processing (SPP) technology, which is an im-
plementation of massive parallel processing (MPP) technology expandable as customer needs increase. The processors
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Table 4
The practical code segments
Propogate code segment Swap code segment
DOI=1,0 DOI=1,10
DOJ =1,R DOJ=1,10
AR(I,J) = AR(1,J) YU, D) =Y(,N+1-1)
CONTINUE CONTINUE
CONTINUE CONTINUE

'
terface

Functional Block
:

&

¢l Functional Block
E (er)- (eru)
=

i =

Fig. 9. Overview of Exemplar system architecture.

configured on the system are PA_RISC processors developed by Hewlett Packard; Exemplar configuration takes 4-128
PA-RISC processors. The configuration is shown in Fig. 9.

The fundamental building block in CONVEX SPP is hypernode as shown in Fig. 9. A hypernode is a symmetric
multiprocessor (SMP), while an SPP is a group of hypernodes sharing a low-latency interconnect. In CONVEX SPP,
each hypernode contains four CPU blocks, and each CPU block contains 2 PA-RISC processors associated with data
and instruction caches, a CPU agent, as well as a CPU-private memory. For CONVEX SPP-1000, it has only one
hypernode, and thus eight processors are available. Each hypernode also contains one or more hypernode private
memories that can be accessed from any CPU within hypernode, but not accessible from others.

Nowadays, multiprocessor system is mostly configured in non-uniform memory access architecture, CONVEX SPP-
1000 is a typical example. It is designed to achieve fast access latency of shared variables. Besides, it also supports a
variety of directives and pragmas to ease the parallel programming. Users can easily familiarize with the parallel
programming skill. C, C++ and Fortran compilers are supported as well. A friendly performance analyzer called
CONVEX Performance Analyzer (CXpa) is provided to allow users profiling their running program. Being attracted
by its amazing properties, such as popular architectural design, convenient in developing parallel program and easy
profiling, we have eventually chosen CONVEX SPP-1000 as our target platform. We have constructed the ODCHP
mechanism in the SUIF (Wilson et al., 1996) parallel compilation environment and then ran our experiments on a
CONVEX SPP-1000.

In order to find whether our ODCHP technique performs better than existing partitioning mechanisms in a system
with a large number of processors, we constructed a multiprocessor evaluation environment to measure their per-
formance. Different mechanisms were implemented and the object code was evaluated on a simulator named SEESMA
(a simulation and evaluation environment for shared-memory multiprocessor architecture) (Su et al., 1996), which is
enhanced from MINT (Veenstra and Fowler, 1994). This system is a highly paralleled shared memory multiprocessor
system environment. It is similar to the Exemplar system architecture with large number of processors.

4.2. Performance evaluation on program models

We have run the different mechanisms in both CONVEX SPP-1000 and SEESMA environments. Fig. 10 shows the
speedup of our technique, ODCHP, versus ITRP, ITRP combined with Minimum Dependence distance Tiling (MDT),
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Fig. 10. Evaluation on CONVEX SPP-1000 for the program of Example 2.
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Fig. 12. Evaluation on the SEESMA environment for: (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4.

Minimum Dependence distance Tiling (MDT) and Uniformization techniques. Our technique delivers a better per-
formance while the loop bounds of this example are set to 10, 100 and 1000 as shown in Fig. 10(a), (b) and (c), re-
spectively. As the number of processors increases, the ODCHP mechanism performs even better than those of the
other mechanisms. However, the speedup of different mechanisms is nearly linear, as shown in Fig. 10(c), due to the
high degree of parallelism and the limited number of processors in the CONVEX SPP-1000 while the loop bound is set
to 1000.

Fig. 11 shows the speedup comparisons in the SEESMA environment. Our technique delivers a better performance
while the loop bounds for this example are set to 10, 100 and 1000 as shown in Fig. 11(a), (b) and (c), respectively. As
the number of processors increases to 128, the performance of the ODCHP is much better than the other mechanisms
because a larger number of processors can exploit a higher degree of parallelism.

Furthermore, Fig. 12 shows the speedup comparisons in the SEESMA environment for popular program models.
Our technique delivers a better performance while the loop bounds for these models are set to 100 as shown in
Fig. 12(a), (b), (c) and (d), respectively. As the number of processors increases to 128, the performance of the ODCHP
is much better than the other mechanisms because a larger number of processors can exploit a higher degree of
parallelism. For program model 1 and model 3, because there are only anti-dependence in the iteration space, our
mechanism, ITRP and ITRP-MDT can detect effectively and exploits nearly the same parallelism. The MDT and
uniformization method perform poorly in these two program models, because they cannot avoid anti-dependences.
For program model 2, because the inclusion property can hide much unnecessary flow dependences, our mechanism
performs extremely better than other mechanisms. For program model 4, because ITRP has large serial region in the
iteration space, it also has poor performance. However, our mechanism not only performs better than other mech-
anisms but it also has low compilation time due to the bounded property and the forwarding property. The bounded
property shows that the flow dependence tail exists only in a small region of the iteration space, while the forwarding
property greatly reduces the checking area as the processing of our partitioning algorithm.

4.3. Performance evaluation on practical code segments

In order to show our mechanism is effective in real programs, we implement our mechanism in practical code
segment in this section. Fig. 13 shows the speedup comparisons in the SEESMA environment. For Propogate code
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Fig. 13. Evaluation on the SEESMA environment for: (a) propogate, (b) swap code segments.
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Fig. 14. Dependence graph: (a) propogate code segment, (b) swap code segment.

segment, our mechanism finds that the flow dependence tail only covers a small region of the iteration space due to
bounded property as shown in Fig. 14(a). And after the first partitioning step, all the iteration space which is not
partitioned is set to fully parallel due to inclusion property. Thus, in this program code segment our mechanism shows
dramatic better performance than other mechanisms as shown in Fig. 13(a). For the Swap code segment, because the
ITRP, ITRP-MDT and our ODCHP mechanisms partition the iteration space into two parallel regions as shown in
Fig. 14(b), their performance is nearly the same and all effective as shown in Fig. 13(b).

In conclusion, we can find that our mechanism is better than any other existing popular partitioning mechanism. As
the number of processor increases, the performance of the ODCHP is much better than the other mechanisms because
a larger number of processors can exploit a higher degree of parallelism exploits by it.

5. Conclusion and future work

In this paper, we have studied the problem of transforming nested loops with non-uniform dependences in order to
maximize parallelism by using a new scheme called ODCHP, which is based on convex hull theory. The ODCHP can
easily divide the iteration space into several parallel regions using DCH bounds or lines of the dependence vector that
are known in advance. Moreover, by combining the ODCHP with the properties of inclusion, bounded and for-
warding, the complexity of the ODCHP can be greatly reduced and the parallelism exploited is more pronounced. In
comparison with other partitioning methods based on convex hull theory or basic dependence theory, the ODCHP has
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several advantages such as simple partitioning and high speedup. Comparison with other popular methods, our scheme
shows dramatic better performance in not only popular program models but also real program code segments.

In the future, we will further extend the ODCHP method to multiple-dimensional iteration space and establish an
appropriate dynamic data allocation mechanism to reduce data conflict. Our method will all be extended to work with
more than one dependence in the nested loops as well.
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