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A Modular RNN-Based Method for Continuous
Mandarin Speech Recognition
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Abstract—A new modular recurrent neural network
(MRNN)-based method for continuous Mandarin speech
recognition (CMSR) is proposed. The MRNN recognizer is
composed of four main modules. The first is a sub-MRNN
module whose function is to generate discriminant functions
for all 412 base-syllables. It accomplishes the task by using four
recurrent neural network (RNN) submodules. The second is an
RNN module which is designed to detect syllable boundaries for
providing timing cues in order to help solve the time-alignment
problem. The third is also an RNN module whose function is to
generate discriminant functions for 143 intersyllable diphone-like
units to compensate the intersyllable coarticulation effect. The
fourth is a dynamic programming (DP)-based recognition search
module. Its function is to integrate the other three modules and
solve the time-alignment problem for generating the recognized
base-syllable sequence. A new multilevel pruning scheme designed
to speed up the recognition process is also proposed. The whole
MRNN can be trained by a sophisticated three-stage minimum
classification error/generalized probabilistic descent (MCE/GPD)
algorithm. Experimental results showed that the proposed method
performed better than the maximum likelihood (ML)-trained
hidden Markov model (HMM) method and is comparable to the
MCE/GPD-trained HMM method. The multilevel pruning scheme
was also found to be very efficient.

Index Terms—Mandarin speech recognition, MCE/GPD algo-
rithms , modular recurrent neural networks.

I. INTRODUCTION

CURRENTLY, the dominant technology for continuous
speech recognition (CSR) is based on HMMs [1], [2].

HMMs are good at statistically based acoustic modeling
and provide a fundamental structure flexible enough for the
recognition of nonstationary speech signals. Aside from the
HMM approach, the artificial neural network (ANN)-based
approach is also attractive because ANNs have the distinction
of possessing high discrimination ability obtained through
competitive learning and hence are potentially good for speech
pattern discrimination [3], [4]. Although many ANN-based
methods have been proposed previously, only a few of them are
suitable for CSR because of the lack of fundamental structures
to deal with the time-alignment problem. Most ANN structures,
such as multilayer perceptron (MLP) and RNN, are only good
at discriminating short input speech patterns of several frames
in length. They are therefore good pattern classifiers instead of
good recognizers for nonstationary continuous speech signals.
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Recently, a hybrid HMM/ANN approach to CSR has
attracted the attention of many researchers in the area of
ANN-based speech recognition [3]–[6]. This approach aims
at integrating the advantages of both ANN and HMM tech-
nologies. One popular approach [3], [6] is to employ an MLP
or RNN pattern classifier to replace phone-like HMM models
for computing the observation probabilities of all phones.
Modeling of the temporal structure of speech signals for
solving the time-alignment problem in the recognition search
is still performed implicitly under the HMM framework. This
approach is more efficient on modeling acoustic units and
is easier to take care acoustic context by directly modeling
high-dimensional input speech patterns of several frames.
However, its performance has been shown, by experimental
results, to be only slightly better than the ML-trained HMM
method [4].

In this paper, a new hybrid DP/ANN method for continuous
Mandarin speech recognition is proposed. It applies the "di-
vide and conquer" principle [7], [8] of modular neural network
technology [9]–[12] using prior phonetic knowledge to design a
sophisticated MRNN recognizer which discriminates acoustic
units instead of modeling them. The basic idea is to first di-
vide the task of CMSR into several subtasks of discriminating
smaller speech segments, then tackle them separately using ex-
pert RNN modules, and finally integrate partial solutions to
solve the complete problem.

Specifically, the task of CMSR is first divided into three sub-
tasks:

1) discrimination of 412 base-syllables (including a null one
for silence);

2) detection of syllable boundaries;
3) discrimination of inter-syllable speech segments.

A sub-MRNN module and two RNN modules are then designed
to tackle these three subtasks separately. The sub-MRNN is an
extended version of the MRNN proposed previously for iso-
lated Mandarin base-syllable recognition [13] and is composed
of four RNN submodules with architecture conforming to the
phonetic structure of Mandarin base-syllables. Its function is to
generate discriminant functions for all 412 base-syllables. One
of the two RNN modules is designed to detect syllable bound-
aries to provide explicit timing information to help the recog-
nition search. It is referred to as the boundary-detection RNN
module. Another, referred to as the inter-syllable-segment dis-
crimination RNN module, is used to generate the discriminant
functions of 143 classes of intersyllable diphone-like units to
compensate the intersyllable coarticulation effect [14]–[19].

Solutions of these three subtasks are lastly combined to solve
the complete task of CMSR using a DP-based recognition
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search module. Its function is to combine and time-align the
outputs of the sub-MRNN module and the two RNN modules
with the input testing utterance for generating the best recog-
nized base-syllable sequence. Besides, a multilevel pruning
method designed to speed up the DP-based recognition process
(without degrading the recognition performance) is also pro-
posed [20]. The whole MRNN system can be efficiently trained
using a bottom-up hierarchical training scheme. The training
algorithm consists of three stages using MCE/GPD algorithms
first optimizing the sub-syllable-level recognition, then the
base-syllable-level recognition, and lastly, the string-level
recognition [13], [21]–[23]. Hence, the four RNN sub-modules
are being trained first, then the sub-MRNN, and finally, the
whole MRNN.

Some distinct merits of the proposed MRNN-based method
shall now be discussed. They include the following.

• This method uses prior knowledge of the phonetic struc-
ture of Mandarin speech in the MRNN architecture design
and hence provides an interpretable and tractable way to
analyze the internal operations of the MRNN, rather than
simply treating it as a black box. All constituent RNN
modules have their own phonetic meanings.

• This method uses multiple expert RNN modules, there-
fore, not only taking care of the discrimination of acoustic
units but also extracting useful information to enhance
the discrimination ability of the recognizer. This infor-
mation includes the dynamic weighting functions of two
broad-class sets (to be discussed in Section II), the syl-
lable-boundary timing information, and the discrimination
of intersyllable segments.

• Timing information representing the temporal structure of
Mandarin speech signals is directly extracted from obser-
vation vectors and used in the recognition search to help
solve the time-alignment problem. Duration models, such
as state transition probabilities and state duration proba-
bility models [2], [24] are therefore not needed.

The proposed MRNN-based method differs from the conven-
tional HMM/ANN hybrid approach in the following two ways.
First, the outputs of all RNNs are directly combined to form dis-
criminant functions for speech recognition without being con-
verted to likelihood functions [25], [26]. Second, the proposed
method uses ANNs not only to discriminate acoustic units but
also to extract useful information in order to enhance the dis-
crimination capability of the recognizer.

The organization of this paper is as follows. Section II
presents the proposed MRNN-based CMSR method. The
three-stage training method is discussed in Section III. The
effectiveness of the proposed method is examined with simula-
tions discussed in Section IV. Some conclusions are given in
the last section.

II. PROPOSEDMETHOD

Mandarin Chinese is a tonal and syllabic language. There ex-
ists more than 80 000 words, each composed of up to several
characters. There are more than 10 000 commonly used charac-
ters, each pronounced as monosyllable with one of five tones.
There are in total 411 base-syllables, each of which can have up

to five different syllabic tones [27], [28]. A complete CMSR
system is generally composed of two components: Acoustic
processing for syllable identification and Lexical decoding for
word (or character) string recognition. In this study, we only
consider acoustic processing.

Fig. 1 shows a block diagram of the MRNN recognizer.
It consists of four modules: a base-syllable discrimination
sub-MRNN module, a boundary-detection RNN module, an
intersyllable-segment discrimination RNN module, and a
DP-based recognition search module.

The sub-MRNN is an extended version of the MRNN pro-
posed previously for isolated Mandarin base-syllable recogni-
tion [13]. Its task is to discriminate 412 base-syllables including
a null for silence. It tackles the task by further dividing into
four subtasks and deals with each by using a separate RNN
submodule. The four subtasks include two which discriminate
two sets of subsyllable units and two which generate dynamic
weighting functions for two broad-class sets of these recogni-
tion units. These two basic recognition unit sets contain 100
right-final-dependent (RFD)initials and 39 context-indepen-
dent (CI)finals, respectively. The two broad-class sets of recog-
nition units include one containing three broad-classes ofini-
tial, final, and silence and another containing nineinitial sub-
classes divided according to the manner of articulation. Outputs
of the two discrimination RNN sub-modules are weighted by
these 12 dynamic weighting functions and combined to form
the discriminant functions of 412 base-syllables. The way in
which dynamic weighting functions are used to form weighted
discrimination functions can be regarded as a sophisticated real-
ization of the idea of using weighted distortion sequences [29],
[30] or weighted state-likelihoods [15], [31] to improve the per-
formance of speech recognizers. These weighted discrimination
functions will therefore possess better discrimination capability.

The task of the boundary-detection RNN module is to de-
tect syllable boundary information to be used in the DP-based
recognition search module in order to help solve the time-align-
ment problem. It uses an RNN to discriminate between syllable
boundary and nonsyllable boundary segments.

The function of the intersyllable-segment discrimination
RNN module is to generate the discriminant functions of 143
intersyllable diphone-like units to compensate the inter-syllable
coarticulation effect. Obviously, this way of handling the coar-
ticulation effect is different from that of the context-dependent
HMMs [14]–[18], [28]. In the past, several approaches [19],
[32], [33] using similar ideas to explicitly model transitional
acoustic units so as to improve speech recognizers were pro-
posed. In [32], syllable boundary information was detected by
an ANN and integrated into continuous English speech recog-
nition. It resulted in a reduction of the word error rate by 10%.
In [19], inter-syllable segments were statistically modeled and
integrated into an HMM-based continuous Mandarin speech
recognizer to improve its performance.

The function of the DP-based recognition search module
is to integrate the other three main parts and time-align their
outputs with the input testing utterance so as to get the best
recognized base-syllable sequence. It uses a sophisticated
delay-decision, frame-synchronized Viterbi search algorithm to
accomplish the job. The DP-based recognition search module
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(a)

(b)

Fig. 1. Proposed MRNN recognizer: (a) schematic diagram and (b) detailed block diagram.

can be further extended by incorporating a multi-level pruning
scheme to improve its speed. The whole MRNN can be trained
using a bottom-up hierarchical training scheme which is
composed of three training stages using MCE/GPD algorithms
sequentially optimizing the subsyllable-, base-syllable-, and
string-level recognitions. Hence, the four RNN submodules
are being trained first, then the sub-MRNN, and finally, the
whole MRNN. In the following subsections, we discuss these

four main modules and the multilevel pruning scheme in more
detail. The bottom-up hierarchical training scheme is discussed
in the next section.

A. Base-Syllable Discrimination Sub-MRNN Module

The base-syllable discrimination sub-MRNN module is com-
posed of four RNN submodules. Its design complies with the
simpleinitial-final structure of Mandarin base-syllables shown
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TABLE I
PHONETIC STRUCTURE AND SUB-SYLLABLE INVENTORY OF MANDARIN BASE-SYLLABLE . (A) THE PHONETIC STRUCTURE OFMANDARIN

BASE-SYLLABLE . HERE THE NUMERIC x IN THE TABLE MEANS THE NUMBER OF BASE-SYLLABLES, INITIALS, FINALS, . . ., ETC. (B) THE SET

OF 22 INITIALS AND THE NINE INITIAL SUB-GROUPSDIVIDED ACCORDING THEMANNER OF ARTICULATION. HERE � DENOTES A

NULL INITIAL. (C) THE SET OF 39 FINALS. HERE� DENOTES ANULL FINAL

in Table I. It can be seen from Table I that Mandarin base-sylla-
bles have a very regular, hierarchical phonetic structure which
contains two parts: an optionalinitial and afinal. Theinitial part
contains a single consonant if it exists. Thefinal part consists
of an optionalmedial, a vowel nucleus, and an optionalnasal
ending. There are, in total, only 411 base-syllables formed by
all legal combinations of 21initials and 39finals. These 39fi-
nalsare, in turn, formed by the combinations of 3medials, 17
vowel nuclei, and 2nasal endings. Due to this simple and regular
phonetic structure, these 411 base-syllables form many highly
confusable subsets in which base-syllables can only be differ-
entiated by theirinitial consonants, by their shortmedials, or by
their nasal endings[27], [28]. To efficiently discriminate these
411 highly confusable base-syllables, the sub-MRNN uses the
above-mentioneda priori knowledge in its architecture design
to divide the task into four subtasks and employ the four parallel
RNN sub-modules to deal with them separately. The partition
into subtasks is performed in both time and feature domains.
This design is advantageous in letting each RNN submodule
deal with only a part of speech segments and hence ensuring
its success in discriminating specific speech patterns.

Specifically, two subtasks are first appointed for the discrimi-
nation of two types of speech patterns,initials andfinals, which

are separated in time domain with a partial overlap to take into
account the intrasyllable coarticulation effect [34].

One RNN submodule is used to tackle theinitial discrimi-
nation subtask and generate discriminant functions for all 100
RFD initials, using theinitial parts of syllables in the input
testing utterance. These 100 RFDinitisals are obtained by ex-
panding the set of 22 CIinitials using the seven sub-groups of 39
succeedingfinals divided according to their leading phonemes.
Table II shows these seven sub-groups offinals.

The use of RFDinitials is motivated by the fact that it re-
sulted in better performances in manyinitial-final based HMM
recognizers proposed recently [18], [27], [28]. Similarly, an-
other RNN sub-module is used to tackle thefinal discrimination
subtask and generate discriminant functions for all 39 CIfinals
using thefinal parts of syllables in the input testing utterance.

Two other subtasks concern the extraction of acoustic cues
for the integration of subtasks. They are tackled by two other
RNN submodules. One generates primary dynamic weighting
functions for the three broad-classes:initial , final, and silence.
The uses of these three primary dynamic weighting functions
are three-fold. First, the weighting function for silence is di-
rectly taken as the discriminant function of the silence class.
Second, the two weighting functions forinitial andfinal are used
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TABLE II
SEVEN SUB-GROUPS OF THE39 FINALSPARTITIONED BY THEIR LEADING

PHONEMES FORDETERMINING THE 1INITIALS

to give different weights to the two types of recognition units of
initials andfinals to combine the discriminant functions gener-
ated by the two subsyllable discrimination RNN sub-modules.
Third, they are all used in the multilevel pruning scheme, to help
identify stableinitial- , final-, and silence-segments of the input
testing utterance in order to set more restricted path constraints
to prune unnecessary path searches. The other RNN submodule
generates secondary weighting functions for nine broad-classes
of initials. The main uses of these secondary weighting func-
tions are to provide different weights to the nine groups ofinitial
recognition units and help combine their discriminant functions.
This has been proved to increase the discrimination capability of
the sub-MRNN for distinguishing these 100 RFDinitials [15],
[29], [30].

All four RNNs have the same three-layer structure with all
outputs of the hidden layer being fed-back to the hidden layer
itself as additional inputs [35]. They all use the same inputs con-
sisting of all recognition feature vectors contained in a window
of five frames around the current frame. Their outputs are di-
rectly combined to form the discriminant functions of all 411
base-syllables by

(1)

where
input feature vector sequence of the
testing utterance;
set of system parameters of the sub-
MRNN;

and primary weighting functions for the two
broad classes ofinitial and final, re-
spectively;

and th and the th discriminant functions
generated by theinitial — andfinal —
discrimination RNNs for the-th base-
syllable, respectively;
secondary weighting function of theth
initial broad class which contains the
th initial .

As for the discriminant function of the silence class, it is directly
taken from the primary weighting function for silence, i.e.,

(2)

The validity of using discriminant functions as in (1) can be
justified by the superiority of three speech recognition schemes

that use similar ideas to improve the performance of speech
recognizers. One is the “discriminative weighting distortion
sequences” scheme, which enhances the discrimination abil-
ities of isolated speech recognizers by properly weighting
their distortion sequences [15], [30]. A speech recognition
test showed that the recognition rate for the highly confusable
English E-set was increased from 67.6% to 78.1% [30]. A
second is the state-weighted HMM method which improves
the performance of speech recognizers by discriminatively
weighting the state-likelihoods [31]. Our method differs from
the state-weighted HMMs by using dynamic weights which
depend on the input data instead of static ones which depend
on models. A third is the Meta-Pi network in which several
ANN modules are first used to estimate the probabilities of the
input pattern generated by different sources (e.g., speakers)
[10]. Their outputs are then combined to form thea pos-
terior probabilities for robust multisource recognition. Our
method differs from the Meta-Pi network because it uses the
base-syllable-level MCE/GPD training algorithm to design the
combination function.

B. Boundary-Detection RNN Module

The boundary-detection RNN module uses a single RNN
to generate two dynamic timing functions, and ,
for syllable boundary and nonsyllable boundary segments,
respectively. The RNN has the same structure as the four RNNs
used in the aforementioned sub-MRNN. The input features
include seven observation vectors contained in a window of
the current frame. The main use of these two dynamic timing
functions is to combine the discriminant functions of 412
base-syllables and of 143 intersyllable diphone-like units to
form the discriminant function for each candidate base-syllable
string. A similar idea was used in [32] which used syllable
boundary information, detected by an ANN, to improve
continuous English speech recognition. It is worthwhile to
note that these two timing functions contribute in a different
way to the recognition search compared with the conventional
HMM method. They provide explicit timing cues of the input
testing utterance and give scores directly to assert or object to
all base-syllable-to-base-syllable transitions in the recognition
search; while the HMM method provides implicit temporal
constraints to the recognition search by giving state transition
probabilities, using state duration probability models [1],
[24], or setting state duration bounds [36]. Obviously, using
these two timing functions is also different from the constant
duration-penalty scheme [2] used by a recognizer to suppress
the insertion errors. Besides, these two timing functions are also
used in the multilevel pruning scheme to suppress unnecessary
searches for base-syllable-to-base-syllable transitions.

The RNN can be trained by assigning timing functions re-
lated to syllable boundaries as output targets. Ideally, we can use
a single-frame impulse as the target timing function of
to precisely locate a base-syllable boundary. However, in prac-
tical implementation, it is difficult to model such a stringent
timing function using the RNN technique. We therefore relax
the requirement by training the RNN using an output target of
three-frame pulse for each base-syllable boundary.
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TABLE III
(a) TWELVE RIGHT-INITIAL CLASSES AND(b) TWELVE LEFT-FINALCLASSES

FORDETERMINING THE SET OF143 INTERSYLLABLE DIPHONE-LIKE UNITS

C. Inter-Syllable-Segment Discrimination RNN Module

The function of the inter-syllable-segment discrimination
RNN is to generate the discriminant functions, , for
143 inter-syllable diphone-like units formed by all meaningful
combinations of 12 left-final classes (including silence) and
12 right-initial classes (including silence). These two sets are
shown in Table III [15]. The 12 left-final classes are formed
by partitioning 39finals according to their ending phonemes.
The 12 right-initial classes are formed by partitioning the
generalizedinitial set, composing of 21initials and 38 null-ini-
tials (i.e., 38 base-syllables with nullinitial ), according to
the manner of articulation with sonorants being specially
considered. Specifically, they includestop, affricate, fricative,

, , , , four null-initial classes, and
silence. The four null-initial classes are formed by partitioning
all 38 null-initials according to the 4 leadingmedials including

, , , and a null. The approach of determining the
set of inter-syllable diphone-like units is a tradeoff between
the importance of unit on the inter-syllable coarticulation
effect and the total number of units. The inter-syllable-segment
discrimination RNN has the same three-layer structure with
input features including seven observation vectors contained
in a window of the current frame. The RNN is trained using
speech segments located around all syllable boundaries in the
training set. For each syllable boundary, output targets of six
frames centered around it are set for training.

It is worthwhile to note that the MRNN system handles the
coarticulation effect in a way different from the HMM method

using context-dependent models [14]–[18], [28]. It takes a pat-
tern recognition approach to directly classifying speech seg-
ments carrying intersyllable coarticulations, while the context-
dependent HMMs try to split models of acoustic units according
to the context. Recently, several approaches using similar ideas
to model transitional acoustic units for improving the perfor-
mance of HMM-based speech recognizers were proposed [32],
[33].

D. DP-Based Recognition Search Module

The function of the DP-based recognition search module is
to combine and time-align the outputs of the other three main
modules with the input testing utterance for generating the best
recognized base-syllable sequence. The discriminant function
for a path of a candidate base-syllable sequenceis defined
by

(3)

where is the length of the input feature vectors,
is

the legal path for , is the set of system parameters for the
MRNN, and is the base-syllable state of the pathat

if
if

(4)

is the timing (i.e., transition/nontransition) state of the pathat

if
if

(5)

is the intersyllable unit state of the pathat with determined
by and

if is the
-th base-syllable

if is a silence
(6)

is the base-syllable discriminant score at

if
if

(7)

is the timing score at

if
otherwise

(8)

is the intersyllable-segment discriminant score at

(9)

is the discriminant function for the th inter-syllable di-
phone-like unit at ; and , , and are weighting
constants. The final goal of the recognition search is to find
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out the best base-syllable sequenceamong all possible
sequences. The decision rule is thus defined by

(10)

It is noted that in the above formulation, each base-syllable is
represented by a single state.

Based on the aforementioned criterion, a modified one-stage
Viterbi search algorithm is proposed to find out the best base-
syllable sequence. It retains multiple cumulative scores for each
base-syllable by expanding its single-state structure into a se-
ries of clone states. This modification is designed to allow the
Viterbi search algorithm to delay the decision making for base-
syllable-to-base-syllable transition until the end of a finite-du-
ration pulse of ; otherwise, it will always occur at the be-
ginning frame of the pulse if the weighting constant is large.
This maintains fair competition for all candidate frames within
the pulse to become a true base-syllable-to-base-syllable tran-
sition. The length of the delay can be a value larger than the
maximum pulse-width of . Aside from using the timing
function generated by the boundary-detection RNN module, the
Viterbi search algorithm also uses the path constraints of base-
syllable duration bounds to eliminate insertion errors with a very
short base-syllable duration.

E. Multilevel Pruning Scheme

The multilevel pruning scheme is designed to be incorpo-
rated into the DP-based recognition search to improve its speed.
The design goal is to maximize the reduction of unnecessary
path searches while maintaining recognition performance and
consuming minimum extra efforts. It takes useful acoustic cues
directly from four RNNs of the MRNN to accomplish its job.
It is a combination of the following three pruning schemes:
base-syllable deactivation, preclassification-based pruning and
presegmentation-based pruning. The base-syllable deactivation
scheme uses an idea similar to the phone deactivation method
[37]. It eliminates the searches for all paths containing unlikely
base-syllables with very low frame-based discriminant func-
tions. The preclassification based pruning scheme uses the idea
of setting more restricted search constraints for the stable parts
of the input testing utterance to eliminate unnecessary path
searches [20]. The presegmentation based pruning scheme uses
a similar idea to set more restricted inter-base-syllable tran-
sition/nontransition constraints for predetected boundary and
nonboundary parts of the input testing utterance to eliminate
unnecessary interbase-syllable transition/nontransition tests in
the recognition search. We will discuss the latter two schemes
in more detail.

As mentioned previously, the primary weighting RNN gen-
erates three outputs to discriminate each input frame among the
three broad classes of silence,initial , andfinal. The preclassifi-
cation based pruning scheme uses these three outputs to drive a
preclassification finite state machine (FSM) [see Fig. 2(a))] to
classify and label each input frame into four stable states of si-
lence (S), initial (I ), medial(M), andfinal (F), and one transient
(T) state. Specifically, the pre-classification FSM compares the
three outputs of the primary weighting RNN with two threshold
values, and . While one (i.e.,initial , final or silence)

(a) (b)

Fig. 2. State transition diagrams of (a) the preclassification FSM and (b) the
presegmentation FSM.

output is higher than and the other two are all lower than
, the FSM moves into the corresponding stable (I, F , or S)

state if it is a legal one. When both theinitial andfinal outputs
are higher than and the silence output is lower than ,
the FSM moves into theM state. Otherwise, it goes to theT
state. Similarly, the presegmentation based pruning scheme uses
a presegmentation FSM [see Fig. 2(b)], driven by the difference
between the two outputs of the boundary-detection RNN (i.e.,

) to classify and label each input frame into two
certain states of boundary (B) and nonboundary (N), and one
uncertain (U) state.

We then use the output labels of these two FSMs to explic-
itly model the temporal structure of the input speech signal.
Those FSM labels are incorporated into the DP-based recogni-
tion search module, so we can prune unnecessary path searches.
Each base-syllable is represented by three left-to-right states:
initial , medialandfinal. When an input frame is labeledI , M,
or F state, we only allow the frame to stay in the corresponding
initial , medial, or final states of all base-syllables. If it is labeled
as anSstate, we let it stay in the silence state. If it is labeled anN
state, no base-syllable-to-base-syllable transitions are allowed
to occur at this frame. For B states, we make base-syllable-to-
base-syllable transition decisions and allow one and only one
transition to occur in a segment of consecutive B states. Lastly,
for bothT andU states, a full search is performed. It is worth-
while to note that, from the viewpoint of the DP search, the re-
sulting path constraining scheme is a partial-hard-decision-and-
partial-soft-decision one. Besides, this pruning scheme can be
used in conjunction with some path pruning techniques, such as
the beam search, to further improve the recognition efficiency
[20].

III. B OTTOM-UP HIERARCHICAL TRAINING SCHEME

To efficiently train the MRNN recognizer, a three-stage
trainingmethodsequentiallyapplying the subsyllable-, base-syl-
lable-, and string-level MCE/GPD algorithms [14],[21]–[23] is
proposed. In the first stage, the two RNNs for discriminating the
two sub-syllable sets ofinitial and final are trained separately
using the subsyllable-level MCE/GPD algorithm. Meanwhile,
the primary and secondary weighting RNNs are trained ac-
cordingly using the backpropagation through time algorithm
with “0–1” output target functions [38]. Here, all targets are set
based on an HMM-based segmentation of the training set. The
four RNNs are then combined together in the second training
stage to form the base-syllable discrimination sub-MRNN and
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fine-tuned by the base-syllable-level MCE/GPD algorithm. The
training goal is tomake the sub-MRNNbe a goodclassifier forall
412 base-syllables. In the third training stage, the boundary-de-
tection RNN and the intersyllable-segment discrimination RNN
are first separately trained by the backpropagation through
time algorithm with “0–1” output target functions and the
MCE/GPD algorithm, respectively. They are then integrated
with the base-syllable discrimination sub-MRNN to form the
MRNN recognizer. The whole MRNN is finally fine-tuned by
the string-level MCE/GPD algorithm.

It is worthwhile to note that the “0–1” bounds of all primary
and secondary dynamic weighting functions, set as learning
targets in the first-stage training, are relaxed and freed of any
manual control in the following training stage. The ultimate
levels that these weighting functions may reach are therefore
determined automatically. The two dynamic timing functions
are treated similarly. This target-setting scheme is advanta-
geous in enhancing the discrimination capacity of the MRNN
recognizer via automatically putting special emphases on the
most distinguishing parts of the input testing utterance.

IV. SIMULATIONS

The effectiveness of the proposed method was examined with
simulations using a continuous Mandarin speech database ut-
tered by a single male speaker. The database contains 452 sen-
tential utterances and 200 paragraphic utterances. Texts of these
452 sentential utterances are well-designed, phonetically bal-
anced sentences. Texts of these 200 paragraphic utterances are
news selected from a large news corpus covering a variety of
subjects. There are, in total, 6021 and 29 073 syllables in the sen-
tential- and paragraphic-utterance sets, respectively. All utter-
ances were spoken naturally at a speed of about 4.5 syllables/s.
The database was divided into two parts. The one containing
28 060 base-syllables with a length of about 3.5 h was used
for training and the other containing 7034 base-syllables with
a length of about half an hour was used for testing. All speech
signals were A/D-converted at a rate of 10 kHz and preempha-
sized with a digital filter, . They were then analyzed
to extract recognition features for each 20-ms Hamming-win-
dowed frame with a 10-ms frame shift. The recognition features
included 12 MFCCs, 12 delta MFCCs, 12 delta-delta MFCCs, a
delta log-energy, and a delta-delta log-energy. All RNNs used in
the MRNN recognizer had the same three-layer, simple recur-
rent structure with all outputs of the hidden layer being fed back
to the hidden layer itself as additional inputs [35]. The length of
the input window was seven frames for both the boundary-detec-
tion RNN and the intersyllable-segment discrimination RNN,
and was five frames for the other four RNNs. All output-layer
nodes of the six RNNs used linear output functions instead of
nonlinearsigmoidfunctions to make their responses have larger
dynamic ranges.

First, we checked the performance of the MRNN system.
Two versions of the system were realized and tested. The
first one was a basic recognizer without invoking the intersyl-
lable-segment discrimination RNN module. It is referred to as
MRNN-B. The second one, referred to as MRNN-I, was the
complete system with the intersyllable-segment discrimination

RNN module being included. In the test, eight delayed clone
states for each base-syllable were sustained in the Viterbi
search algorithm to keep the cumulative discriminant scores.
The number of best base-syllable strings involved in the
string-level MCE/GPD algorithm was empirically set to 20.
The recognition results of the two versions are displayed in
Fig. 3. The best base-syllable accuracy rates were 86.8% and
87.3% for MRNN-B and MRNN-I, respectively.

For performance comparison, the HMM method was also
tested. To determine the basic recognition units, two popular
approaches used in the state-of-the-art HMM-based continuous
Mandarin speech recognition systems [14]–[18], [28] proposed
in recent years were considered. One approach uses context-de-
pendent (CD) phone-like units and another uses right-context-
dependent (RCD)initial andfinal units [15]–[18]. According to
the experimental results of the two comparative studies done in
[16] and [18], these two approaches performed almost equally
well in both speaker-independent (SI) and speaker-dependent
(SD) cases. Besides, many other studies also confirmed that the
right-context dependency is more important than the left-con-
text dependency in both approaches of using phone-like units
andinitial-final units [14], [17], [18]. Based on the above con-
clusions, the second approach of using RCDinitial and final
units was chosen in the test. To compare with the MRNN-B
recognizer, a baseline system using 100 RFDinitials and 39 CI
finals as basic recognition units was first built. It is referred to as
the HMM-B recognizer. A three-state HMM model was trained
for each of these 100 RCDinitial unit. A five-state model was
trained for eachfinal unit. For silence, a single-state model was
used. The number of mixture Gaussian components in each state
of these HMM models varied from one to depending on the
amount of training data. All HMM models were ML-trained and
tested using the same database mentioned previously. The ex-
perimental results are also displayed in Fig. 3. The best base-syl-
lable accuracy rate was 82.9%. Obviously, this result was infe-
rior to that achieved by the MRNN-B recognizer. It can also
been seen from Fig. 3 that the number of parameters used in
the best ML-trained HMM-B recognizer is about two times of
that used in the best MRNN-B recognizer. So the ML-trained
HMM-B recognizer has higher computational complexity.

For a fairer comparison, the baseline HMM-B recognizer was
further refined using a string-level MCE/GPD training algo-
rithm. In the training, the MCE/GPD algorithm used top 20 best
base-syllable sequences to fine-tune the HMM models. The ex-
perimental results are also displayed in Fig. 3. The best base-
syllable accuracy rate increased to 86.0%. This performance
is comparable to that of the MRNN-B recognizer. As for the
system complexity, the best MCE/GPD-trained HMM-B recog-
nizer used less parameters as compared with the best MRNN-B
recognizer.

To compare with the MRNN-I recognizer, the baseline
HMM-B recognizer was extended to become an RCD HMM
system by letting allfinal models right depend on theinitial of
the succeeding base-syllable. It is referred to as the HMM-RCD
recognizer. It used a decision tree to select appropriate contex-
tual models for eachfinal. The expanded tree shown in Fig. 4
was built using the phonetic knowledge of Mandarin base-syl-
lables. A rule based on comparing the number of training
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Fig. 3. Experimental results for two MRNN-based recognizers, MRNN-B and MRNN-I, and four HMM-based recognizers, ML-HMM-B, ML-HMM-RCD,
MCE/GPD-HMM-B and MCE/GPD-HMM-RCD. Here thex (x = 3; 5; 8; 10; 12; 15; 20) for HMM recognizers denotes the maximum mixture number used
in each state and they (y = 100; 150; 200) for MRNN recognizers denotes the number of the hidden neurons used in theinitial , final, and intersyllable-segment
discrimination RNNs.

Fig. 4. Decision tree used in the HMM approach to choose the right-context-dependentfinal models.

samples with a pre-determined threshold (50 training samples
per model) was applied to determine the clusters of contexts. A
total of 210 RCDfinal models were finally constructed. They
all used the same five-state HMM structure. All models are

trained using the ML criterion. To efficiently use the training
data, the first three states of all RCD models of the samefinal
were tied together. The experimental results are also displayed
in Fig. 3. It can be found from Fig. 3 that the best base-syllable
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Fig. 5. Typical example showing the responses of the MRNN-I recognizer to the input utterance “/chi-i-eng/ /b-a/ /j-e/ /l-an/ /t-u/ /tz/ /s-u-eng/ /tz-ou/” (vertical
lines denotes silence/initial/final boundaries given by the HMM-based method): (a) input waveform, (b) three outputs of the primary weighting RNN (solid line:
initial , dashed line:final, dotted line: silence), (c) 11 weighting functions added to subsyllable recognition units (solid lines:initials, dashed line:final, dotted line:
silence), (d) weighted discriminant functions for 100 RFDinitials, (e) weighted discriminant functions for 39 CIfinals, (f) two outputs of the boundary-detection
RNN (solid line: syllable boundary, dashed line: nonsyllable boundary), and (g) weighted discriminant score for 143 intersyllable diphone-like units.

accuracy rate was raised to 83%. This performance is still much
lower than the MRNN-I recognizer. It is worth to note that these
results are comparable to those obtained in a recent SD Man-
darin speech recognition (MSR) study using a female-speaker
data set of the HKU93 database [16], and is much inferior
to those achieved in other two SD MSR studies [15], [28]. If
we consider the fact that both databases used in [28] and [15]
are much smaller and contain only short sentential utterances
with all syllables being clearly pronounced, the performance
differences are reasonable. Finally, the MCE/GPD training

algorithm was applied to improve the HMM-RCD recognizer.
The best recognition rate is 86.7% which is comparable to that
of the MRNN-I recognizer. As for the system complexity, the
best HMM-RCD recognizer is higher because it used more
parameters than that of the best MRNN-I recognizer. Besides,
it needs much larger memory space to perform its recognition
search.

We then used the MRNN-I to examine the efficiency of the
multilevel pruning scheme. Each base-syllable is now repre-
sented by three left-to-right states designated, respectively, as
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TABLE IV
EXPERIMENTAL RESULTS OF THEMRNN RECOGNIZERINVOKING WITH THE

MULTI-LEVEL PRUNING SCHEME

initial , medial, andfinal. All threshold values of the two FSMs
were empirically determined to be as loose as possible while
keeping the recognition accuracy almost the same as in the base-
line system. In this test, they were set to be for the
preclassification pruning, for the presegmentation
pruning, and for the base-syllable deactivation
pruning. Here, the more stringent value of50 was set for the
initial state while another value of 30 was set for both the
medialandfinal states. This setting allowed moreinitial states
to survive for the initial parts of the input utterance. The ex-
perimental results are listed in Table IV. It can be seen from
the table that the performance of the baseline system degraded
slightly to 86.9% as we changed the number of clone states for
each base-syllable from eight to three. It can also be found from
Table IV that only 48.6% of the surviving base-syllable states
and 23% of the surviving base-syllable transitions were needed
to be considered in the search without degrading the recognition
accuracy. This is a moderate saving.

To illustrate the MRNN, a typical example of the responses of
the MRNN-I to an input sentential utterance is shown in Fig. 5.
This figure reveals information to explain the detailed opera-
tions of the MRNN. First, it can be seen from Fig. 5(b) that the
primary weighting functions for the three broad classes ofini-
tial, final, andsilencerespond very well, respectively, to the syl-
lable-initial , syllable-final, and silence parts of the input speech
signal. They can therefore provide proper weights to identify the
recognition units belonging to the correct broad classes as well
as to reject those belonging to the incorrect broad classes for
each of the above three parts of the input speech signal. This can
be confirmed by examining the weighted discriminant functions
for 100 RFDinitials and 39 CIfinalsdisplayed in Fig. 5(d) and
(e), respectively. Second, it can also be seen from Fig. 5(b) that
the active regions of the two primary weighting functions for
initial andfinal broad classes are overlapped by several frames.
This makes the MRNN use theinitial-final transitional segments
of the input speech signal simultaneously in both theinitial
andfinal discriminations. The intrasyllable coarticulation effect
can therefore be partially compensated. According to a previous
study [34], this is of great help in distinguishing highly confus-
able Mandarin base-syllables. Third, the actual weighting func-
tions added to the recognition units of thefinal broad-class, si-
lence, and the nineinitial subclasses are displayed in Fig. 5(c). It
can be seen from Fig. 5(c) that all weighting functions for these
nineinitial sub-classes have much higher averaged active levels
than those for thefinal broad-class. This shows that the MRNN
recognizer relies more heavily on the syllable-initial part in the
base-syllable discrimination. This complies with oura priori

linguistic knowledge thatinitials are more important for distin-
guishing highly confusable base-syllables [15] as in the Eng-
lish E-set recognition [29], [30]. Fourth, as shown in Fig. 5(f),
the two timing functions generated by the boundary-detection
RNN module respond well to most base-syllable boundaries.
They can therefore provide proper timing cues to help solve the
time-alignment problem. Lastly, the weighted intersyllable-seg-
ment discriminant scores are displayed in Fig. 5(g). By carefully
examining these scores, we find that they respond well to the
143 intersyllable diphone-like units.

V. CONCLUSIONS

In this paper, a new MRNN-based method for CMSR has
been discussed. It differs from the conventional HMM/ANN
hybrid approach by applying prior domain knowledge in the
MRNN architecture design to build up multiple RNN modules
to extract more useful information, other than the basic discrim-
ination information of acoustic units, to enhance the ability of
the recognizer in discriminating the vocabulary of 412 highly
confusable Mandarin base-syllables. Experimental results have
confirmed that it outperformed the ML-trained HMM method
and was comparable to the MCE/GPD-trained HMM method.
It is therefore a promising method for CMSR. Further studies to
extend the method by incorporating more modules to tackle the
tasks of tone recognition and lexical decoding will be performed
in the future. It would also be worth considering applying this
method to other language.
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