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Tracking Control of Unicycle-Modeled Mobile
Robots Using a Saturation Feedback Controller

Ti-Chung Lee, Kai-Tai Song, Associate Member, IEEE, Ching-Hung Lee, and Ching-Cheng Teng

Abstract—The tracking control problem with saturation con-
straint for a class of unicycle-modeled mobile robots is formulated
and solved using the backstepping technique and the idea from
the LaSalle’s invariance principle. A global result is presented in
which several constraints on the linear and the angular velocities
of the mobile robot from recent literature are dropped. The pro-
posed controller can simultaneously solve both the tracking and
regulation problems of a unicycle-modeled mobile robot. With the
proposed control laws, the robot can globally follow any path spec-
ified by a straight line, a circle or a path approaching the origin
using a single controller. As demonstrated, the circular and parallel
parking control problem are solved using the proposed controller.
Computer simulations are presented which confirm the effective-
ness of the proposed tracking control law. Practical experimental
results validate the simulations.

Index Terms—Mobile robots, motion control, nonlinear systems,
stability, time-varying systems, tracking.

I. INTRODUCTION

CONTROL problems involving mobile robots have recently
attracted considerable attention in the control community.

Mobile robots with a steering wheel (unicycle) or two indepen-
dent drive wheels are examples with substantial engineering in-
terest. Most wheeled mobile robots can be classified as nonholo-
nomic mechanical systems. Controlling such systems is, how-
ever, deceptively simple. The challenge presented by these prob-
lems comes from the fact that a motion of a wheeled mobile robot
in a plane possesses three degrees of freedom (DOF); while it
has to be controlled using only two control inputs under the non-
holonomic constraint. Several researchers indicated, based on
Brockett’s theorem [9], that such a system is open-loop control-
lable, but not stabilizable by pure smooth, time-invariant feed-
back [4], [34].That is, there does not exist a smoothorcontinuous
feedback law that can stabilize the system.

The methods used in recent years to solve mobile robot
control problems can be classified into three categories. The
first category is the sensor-based control approach to navigation
problems. The emphasis is on interactive motion planning
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in dynamic environments [43], [46]. Because the working
environment for mobile robots is unstructured and may change
with time, the robot must use its on-board sensors to cope with
the dynamic environment. Most reported designs following
this approach rely on intelligent control schemes, such as fuzzy
logic control [19] and neural-network learning control [2],
[37], [45]. Obstacle motion estimation and environment con-
figuration prediction using sensory information are important
for proper motion planning [11], [12]. However, since a mobile
robot responds to its surroundings in a reactive or reflexive
way; the executed trajectory may not be globally optimized.

In the second category, the navigation problem is decomposed
into a path planning phase and a path execution phase. A colli-
sion-free path is generated and executed based on a prior map
of the environment. The executed path is planned using cer-
tain optimization algorithms based on a minimal time, minimal
distance or minimal energy performance index. Methods for
avoiding both static and moving obstacles have been reported
in the literature [15], [16], [24]–[27], [41]. In these methods, a
collision-free path is planned according to the environment map
space-time relations. The mobile robot must follow the planned
path employing a path-following controller.

The third category follows the motion control approach, in
which a desired trajectory must be tracked accurately. Among
these, tracking controller designs employing a simplified linear
model have been reported [4], [13]. Song and Li [44] developed
an LQR controller based on a linearized state-space model. In
their presentation, the tracking errors can be eliminated and the
mobile robot can follow the specified trajectories. In the linear
model approach, however, the controller works only when the
linear velocity is not zero. Under such circumstances, it would
be difficult to control the mobile robot to track the specified tra-
jectory and in the mean time stop with the specified pose. Con-
sequently a more generalized approach is desirable. Nonlinear
system theory has been employed to solve this problem [1], [7],
[10], [17], [20], [38], [40]. Two main research directions em-
ploying nonlinear control design can be distinguished. The first,
initiated by Blochet al. [3], [5], used discontinuous feedback,
whereas the second research direction used time-varying con-
tinuous feedback, which was first investigated by Samson [40].
Pomet [38] then proposed severalsmoothfeedback control laws.
However, though these solve the regulation problem, they were
found to yield slow asymptotic convergence. In order to obtain
faster convergence (e.g., exponential convergence), an alterna-
tive approach was initially proposed by M’Closkey and Murray
[32] and taken up in several subsequent studies (see, e.g., [33]).
Our approach falls into this third category.

Research on the tracking problem for mobile robots has been
extensive [8], [14], [17], [18], [20]–[22], [29], [30], [36]. Using
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Barbalat’s lemma or the backstepping method, control schemes
have been proposed for mobile robots to globally follow special
paths such as circles and straight lines. Similar results were ob-
tained by Fliesset al.[17] using time-reparametrization and the
motion-planning properties of differentially flat systems. De-
spite this apparent advance, there exist several key restrictions
on these applications:

1) In some studies on tracking problems [20], [21], [36], [44],
only certain special cases (e.g., straight lines or circles)
are solved, where the tracked linear velocityor angular
velocity must not converge to zero. These restrictions
limit the range of applications and, more importantly,
make it impossible for a single controller to treat the regu-
lation problem and the tracking problem simultaneously.

2) In other cases [5]–[7], [33], [38], [40], tracking problems
with linear and angular velocities approaching zero re-
main unsolved.

In practical applications, it is preferable to solve the tracking
problem and the regulation problem simultaneously using a
single controller; otherwise, switching between two different
types of controllers will be necessary. In this study, we simulta-
neously solved the tracking problem and the regulation problem
of unicycle-modeled mobile robots without any further assump-
tions. Moreover, the bounds on the wheel velocities must be
attended to avoid the high-gain control signal. The important
saturation constraints on control inputs (the linear and angular
velocities) were incorporated in our controller design.

Using the backstepping technique, which is often employed
in mobile robot stability problems, we will present a global re-
sult. With our approach, mobile robots can globally follow any
specified path, including straight lines, circles, or trajectories
approaching the origin. Furthermore, several important cases,
such as parallel parking, can be solved exploiting the proposed
method. To the best of the authors’ knowledge, in the time-
varying continuous feedback literature, this is a here-to-fore un-
solved research area. The possibility of extensions to other non-
holonomic systems, such as the tracking control of a knife edge,
will also be discussed. Simulation results as well as practical ex-
periments will be presented to illustrate the effectiveness of the
proposed tracking control law.

The rest of this paper is organized as follows. Section II de-
scribes the formulation of the control problem. Our main results,
including the control law and the stability analysis are presented
in Section III. Section IV illustrates both simulations and experi-
mental results using the proposed tracking controller and a labo-
ratory mobile robot. An extended discussion of the experimental
results is presented in Section V. Section VI is the conclusion.

II. PROBLEM FORMULATION

The unicycle-modeled mobile robots considered in this paper
are a class of computer-controlled vehicles whose motion can
be described or transformed into the following model of con-
strained movement in a plane:

(1)

Fig. 1. A nonholonomic mechanical system: unicycle-modeled mobile robot.

where are the Cartesian coordinates andis the angle
between the heading direction and the-axis. Examples of this
model include the widely used front-wheel drive automobiles,
automated guided vehicles (AGVs) with a drive and steering
wheel (a unicycle) and mobile robots with two independent
drive wheels, (see Fig. 1) [35]. Moreover, the knife edge system
can also be viewed as an extended unicycle system (1) (see
Section V for details). The nonholonomic constraint for the
model (1) is

(2)

It specifies the tangent direction along any feasible path for the
robot and briefly show that a mobile robot with two indepen-
dent drive wheels can be described using the unicycle model
(1). We assumed that the reference point lies at the midpoint of
the two drive wheels. Let and denote the velocities of the
left wheel and the right wheel, respectively. The linear velocity

and angular velocity of the mobile robot can be described as
and , where represents the

distance between two drive wheels. Thus, it is not difficult to see
that the mobile robot kinematic equation can be described using
the unicycle model (1) (also see the discussion in Section IV).
In a plane, the unicycle system possesses three degrees of mo-
tion freedom, but must be controlled by only two control inputs
under a nonholonomic constraint. When we consider the state
vector , it is straightforward to show that the system
(1) is controllable in both position and orientation [35]. Unfor-
tunately, we confront a system where linearization results in a
loss of controllability, although the nonlinear system is control-
lable. In particular, many researchers, based on Brockett’s the-
orem [9], showed that such a system is open-loop controllable,
but not stabilizable using the pure smooth time-invariant feed-
back law [4].

A. Tracking Control Problem with Saturation Constraint

Suppose the reference trajectory satisfies

(3)
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where the desired linear velocity satisfies
, and the desired angular velocity satisfies

. The desired velocities are bounded
and uniformly continuous, with and representing
saturation bounds obtained from practical restrictions on con-
trol inputs and , respectively. Note that in the perfect
tracking case, i.e., , , , (3) always holds. In
this paper, our main purpose is to solve the following tracking
problem for (1).

1) Tracking Problem with Saturation Constraint
(TPSC): Find saturation control laws for and with

, such that the mobile robot with
the kinematic equation (1) follows a reference trajectory

. That is, ,
, and .

Using the robot local frame (i.e., the moving coordinate
system – in Fig. 1), the error coordinates [23] can be defined
as

Therefore, the tracking error model is obtained

(4)

For convenience, we chose new coordinates and inputs [35] as

Equation (4) can be rewritten as

(5a)

(5b)

(5c)

With the new coordinates , the tracking problem is
now transformed into a stability problem. System (5a)–(5c) is
referred as the error model of the TPSC. In the remainder of
this paper, the coordinates will be used in solving
the tracking problem. Note that every coordinate transformation
used above is invertible, and is equiv-
alent to , , and . Thus, by invertability
of coordinate transformation, if converges to zero
then the TPSC is solved.

Remark 1: The TPSC covers two important cases.
Case 1 (Regulation Case):If and , then

the TPSC is reduced to the regulation (stability) problem studied
in [38].

Case 2 (Tracking Case):If , then
the TPSC is reduced to the so-called tracking control problem
studied in [20].

It is observed that tracking a straight line or a circular path
belongs to Case 2, and the reference trajectory can be described
by (3) (see [20] for the straight line case and Section IV for cir-
cular paths). However, tracking a path approaching the origin,
e.g., the parallel parking problem, has remained unsolved be-
cause for some (violating the condi-
tion given in Case 1) and (thus not
satisfying Case 2).

Remark 2: Because the TPSC covers two different cases, it
will not be easy to solve using a single controller. In fact, there
are some differences between Cases 1 and 2. For example, con-
sider the following linearized model of (5a)–(5c) at the equilib-
rium point (0,0,0):

It can be seen that this linearized model is not stabilizable in
Case 1, but stabilizable using the linear feedback controller for
the case for all (a slightly stronger
condition than the condition given in Case 2). On the other hand,
the key to study the stability in Case 1 is to use a “persistent exci-
tation” input to , (i.e., ) based on LaSalle’s
invariance principle [38], while the key to study the stability in
Case 2 is to use the “persistent excitation” of and
[i.e., ] [20]. Note that the persistence
of excitation condition is often used to guarantee the stability
of an adaptive control system. In the stability issue, the condi-
tions and have
the same effect as the persistent excitation discussed in system
identification and adaptive control literature. Based on these ob-
servations, a possible solution is to find an inputsuch that

is “persistent excitation” to solve the TPSC using a
single controller in view of (5a)–(5c) and the hint from LaSalle’s
invariance principle. This idea provided the initial motivation
for this study. We will first solve the TPSC for the unicycle
model (1) and then apply it to a mobile robot with two-inde-
pendent drive wheels.

III. GLOBAL TRACKING CONTROL LAWS WITH SATURATION

CONSTRAINTS

In this section, a global tracking control law with saturation
constraints is derived exploiting the backstepping method and
conventional stability theory. The stability of the closed-loop
system is guaranteed without any further assumptions relating
to and .

First, let us define the saturation function with
as

sgn
(6)

Then we define a positive-definite function

(7)
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Notice that (7) is the square of the distance between the current
location of the mobile robot and the desired trajectory. Taking
the derivative of along the trajectory of (5a)–(5c) yields

(8)

Choosing the saturation control law

(9)

where and . Note that

(10)

satisfies the saturation constraint of the linear velocity.
Using the saturation control (9), we have

(11)

Next, introduce a new variable

(12)

with , and .
The parameter can be chosen as unity if one of the following
conditions holds:

In practical applications, one of the conditions (C1)–(C3) must
hold, and can usually be chosen as one. For example, condi-
tion (C1) is satisfied in the straight line and circular path cases;
condition (C2) holds for the case of tracking a path approaching
the origin. However, for completeness, it is necessary to con-
sider the case in which none of the conditions (C1)–(C3) is sat-
isfied. In this case, is chosen as zero. Note that other specifi-
cations of the function in (12) are possible (see Remark 3 after
Theorem 1 for details).

We observe that as under the condition that
. Thus, the stability of can be guaranteed if

converge to zero. With (12), system (5a) is trans-
formed into

(13)

where

It is easy to check that .
Choose the control law with saturation constraintas

(14)

with and . Then

(15)

Note that . So, it is possible to
choose a small and b > 0 such that

. Then satis-
fies the saturation constraint of the angular velocity. Define

. We then obtain

(16)

This means that (by the Lyapunov stability
theorem [42]).

Now, we are in a position to present the main result.
Theorem 1: Consider a unicycle-modeled mobile robot (1).

The tracking problem with saturation constraint can be solved
using control laws (9) and (14) with , where
either or can be specified according to the previous
discussion.

Proof: see the Appendix.
Remark 3:

1) The function can be chosen as with
and for all

[see (A13)]. Obviously, the selection
of function depends on the properties of (see
the proof in the Appendix).

2) By coordinate transformation, we have
. Therefore, the Lyapunov-like function

is just the square of the distance between the current
position of the mobile robot and the desired trajectory. It
is clear that if then and .
Consequently, the mobile robot moves toward the target.

3) If only and are bounded, the same result still
holds. A deeper stability analysis is required and the proof
is omitted here (see, however, [28]).

4) (Perfect tracking case) If the initial error is zero (the mo-
bile robot is on the tracked trajectory), then it is easy to
see that the tracking errors are also equal to zero at any
time.

5) If the saturation constraint constantsand are in-
finity, then this reduces to a system without saturation
constraint. However, in practical systems, there exist
constraints on the outputs of the servo motors.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

Fig. 2 shows the experimental mobile robot developed in our
laboratory. It has two independent drive wheels and two casters
for balance. The kinematic equation can be described using (1)
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Fig. 2. The experimental mobile robot developed in the Intelligent System
Control Integration (ISCI) Laboratory of National Chiao Tung University.

with and , where rep-
resents the distance between two drive wheels. The proposed
controller can be applied to this case with
and . Therefore

(17)

In this case, m and the velocities of the left wheel and
the right wheel satisfy the constraint m/s.
Thus, the values of and can be chosen according to
the constraint

(18)

For and , however, the above inequality is a conserva-
tive result. In practical applications, the above condition can be
chosen using a simulation procedure. In general, the selection of

and would be larger than those determined by con-
dition (18).

The proposed control law was first verified using computer
simulations. Practical experimental results on the mobile
robot then validated the simulated performance. The robot
motion is controlled by adjusting the velocities of the left and
right wheels. Two HCTL-1100 motion controller chips from
Hewlett–Packard were employed for servo control of the two
drive wheels. The integral velocity control mode of the chip
was used in the experiments to assure satisfactory dynamic
response. Fig. 3 depicts the block diagram of the wheel motor
control system. The on-board control computer only needs to
send commands to the IC chips, which manage the velocity
servo control. The position estimation of the robot is conducted
using an odometer, which samples the left and right wheel

Fig. 3. Block diagram of the wheel motor control system.

Fig. 4. The developed tracking controller.

velocities to calculate the current posture of the robot. The
formula for this estimator is presented in (19)–(23).

(19)

(20)

(21)

(22)

(23)

where is the sampling period. The architecture of the pro-
posed tracking controller is presented in Fig. 4. The models em-
ployed in Fig. 4 are described as follows:

Error Model #1: Equation (5a)–(5c);
Control law: Equations (9) and (14);
Error Model #2:

The desired velocity calculated in the tracking algorithm is
transformed into the left and right wheel velocities using

(24)

(25)

Fig. 5 depicts the implemented tracking control system, which
was constructed using the proposed algorithm.

Two trajectories were selected to verify the performance
of the proposed control law. In the circular-path trajectory,
the tracking performance can be examined. The regulation
performance can be further checked with the parallel-parking
trajectory. The parameters (, , , ) are determined by
considering the desired tracking performance. In general,
large values for and will result in a fast convergence rate
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Fig. 5. The implemented tracking control system.

[see the proof of Theorem 1 in the Appendix for the case of
]. In addition, the convergence rate is slightly

affected by the parameters and . Experience gained from
computer simulations suggested a choice ofnear 0.5. In the
following, tracking as well as docking performance is presented
for circular and parallel parking trajectories, respectively. The
simulation and experimental results are presented in the same
figure for comparison. The models that generate the trajectories
are illustrated below

Circular path:

(26a)

(26b)

(26c)

(26d)

(26e)

where ( , ) represents the coordinate of the center andis the
radius of the circle. In the simulation and experiment, the con-
stants and are chosen as and m and are
shown in (27a)–(27e) at the bottom of the next page. Fig. 6 il-
lustrates the parking place and the designed trajectory. An “8”-
shaped trajectory was employed, where 2a and b represent the
long and short axis, respectively. In the simulation and experi-
ment, m, m, and . It is easy to check
that the above two trajectories 26(a)–26(c) and 27(a)–27(c) sat-
isfy the system (3), with the and given by 26(d)–26(e) and
27(d)–27(e) respectively. Thus, they are perfect tracking cases.

The parameters used in the experiments are presented in
Table I. The outputs of the controller were limited as shown
in the table, in accordance with the hardware structure of the
experimental mobile robot.

For these two cases can be chosen as ,
because the first path satisfies condition (C1) and the second

Fig. 6. The parallel parking place and the designed trajectory.

TABLE I
THE PARAMETERS USED IN THESIMULATION AND EXPERIMENTS

path satisfies condition (C2). Simulation results as well as ex-
perimental results with saturation constraints for the circular
path and parallel parking are presented in Figs. 7 and 8, respec-
tively. In these figures, the dotted lines represent computer simu-
lation results and the solid lines represent the corresponding ex-
perimental results. In Figs. 7(a) and 8(a), we see that the robot
trajectories converge to the desired trajectories. These results
demonstrate the capacity of the proposed controllers to produce
a nice convergence. The marks in Fig. 7(a) indicate respectively
the vehicle and target positions when the target is at the starting
point of each lap. In this figure, and , , are the
corresponding positions when the target comes to the starting
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point at the lap # for the simulation and experiment, respec-
tively. We observe that the vehicle tracked the target in the fifth
lap. Figs. 7(b) and 8(b) reveal that three tracking errors all con-
verge to zero as expected. Figs. 7(c)–(d) and 8(c)–(d) show the
recorded controller outputs, namely, the linear velocity and the
angular velocity of the vehicle. These outputs are within the
limits set in the controller. As shown in Fig. 8, the instant is in-
dicated when the vehicle reached the docking point ( ,
with ). It is observed in Fig. 8(b) and (d) that the experi-
mental system shows a slight oscillatory behavior at the docking
point. This is caused by the 8-bit resolution of the velocity com-
mand used in the experimental system. Note that the oscillation
peak of about 0.05 rad/s is practically at the limit of the com-
mand resolution. This quantization error in the practical digital
control system also resulted in a small orientation error of about
0.05 rad as shown in Fig. 8(b).

It can be seen from Fig. 7 that the experimental results are
better than the simulation results. This is due to the mechan-
ical damping of the practical system and in part by the cyclical
characteristic of the circular path. As shown in Fig. 7(a), the ex-
perimental trajectory did not match the simulation result in the
beginning. In fact the mobile robot approached the desired cir-
cular path in the inner side with a slower response than that in the
simulation, caused by the damping effect. At a later stage, as the
target repeated its trajectory in a circle, the tracking controller
worked to eliminate the tracking errors and the robot tracked the
target. This particular situation resulted in smaller tracking er-
rors in the experiment than in the simulation. From Figs. 7 and
8, we observed that the tracking errors all approach zero and the
mobile robot follows the desired path. These results confirm the

conclusion in Remark 3 (perfect tracking case). To the authors’
best knowledge, the problems associated with the parking case,
with and approaching zero, was previously unsolved in
the literature using the nonlinear theory approach. This research
effort has proven that the problem can be solved exploiting the
proposed controllers (9) and (14). From the proof of Theorem
1, it is observed that the tracking errors converge to zero ex-
ponentially if the target keeps moving. However, if the target
stops at some point (regulation case) then the tracking errors
decay slowly. In this instance, the TPSC is reduced to a regu-
lation problem. Therefore, a discontinuous or nonsmooth con-
troller is required for fast convergence. For details see [32], [33].
However, the proposed controllers in this paper are smooth con-
trollers. It is strongly suggested that proper controller parame-
ters should be chosen to produce fast convergence so that the
desired path is followed before the target stops.

In this study, for the purpose of comparison, the tracking con-
trol problem without any constraint on velocities has also been
solved employing a single controller. Fig. 9 presents the exper-
imental results of tracking a circular path. It is observed from
Fig. 9 that a large control effort and oscillatory transient oc-
curred when the mobile robot was controlled by a nonsaturation
controller. On the other hand, satisfactory tracking results were
obtained using the proposed saturation controller.

This paper only considers the kinematic model of mobile
robots. The dynamic model is not included in the main results of
this presentation in order to simplify our discussion. It is known
that this simplification is acceptable when the system veloci-
ties are low, as is in most mobile robot applications. Extending
the results for the kinematic model (1) to the dynamic model is

Parallel Parking:

(27a)

(27b)

(27c)

(27d)

(27e)
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Fig. 7. Experimental and simulation results of tracking a circular trajectory. (a) Position variations. (b) Tracking errors. (c) Linear velocity ofthe center point.
(d) Angular velocity.

possible using the backstepping method (see the discussion in
Section V). It can be seen from the experimental results shown
in Fig. 7(c) and (d) that robot dynamics affect system perfor-
mance. Note that the mechanical damping helps to produce a
stable, smooth tracking performance. Another factor affecting
the experimental performance is the lower-level servo loops.
The servo loops have dynamics and the steady-state output of
the motors cannot be achieved instantaneously. Normally, this
can be managed by proper selection of the sampling time for
the tracking controller. In this case, the dynamics and servo sta-
bility are assured by implementing the integral velocity control
mode of HCTL-1100 motion controller chip.

V. EXTENSION OF THEPROPOSEDMETHOD

The controller design presented in this paper can be gener-
alized to other control systems of engineering interest, e.g., the
control of a knife edge. We now briefly describe the applica-
tion to a knife edge moving in point contact on a plane surface
[4]–[7]. With all numerical constants set to unity, the equations
of motion are given by

(28)

where and denote the coordinates of the point of contact of
the knife edge in the plane andis the heading angle of the
knife edge, measured from the-axis; denotes the control
force in the direction defined by the heading angle,repre-
sents the control torque about the vertical axis through the point
of contact and represents the constraint force. The constraint
force components arising from the scalar nonholonomic con-
straint are described as in (2)

After coordinate transformation, the differential equations can
be reduced to an ordinary fifth-order differential equation [4].
Employing the backstepping technique, this control problem
can also be solved. We sketch the approach briefly. Let

and . Equation (28) can be trans-
formed into

(29a)

(29b)

(29c)

(29d)

This is a dynamic system that includes an acceleration term.
Let and be two con-
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Fig. 8. Experimental and simulation results of parallel parking. (a) Position variations. (b) Tracking errors. (c) Linear velocity of the center point. (d) Angular
velocity.

trollers derived from Theorem 1, where we replace the satura-
tion function by . Then, is differ-
entiable and the same result as in Theorem 1 holds. Therefore,
the knife edge control solution can be designed as and

. A similar approach can be applied
to study the mobile robot dynamic model with two indepen-
dent drive wheels using the backstepping method. The details
are omitted due to limited space.

On the other hand, it is also interesting to investigate how to
extend the results in this paper to more general driftless systems,
e.g., the nonholonomic chained-form systems [35]. However, it
seems the approach adopted in this study is not feasible for ap-
plication to a general chained-form system with order higher
than three. The reasons are stated in the following. First, let us
briefly discuss the approach adopted in this paper. Note that the
function appearing in (5b) can be approximated by
when is small. Thus, a stabilizing virtual controller can
be chosen as such that in
case of and by equation (11). Then, the back-
stepping method can be used to guarantee the stability of the
whole closed-loop system by choosing a suitable controller
such that the virtual error state [defined by (12)]
converges to zero, see equation (15). Indeed, a similar argu-
ment can be performed for the chained-form systems with order
three. This is not the case for chained-form systems having order

higher than three. In fact, it is possible to derive a similar error
model like (5a)–(5c) for a general chained-form system with
order , however, the nonlinear function will also appear
in the error model. The application of the backstepping method
in this case will not be straightforward. Thus, it is a challenge to
achieve a similar result for chained-form systems or more gen-
eral driftless systems.

VI. CONCLUSION

A single controller was developed to simultaneously solve
the tracking and regulation problems of a mobile robot. Exper-
imental results confirm that the proposed saturation feedback
controller gives tracking responses within the physical velocity
limitations of the employed mobile robot. It was observed that
the executed trajectories were smooth even though the specified
trajectory contained nondifferentiable discontinuities. Several
directions are interesting for future investigation. The combi-
nation of sensor-based navigation algorithms with our proposed
tracking controller would give a smooth and precise trajectory in
dynamic environments. A recent study on this new area was re-
ported by Maet al.[31] combining a vision system with the nav-
igation of a nonholonomic mobile robot. Extending the present
result to general chained-form systems remains a challenge for
controller design.
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Fig. 9. Experimental result: comparison of saturation controller and nonsaturation control for tracking a circular trajectory. (a) Position variations. (b) Tracking
errors. (c) Linear velocity of the center point. (d) Angular velocity.

APPENDIX

PROOF OFTHEOREM 1

A. Several Useful Lemmas

Several technical lemmas, which will be used in the proof of
the main results, are described below.

Lemma 1: (Barbalat’s lemma, [42]) If
is uniformly continuous and is finite, then

.
Lemma 2: (Reference [20]) Consider the following system:

where and is bounded and uniformly continuous.
If there is a bounded solution solving the above ordinary
differential equation, we have .

Lemma 3: (Reference [39]) Let be a
continuous function. If and
are two bounded functions with , we have

.
For the proofs of Lemmas 1–3, readers may refer to [20],

[39], [42]. In the following, two more lemmas relating useful
differential inequalities are presented. They will be used in the
proof of Theorem 1.

Lemma 4: Suppose , and for all
. Consider the following inequality:

(A1)

If , then the following inequalities hold:

1)

2)

Proof of Lemma 4:

1) Let be any positive constant. First claim that

for all . If the claim is false, let be
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Then, it is clear that

This results in and . Moreover, there is
a positive constant with such that
and

for all .
From (A1)

This implies

Thus,

and we reach a contradiction. Therefore, the claim is true
for all . This implies that 1) holds.

2) From 1) and , .
Therefore, (A1) can be rewritten as

(A2)

By (A2) and , we obtain

and consequently

This completes the proof.
Lemma 5: Suppose , , and for

all . Assume that is bounded. Consider the
following inequality:

(A3)

If and , .
Proof of Lemma 5:Let us consider the inequality

. Multiplying the term in (A3) by the integral
factor with , we have

and

So, we have

(A4)

Thus

(A5)

employing the mean-value theorem [39].
Because and is bounded,
and (A5) implies that for all

. Since ,
(see [29]) and hence we have .

This completes the proof.
Before proving Theorem 1, the following lemma is needed.
Lemma 6: Consider the tracking error model (5) with the

control laws defined in (9) and (14). Let be the new variable
defined in (12). Then

1) ;
2) There exists a constant such that

and for all and exponentially
decays to zero when ;

3) Trajectories of the closed-loop system are all bounded
before the time .

Proof of Lemma 6:

1) It is trivial by (15) and (16).
2) From 1), it is clear that there is a constant

such that and for
all . Then for
all . Note that for all

. Clearly, will exponentially decay to
zero.

3) Now, let us prove the boundedness of . Let be
a positive number such that , for all .
Note that (11) gives

(A6)

We then have

(A7)

Since is positive-definite and radially un-
bounded, we conclude that trajectories and
are bounded for all . This completes the
proof.

Now, we are ready to prove Theorem 1.

B. Proof of Theorem 1

Note that the coordinate transformation
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is invertible and results in
. Thus, studying the stability of

the error model (5a)–(5c), is equivalent to studying the stability
of the cosystem consisting of (13) and (5b)–(5c). From Lemma
6, we conclude that the trajectories , and are
bounded and defined for all . In addition, equation
(11) can be rewritten as

(A8)

for all by 2) of Lemma 6 and the fact
. From Lemma 6, it is known that con-

verges to zero exponentially when . Thus

(A9)

By Lemma 4, we conclude that

1)

and
2)

The former tells us that the trajectories of the closed-loop system
are also bounded after time. Since is bounded, is
uniformly continuous. Using the result of Lemma 1 (Barbalat’s
Lemma) and 2), we have and hence there is
a constant such that for all

. In the following, let us divide our discussion into two
cases.

1) .
We have

for all , where
with

and , . Lemma 5 and (A9) give us
and lead to

and . From the definition of
and Lemma 6, it follows that ,

and will converge to zero. This implies that
, ,

and by the invertability of
coordinate transformation. So the TPSC is solved in
this case. Note that the condition is
equivalent to by the boundedness of

. The proof does not use any information regarding the
constant . In particular, the TPSC is also solved under
condition (C1) if is chosen as one.

2)
In this case, it is well known that by

Barbalat’s lemma (Lemma 1). From the previous discus-
sion, we have by Barbalat’s lemma.
We only have to prove that in view of
Lemma 6.

Because of for , system (5b)–(5c)
with control law (9) can be written as

(A10a)

(A10b)

Using Lemma 2, we have

(A11)

First, let us claim that there is a sequence of real numbers
such that and . Note that

for all . If the claim is false,
there are two constants and such that

, . Then, , i.e.,

(A12)

by (14) and (A11). Since and , (A12) can be
reduced to

(A13)

by Lemma 3. If condition (C2) holds, i.e., ,
we will have

by (A13). The fact that , , and that
implies that .
Thus, we reach a contradiction. If condition (C3) holds [i.e.,

, and is chosen as one], and then

by (A13). However,
by the choice of . We reach another contradiction.
Note that condition (C1) does not hold in case 2). If con-
ditions (C2)–(C3) do not hold, in particular, and

by the choice of , then this gives
and , i.e., condition (C2) holds, by (A13).
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We reach a contradiction. Thus, the claim is true. The claim
implies that . We have

by inequalities (A8) and (A9). So, we can conclude
that , , and

. That is, ,
, and

again by the invertability of coordinate transformation. There-
fore, the TPSC is also solved in this case and hence this
completes the proof.
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