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A Modular RNN-Based Method for Continuous
Mandarin Speech Recognition

Yuan-Fu Liao and Sin-Horng CheBenior Member, IEEE

Abstract—A new modular recurrent neural network Recently, a hybrid HMM/ANN approach to CSR has
(MRNN)-based method for continuous Mandarin speech attracted the attention of many researchers in the area of
recognition (CMSR) is proposed. The MRNN recognizer is aNN-based speech recognition [3][6]. This approach aims

composed of four main modules. The first is a sub-MRNN . .
module whose function is to generate discriminant functions at integrating the advantages of both ANN and HMM tech-

for all 412 base-syllables. It accomplishes the task by using four Nologies. One popular approach [3], [6] is to employ an MLP
recurrent neural network (RNN) submodules. The second is an or RNN pattern classifier to replace phone-like HMM models
RNN module which is designed to detect syllable boundaries for for computing the observation probabilities of all phones.
providing timing cues in order to help solve the time-alignment Modeling of the temporal structure of speech signals for

problem. The third is also an RNN module whose function is to ving the ti i t bl in th it h
generate discriminant functions for 143 intersyllable diphone-like Solving the ime-alignment probiem in he recognition searc

units to compensate the intersyllable coarticulation effect. The IS still performed implicitly under the HMM framework. This
fourth is a dynamic programming (DP)-based recognition search approach is more efficient on modeling acoustic units and

module. Its function is to integrate the other three modules and s easier to take care acoustic context by directly modeling

solve the time-alignment problem for generating the recognized nigh_gimensional input speech patterns of several frames.
base-syllable sequence. A new multilevel pruning scheme designe

to speed up the recognition process is also proposed. The whole owever, its performance has been shown, by experimental

MRNN can be trained by a sophisticated three-stage minimum Tresults, to be only slightly better than the ML-trained HMM
classification error/generalized probabilistic descent (MCE/GPD) method [4].

algorithm. Experimental results showed that the proposed method  |n this paper, a new hybrid DP/ANN method for continuous

performed better than the maximum likelihood (ML)-trained ; e ; —
hidden Markov model (HMM) method and is comparable to the Mandarin speech recognition is proposed. It applies the

MCE/GPD-trained HMM method. The multilevel pruning scheme ~ Vide and conquérprinciple [7], [8] of modular neural network
was also found to be very efficient. technology [9]-[12] using prior phonetic knowledge to design a

Index Terms—Mandarin speech recognition, MCE/GPD algo- so_phi_sticated MRNN rgcognizer which di§cr_iminqtes a<_:oust_ic
rithms , modular recurrent neural networks. units instead of modeling them. The basic idea is to first di-
vide the task of CMSR into several subtasks of discriminating
smaller speech segments, then tackle them separately using ex-
pert RNN modules, and finally integrate partial solutions to

URRENTLY, the dominant technology for continuoussolve the complete problem.

speech recognition (CSR) is based on HMMs [1], [2]. Specifically, the task of CMSR is first divided into three sub-
HMMs are good at statistically based acoustic modelirtigsks:
and provide a fundamental structure flexible enough for the 1) discrimination of 412 base-syllables (including a null one
recognition of nonstationary speech signals. Aside from the  for sjlence);
HMM approach, the artificial neural network (ANN)-based 2) detection of syllable boundaries;
approach is also attractive because ANNs have the distinctionz) discrimination of inter-syllable speech segments.

of possessing high discrimination ability obtained througﬂsub-MRNN module and two RNN modules are then designed

competiti\(e Igar.ning and hence are potentially good for sPeﬁ?"tackle these three subtasks separately. The sub-MRNN is an
pattern discrimination [3], [4]. Although many ANN-based,,onqeq version of the MRNN proposed previously for iso-

methods have been proposed previously, only a few of them #fed Mandarin base-syllable recognition [13] and is composed

suitable for CSR becayse of the lack of fundamental StrUCtur(?fsfour RNN submodules with architecture conforming to the
to deal with the time-alignment problem. Most ANN structure

h il MLP) and RNN | onetic structure of Mandarin base-syllables. Its function is to
such as multiiayer perceptron ( ) an » are only 90Gfnerate discriminant functions for all 412 base-syllables. One
at discriminating short input speech patterns of several fra

. e he two RNN modules is designed to detect syllable bound-
in length. They are therefore good pattern classifiers instead f

4 ) ¢ . ) hei es to provide explicit timing information to help the recog-
good recognizers for nonstationary continuous speech sign3igrion search. It is referred to as the boundary-detection RNN
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search module. Its function is to combine and time-align ttie five different syllabic tones [27], [28]. A complete CMSR
outputs of the sub-MRNN module and the two RNN modulesystem is generally composed of two components: Acoustic
with the input testing utterance for generating the best recqgrocessing for syllable identification and Lexical decoding for
nized base-syllable sequence. Besides, a multilevel pruningrd (or character) string recognition. In this study, we only
method designed to speed up the DP-based recognition procasssider acoustic processing.

(without degrading the recognition performance) is also pro- Fig. 1 shows a block diagram of the MRNN recognizer.
posed [20]. The whole MRNN system can be efficiently traineld consists of four modules: a base-syllable discrimination
using a bottom-up hierarchical training scheme. The trainirsgib-MRNN module, a boundary-detection RNN module, an
algorithm consists of three stages using MCE/GPD algorithrivgersyllable-segment discrimination RNN module, and a
first optimizing the sub-syllable-level recognition, then th®P-based recognition search module.

base-syllable-level recognition, and lastly, the string-level The sub-MRNN is an extended version of the MRNN pro-
recognition [13], [21]-[23]. Hence, the four RNN sub-moduleposed previously for isolated Mandarin base-syllable recogni-
are being trained first, then the sub-MRNN, and finally, thgon [13]. Its task is to discriminate 412 base-syllables including

whole MRNN. a null for silence. It tackles the task by further dividing into
Some distinct merits of the proposed MRNN-based methdaur subtasks and deals with each by using a separate RNN
shall now be discussed. They include the following. submodule. The four subtasks include two which discriminate

« This method uses prior knowledge of the phonetic strubo sets of subsyllable units and two which generate dynamic
ture of Mandarin speech in the MRNN architecture desigﬁeighting functions for two broad-class sets of these recogni-
and hence provides an interpretable and tractable Wayti@,n units. These two basic recognition unit sets contain 100
analyze the internal operations of the MRNN, rather thaight-final-dependent (RFD)nitials and 39 context-indepen-
simply treating it as a black box. All constituent RNNdent (Cl)finals, respectively. The two broad-class sets of recog-
modules have their own phonetic meanings. nition units include one containing three broad-classeisiof

« This method uses multiple expert RNN modules, ther&al, final, and silence and another containing ninidal sub-
fore, not only taking care of the discrimination of acoustiglasses divided according to the manner of articulation. Outputs

units but also extracting useful information to enhanc@f the two discrimination RNN sub-modules are weighted by
the discrimination ability of the recognizer. This inforthese 12 dynamic weighting functions and combined to form
mation includes the dynamic weighting functions of twdhe discriminant functions of 412 base-syllables. The way in
broad-class sets (to be discussed in Section II), the swhich dynamic weighting functions are used to form weighted
lable-boundary timing information, and the discriminatioffliscrimination functions can be regarded as a sophisticated real-
of intersyllable segments. ization of the idea of using weighted distortion sequences [29],
« Timing information representing the temporal structure ¢80] or weighted state-likelihoods [15], [31] to improve the per-
Mandarin speech Signa]s is direct]y extracted from obséprmance of Speech recognizers. These Welghted discrimination
vation vectors and used in the recognition search to héhmctions will therefore possess better discrimination capability.
solve the time-alignment problem. Duration models, such The task of the boundary-detection RNN module is to de-
as state transition probabilities and state duration prod&ct syllable boundary information to be used in the DP-based
bility models [2], [24] are therefore not needed. recognition search module in order to help solve the time-align-
The proposed MRNN-based method differs from the conveftent problem. It uses an RNN to discriminate between syllable
tional HMM/ANN hybrid approach in the following two ways. boundary and nonsyllable boundary segments.
First, the outputs of all RNNs are directly combined to form dis- The function of the intersyllable-segment discrimination
criminant functions for speech recognition without being colRNN module is to generate the discriminant functions of 143
verted to likelihood functions [25], [26]. Second, the proposeiatersyllable diphone-like units to compensate the inter-syllable
method uses ANNSs not only to discriminate acoustic units b&@articulation effect. Obviously, this way of handling the coar-
also to extract useful information in order to enhance the diéculation effect is different from that of the context-dependent
crimination capability of the recognizer. HMMs [14]-{18], [28]. In the past, several approaches [19],
The organization of this paper is as follows. Section I82], [33] using similar ideas to explicitly model transitional
presents the proposed MRNN-based CMSR method. TREOuUStic units so as to improve speech recognizers were pro-
three-stage training method is discussed in Section Ill. TRsed. In [32], syllable boundary information was detected by
effectiveness of the proposed method is examined with simufl ANN and integrated into continuous English speech recog-

tions discussed in Section IV. Some conclusions are given/ion. It resulted in a reduction of the word error rate by 10%.
the last section. In [19], inter-syllable segments were statistically modeled and

integrated into an HMM-based continuous Mandarin speech
recognizer to improve its performance.

The function of the DP-based recognition search module

Mandarin Chinese is a tonal and syllabic language. There éx-to integrate the other three main parts and time-align their
ists more than 80000 words, each composed of up to sevaratputs with the input testing utterance so as to get the best
characters. There are more than 10 000 commonly used characegnized base-syllable sequence. It uses a sophisticated
ters, each pronounced as monosyllable with one of five tonéelay-decision, frame-synchronized Viterbi search algorithm to
There are in total 411 base-syllables, each of which can haveagzomplish the job. The DP-based recognition search module

Il. PROPOSEDMETHOD
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Fig. 1. Proposed MRNN recognizer: (a) schematic diagram and (b) detailed block diagram.

can be further extended by incorporating a multi-level prunirfgur main modules and the multilevel pruning scheme in more
scheme to improve its speed. The whole MRNN can be trainddtail. The bottom-up hierarchical training scheme is discussed
using a bottom-up hierarchical training scheme which ia the next section.

composed of three training stages using MCE/GPD algorithms S

sequentially optimizing the subsyllable-, base-syllable-, afti Base-Syllable Discrimination Sub-MRNN Module
string-level recognitions. Hence, the four RNN submodules The base-syllable discrimination sub-MRNN module is com-
are being trained first, then the sub-MRNN, and finally, thposed of four RNN submodules. Its design complies with the
whole MRNN. In the following subsections, we discuss thesgmpleinitial-final structure of Mandarin base-syllables shown
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TABLE |
PHONETIC STRUCTURE AND SUB-SYLLABLE INVENTORY OF MANDARIN BASE-SYLLABLE. (A) THE PHONETIC STRUCTURE OF MANDARIN
BASE-SYLLABLE . HERE THENUMERIC 2 IN THE TABLE MEANS THE NUMBER OF BASE-SYLLABLES, INITIALS FINALS .. ., ETC. (B) THE SET
OF 22 INITIALS AND THE NINE INITIAL SUB-GROUPSDIVIDED ACCORDING THE MANNER OF ARTICULATION. HERE ¢; DENOTES A
NULL INITIAL. (C) THE SET OF 39 FINALS HERE ¢ DENOTES ANULL FINAL

Base-syllable

411
(initial) final
21 39
(consonant) (medial) |vowel nucleus|(nasal ending)
21 3 17
€)
Initial
Lo Stop Affricate Fricative
Liquid| Nasal Voiced |Unvoiced| Voiced |Unvoiced| Voiced jUnvoiced Null
o
m b p
tz ts S
1 n d t
] ch r sh
ji chi shi
g k h
()
Final
Vowel Di-vowel Vowel ending with Nasal
Medial|-¢;| -a | -0 |-e| -eh |-er| -ai | -ei |-au|-ou| -an | -en | -ang | -eng
0 a | o |e| eh ler| ai | ei {au|ou| an en | ang | eng
i- i|i-a|i-o i-eh i-ai i-au [i-ou| i-an | i-en | i-ang | u-eng
u- u |u-aju-o u-ai | u-ei u-an | u-en | u-ang | u-eng
iu- | iu iu-eh iu-an | iu-en iu-eng
©

in Table I. It can be seen from Table | that Mandarin base-syllare separated in time domain with a partial overlap to take into
bles have a very regular, hierarchical phonetic structure whiabcount the intrasyllable coarticulation effect [34].
contains two parts: an optionaitial and &final. Theinitial part One RNN submodule is used to tackle ihéial discrimi-
contains a single consonant if it exists. Tireal part consists nation subtask and generate discriminant functions for all 100
of an optionalmedial a vowel nucleusand an optionahasal RFD initials, using theinitial parts of syllables in the input
ending There are, in total, only 411 base-syllables formed kgsting utterance. These 100 RHiitisals are obtained by ex-
all legal combinations of 2initials and 39finals. These 39i- panding the set of 22 Ghitials using the seven sub-groups of 39
nalsare, in turn, formed by the combinations ofifedials 17 succeedindinals divided according to their leading phonemes.
vowel nucleiand 2nasal endingsDue to this simple and regular Table 1l shows these seven sub-group$rudls.
phonetic structure, these 411 base-syllables form many highlyThe use of RFDnitials is motivated by the fact that it re-
confusable subsets in which base-syllables can only be diffstited in better performances in mainitial-final based HMM
entiated by theimitial consonants, by their shortedials or by recognizers proposed recently [18], [27], [28]. Similarly, an-
their nasal ending$27], [28]. To efficiently discriminate these other RNN sub-module is used to tackle fimal discrimination
411 highly confusable base-syllables, the sub-MRNN uses thebtask and generate discriminant functions for all 3&r@lls
above-mentioned priori knowledge in its architecture designusing thefinal parts of syllables in the input testing utterance.
to divide the task into four subtasks and employ the four parallelTwo other subtasks concern the extraction of acoustic cues
RNN sub-modules to deal with them separately. The partitidor the integration of subtasks. They are tackled by two other
into subtasks is performed in both time and feature domaim®NN submodules. One generates primary dynamic weighting
This design is advantageous in letting each RNN submodiilenctions for the three broad-classéstial, final, and silence.
deal with only a part of speech segments and hence ensuriiige uses of these three primary dynamic weighting functions
its success in discriminating specific speech patterns. are three-fold. First, the weighting function for silence is di-
Specifically, two subtasks are first appointed for the discrimiectly taken as the discriminant function of the silence class.
nation of two types of speech pattermstials andfinals, which  Second, the two weighting functions fioitial andfinal are used
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TABLE I that use similar ideas to improve the performance of speech
SEVEN SUB-GROUPS OF THE39 FINALS PARTITIONED BY THEIR LEADING  racognizers. One is the “discriminative weighting distortion
PHONEMES FORDETERMINING THE 1INITIALS . . L LT . .
sequences” scheme, which enhances the discrimination abil-

Sub-group Final ities of isolated speech recognizers by properly weighting
1 e [ their distortion sequences [15], [30]. A speech recognition
2 a- a, ai, au, an, ang test showed that the recognition rate for the highly confusable
3 o 0, ou ' English E-set was increased from 67.6% to 78.1% [30]. A
4 o e, eh, ei, en, eng, er second is the state-weighted HMM method which improves
5 i- i, i-a, i-eh, i-ai, i-au, i-ou, i-an, i-en, i-ang, i-eng, i-er  the performance of speech recognizers by discriminatively
6 u- u, u-a, u-0, u-ai, u-ei, u-an, u-en, u-ang, u-eng weighting the state-likelihoods [31]. Our method differs from
7 iu- iv, iu-ch, iu-an, iu-en, iu-eng the state-weighted HMMs by using dynamic weights which

depend on the input data instead of static ones which depend
to give different weights to the two types of recognition units adn models. A third is the Meta-Pi network in which several
initials andfinals to combine the discriminant functions generANN modules are first used to estimate the probabilities of the
ated by the two subsyllable discrimination RNN sub-modulegput pattern generated by different sources (e.g., speakers)
Third, they are all used in the multilevel pruning scheme, to he]p0]. Their outputs are then combined to form thepos-
identify stableinitial-, final-, and silence-segments of the inputerior probabilities for robust multisource recognition. Our
testing utterance in order to set more restricted path constraimsthod differs from the Meta-Pi network because it uses the
to prune unnecessary path searches. The other RNN submodtalge-syllable-level MCE/GPD training algorithm to design the
generates secondary weighting functions for nine broad-classesbination function.
of initials. The main uses of these secondary weighting func-
tions are to prqvide diﬁerentweights to'the. niqegrougjsnbiﬁal. B. Boundary-Detection RNN Module
recognition units and help combine their discriminant functions.
This has been proved to increase the discrimination capability ofThe boundary-detection RNN module uses a single RNN
the sub-MRNN for distinguishing these 100 Rfitials [15], to generate two dynamic timing function83 (¢) and O%(¢),
[29], [30]. for syllable boundary and nonsyllable boundary segments,
All four RNNs have the same three-layer structure with afespectively. The RNN has the same structure as the four RNNs
outputs of the hidden layer being fed-back to the hidden laygged in the aforementioned sub-MRNN. The input features
itself as additional inputs [35]. They all use the same inputs caifrclude seven observation vectors contained in a window of
sisting of all recognition feature vectors contained in a windowie current frame. The main use of these two dynamic timing
of five frames around the current frame. Their outputs are diinctions is to combine the discriminant functions of 412
rectly combined to form the discriminant functions of all 41base-syllables and of 143 intersyllable diphone-like units to
base-syllables by form the discriminant function for each candidate base-syllable
as /o string. A similar idea was used in [32] which used syllable
ot (X5 80)(2) :W’P(t) 'Wﬂs(t) 'O{(t) boundary information, detected by an ANN, to improve
+WE@®)-OF(t), 1=1~411 (1) continuous English speech recognition. It is worthwhile to
note that these two timing functions contribute in a different
where . way to the recognition search compared with the conventional
X mpgt feature vector sequence of th‘?—|MM method. They provide explicit timing cues of the input
testing utterance; testing utterance and give scores directly to assert or object to

Ao i/leFtu\cl):\l.system parameters of the SUbeill base-syllable-to-base-syllable transitions in the recognition

P P ) _ , search; while the HMM method provides implicit temporal
Wi (t) andWip (¢) prlmarywe|ght|ng fqnchons forthetwo constraints to the recognition search by giving state transition
gg;?:(tjivcelli/'sses dhitial andfinal, re- probabilities, using state duration probability models [1],
. ’ S . [24], or setting state duration bounds [36]. Obviously, using
ol (t) andOf(t) ith and thefth Q|s_gr|m|nant fgnchons these two timing functions is also different from the constant
ggne_rated .by thinitial — andfinal — duration-penalty scheme [2] used by a recognizer to suppress
discrimination RNNs.for thé-th base- s insertion errors. Besides, these two timing functions are also
WS syIIabIg, respe_c;[:v_ely% . ¢ used in the multilevel pruning scheme to suppress unnecessary
s secondary weighting function o tmh searches for base-syllable-to-base-syllable transitions.
|‘n|t|_al_ _broad class which contains the The RNN can be trained by assigning timing functions re-
L ith |n|_t|al. : o lated to syllable boundaries as output targets. Ideally, we can use
As for the dlscr|m|_nantfunc_t|oq ofthe S|!ence cla}ss, it |s.d|rectI¥ single-frame impulse as the target timing functiorod} (¢)
taken from the primary weighting function for silence, i.e., to precisely locate a base-syllable boundary. However, in prac-
g*(X; M) (1) = WE (1), @) t?ce}l implementatipn, it is difficult to _model such a stringent
timing function using the RNN technique. We therefore relax
The validity of using discriminant functions as in (1) can béhe requirement by training the RNN using an output target of
justified by the superiority of three speech recognition schemérsee-frame pulse for each base-syllable boundary.
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TABLE Il using context-dependent models [14]-[18], [28]. It takes a pat-

(a) TWELVE RIGHT-INITIAL CLASSES AND (b) TWELVE LEFT-FINALCLASSES tern recognition approach to directly classifying speech seg-
FOR DETERMINING THE SET OF 143 INTERSYLLABLE DIPHONE-LIKE UNITS . . . . .

ments carrying intersyllable coarticulations, while the context-

Sub-group Right initial context dependent HMMs try to split models of acoustic units according
1 Stop- b, d g ptk to the context. Recently, several approaches using similar ideas
2 | Affricate- 1z j, ji, ts, ch, chi to model transitional acoustic units for improving the perfor-
2 Fricative- f.s, Shr’ shi, b mance of HMM-based speech recognizers were proposed [32],
r-
5 — " [33].
6 - 1 "
7 -~ - D. DP-Based Recognition Search Module
8 O __a,ai,au, an, ang, o, ou, ¢, ch, ei, en, eng, er The function of the DP-based recognition search module is
E - i, i-a, i-0, i-eh, i-ai, i-au, i-ou, i-an, i-en, l-ang, -eng 4 compine and time-align the outputs of the other three main
10 u- u, u-a, u-0, u-ai, u-¢i, u-an, u-en, u-ang, u-eng . . . .
T P~ U, fu-eh, ju-an, iu-en, ju-eng modules with the input testing utterance for generating the best
12 | Silence- Silence recognized base-syllable sequence. The discriminant function
(a) for a path@ of a candidate base-syllable sequefids defined
Sub-group Left final context by
; -0 & =
-a a, 1-a, u-a tr . _ syl i
3 -0 0, u-0, i-0 97X, S, Qi) = I {gqsyz(t)(t) + qu’L(t) ()
4 -e S t=0
5 -1 ai, ei, i, i-ai, u-ai, u-ei )
6| -h eh, i-ch, iu-ch + 9.7, () (3)
7 -u u, au, ou, iu, i-ay, i-ou
8 -an an, en, i-an, i-en, u-an, u-en, iu-an, iu-en . .
9 -ang ang, eng, i-ang, i-eng, u-eng, u-ang where L is the length of the input feature vectors,
10 -iu u Q = {(QSyl(t)vqtinl(t)vqint(t))v t = 07 17 s 7L - 1} is
11 -er er the legal path foiS, A is the set of system parameters for the
12 | -Silence Silence MRNN, andg,,(t) is the base-syllable state of the p&tat¢
(b)

1 i ge(t) # G- 1)
Qtim(t) - {O7 if qsyj(t) = QSyj(t - 1) (4)

is the timing (i.e., transition/nontransition) state of the patht

The function of the inter-syllable-segment discrimination

RNN is to generate the discriminant function®;"!(¢), for ; _

143 inter-syllable diphone-like units formed by all meaningful Qint(t) = {IS’ :; qsyzgg f qsylg B B (5)
combinations of 12 leffinal classes (including silence) and > T ) = eyt

12 rightdinitial classes (including silence). These two sets aigthe intersyllable unit state of the pathat¢ with k& determined
shown in Table Il [15]. The 12 leffinal classes are formed by g.,;(t) andg.y(t — 1)
by partitioning 39finals according to their ending phonemes. . ) )
The 12 rightinitial classes are formed by partitioning the 91" (X5 80)(1), if gsyi(t) is the

syl
generalizednitial set, composing of 2ihitials and 38 nullini- 95, (t) = ‘ [-th base-syllable

Y sil e . . .
Cs - ¢°"(X;Ao)(t), if gou(t) is a silence
(6)

C. Inter-Syllable-Segment Discrimination RNN Module

tials (i.e., 38 base-syllables with nuihitial), according to
the manner of articulation with sonorants being speciallg the b lable discriminant e at
considered. Specifically, they includtop affricate fricative, IS the base-Syllable discriminant score a

{/t/}, {/n/}, {/1/}. {/m/}, four nullHinitial classes, and i COp-0R(t) if qum(t) =1
silence. The four nulinitial classes are formed by partitioning o () = {CD COR@) i grm(t) =0 ()
all 38 null4nitial s according to the 4 leadingediak including N o
/i/, /u/, /iu/, and a null. The approach of determining thés the timing score at
set of inter-syllable diphone-like units is a tradeoff between b int _
the importance of unit on the inter-syllable coarticulation ¢** (t) = {Cmt'OB ) -0, (&) Fam(t) =k (8)
effect and the total number of units. The inter-syllable-segment 0 otherwise
discrimination RNN has the same three-layer structure wit§the intersyllable-segment discriminant score at
input features including seven observation vectors contained
in a window of the current frame. The RNN is trained using Ot — 1 & Oint 9
speech segments located around all syllable boundaries in the (0 Z k() ©)
training set. For each syllable boundary, output targets of six
frames centered around it are set for training. is the discriminant function for thekth inter-syllable di-

It is worthwhile to note that the MRNN system handles thphone-like unit att; and Cs, Cp, and C;,; are weighting
coarticulation effect in a way different from the HMM methodconstants. The final goal of the recognition search is to find

T=t—3
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out the best base-syllable sequenéeamong all possible L1

>y _ . - e\
sequences. The decision rule is thus defined by SM Bt B/ﬁﬁx\ N -
o RS A
S = argmax g°'" (X, S, Q; A). (10) - \/-wf\ o ,
s 5Q R L : :
" \\\\ e E / I* 14
It is noted that in the above formulation, each base-syllable TN // (ﬁ,‘,
represented by a single state. P o \f:/ 7«}
Based on the aforementioned criterion, a modified one-sta (\} ' "\s{ : -
Viterbi search algorithm is proposed to find out the best base- ~
syllable sequence. It retains multiple cumulative scores for each @) (b)

base-syllable by expanding its single-state structure into a §@- 2. State transition diagrams of (a) the preclassification FSM and (b) the
ries of clone states. This modification is designed to allow tesegmentation FSM.

Viterbi search algorithm to delay the decision making for base-

syllable-to-base-syllable transition until the end of a finite-diRuUtput is higher thaf"H; and the other two are all lower than
ration pulse o2 (#); otherwise, it will always occur at the be-1H 1., the FSM moves into the corresponding stabl& ( or S)
ginning frame of the pulse if the weighting constént is large. State if it is a legal one. When both thstial andfinal outputs
This maintains fair competition for all candidate frames withid"® higher thaf"/;; and the silence outputis lower thdiH r,,

the pulse to become a true base-syllable-to-base-syllable i}t FSM moves into thé/ state. Otherwise, it goes to tfe
sition. The length of the delay can be a value larger than thEate. Similarly, the presegmentation based pruning scheme uses
maximum pulse-width oD2(#). Aside from using the timing & Presegmentation FSM [see Fig. 2(b)], driven by the difference
function generated by the boundary-detection RNN module, tRgtween the two outputs of the boundary-detection RNN (i.e.,
Viterbi search algorithm also uses the path constraints of ba&¥s (t) — Ox (%)) to classify and label each input frame into two
syllable duration bounds to eliminate insertion errors with a vefgrtain states of boundar) and nonboundaryN), and one

short base-syllable duration. uncertain U) state. _
We then use the output labels of these two FSMs to explic-
E. Multilevel Pruning Scheme ity model the temporal structure of the input speech signal.

The multilevel pruning scheme is designed to be incorp hose FSM labels are incorporated into the DP-based recogni-

rated into the DP-based recognition search to improve its spe %er]e;;gzz?gﬂi ' .SSO ;’;er(;asggtrggebur‘tﬂfggslzzi}[lo??tmtsz?;f:;s'
The design goal is to maximize the reduction of unnecess y ! P y '9 '

path searches while maintaining recognition performance a lal, medialandfinal. When an input frame is labeldd M, .
IF state, we only allow the frame to stay in the corresponding

consuming minimum extra efforts. It takes useful acoustic Cu%‘Cl'tial medial orfinal states of all base-syllables. If itis labeled
directly from four RNNs of the MRNN to accomplish its job. saréstate we let it stay in the silence s¥ate If it.is labeletNan
It is a combination of the following three pruning scheme& ' Y '

base-syllable deactivation, preclassification-based pruning aia. an) k:a:ﬁie-?ryllr;aqblel-:tor-%as?—tsylIavt\)lle rtr:aEsntLons ar?l agllovzed
presegmentation-based pruning. The base-syllable deactivafpi ct at tis rame. For b stales, we make base-syllable-to-
e-syllable transition decisions and allow one and only one

scheme uses an idea similar to the phone deactivation met rga&hsition to occur in a segment of consecutive B states. Lastly.
37]. It eliminates the searches for all paths containing unlike . . ’
[37] P 9 E{:r both T andU states, a full search is performed. It is worth-

base-syllables with very low frame-based discriminant func-, . . .
tions. The preclassification based pruning scheme uses the ilﬂ’é‘é\'e to note that, "F’F“ the V|ewp9|nt of the DP search,.the re-
of setting more restricted search constraints for the stable pafts. 9 path constraining scheme is a partial-hard-decision-and-
of the input testing utterance to eliminate unnecessary p rt@l—soft—dem;mn one. Besides, this pruning spheme can be
searches [20]. The presegmentation based pruning scheme ugg% in conjunction with some path pruning techm_ques, .SL.JCh as
a similar idea to set more restricted inter-base-syllable tra% eam search, to further improve the recognition efficiency
sition/nontransition constraints for predetected boundary al ]
nonboundary parts of the input testing utterance to eliminate
unnecessary interbase-syllable transition/nontransition tests in
the recognition search. We will discuss the latter two schemesTo efficiently train the MRNN recognizer, a three-stage
in more detail. training method sequentially applying the subsyllable-, base-syl-
As mentioned previously, the primary weighting RNN gentable-, and string-level MCE/GPD algorithms [14],[21]-[23] is
erates three outputs to discriminate each input frame among pineposed. In the first stage, the two RNNs for discriminating the
three broad classes of silengaitial, andfinal. The preclassifi- two sub-syllable sets dhitial andfinal are trained separately
cation based pruning scheme uses these three outputs to driusiag the subsyllable-level MCE/GPD algorithm. Meanwhile,
preclassification finite state machine (FSM) [see Fig. 2(a))] the primary and secondary weighting RNNs are trained ac-
classify and label each input frame into four stable states of sbrdingly using the backpropagation through time algorithm
lence §), initial (1), medial(M), andfinal (F), and one transient with “0—1" output target functions [38]. Here, all targets are set
(T) state. Specifically, the pre-classification FSM compares tl@ased on an HMM-based segmentation of the training set. The
three outputs of the primary weighting RNN with two thresholfbur RNNs are then combined together in the second training
values,I’H, andT Hg. While one (i.e.jnitial, final or silence) stage to form the base-syllable discrimination sub-MRNN and

I1l. BOTTOM-UP HIERARCHICAL TRAINING SCHEME
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fine-tuned by the base-syllable-level MCE/GPD algorithm. THRNN module being included. In the test, eight delayed clone
training goalis to make the sub-MRNN be a good classifier for atates for each base-syllable were sustained in the Viterbi
412 base-syllables. In the third training stage, the boundary-éearch algorithm to keep the cumulative discriminant scores.
tection RNN and the intersyllable-segment discrimination RNIWhe number of best base-syllable strings involved in the
are first separately trained by the backpropagation througtiing-level MCE/GPD algorithm was empirically set to 20.
time algorithm with “0-1" output target functions and theThe recognition results of the two versions are displayed in
MCE/GPD algorithm, respectively. They are then integratdeg. 3. The best base-syllable accuracy rates were 86.8% and
with the base-syllable discrimination sub-MRNN to form th&7.3% for MRNN-B and MRNN-I, respectively.
MRNN recognizer. The whole MRNN is finally fine-tuned by For performance comparison, the HMM method was also
the string-level MCE/GPD algorithm. tested. To determine the basic recognition units, two popular

It is worthwhile to note that the “0—-1" bounds of all primaryapproaches used in the state-of-the-art HMM-based continuous
and secondary dynamic weighting functions, set as learnidgandarin speech recognition systems [14]-[18], [28] proposed
targets in the first-stage training, are relaxed and freed of amyrecent years were considered. One approach uses context-de-
manual control in the following training stage. The ultimat@endent (CD) phone-like units and another uses right-context-
levels that these weighting functions may reach are therefatependent (RCDjitial andfinal units [15]-[18]. According to
determined automatically. The two dynamic timing functionthe experimental results of the two comparative studies done in
are treated similarly. This target-setting scheme is advani{a6] and [18], these two approaches performed almost equally
geous in enhancing the discrimination capacity of the MRNIell in both speaker-independent (SI) and speaker-dependent
recognizer via automatically putting special emphases on tf&D) cases. Besides, many other studies also confirmed that the
most distinguishing parts of the input testing utterance. right-context dependency is more important than the left-con-
text dependency in both approaches of using phone-like units
andinitial-final units [14], [17], [18]. Based on the above con-
clusions, the second approach of using Rididial andfinal

The effectiveness of the proposed method was examined withits was chosen in the test. To compare with the MRNN-B
simulations using a continuous Mandarin speech databaseratognizer, a baseline system using 100 Rififlals and 39 ClI
tered by a single male speaker. The database contains 452 fimals as basic recognition units was first built. It is referred to as
tential utterances and 200 paragraphic utterances. Texts of thiageHMM-B recognizer. A three-state HMM model was trained
452 sentential utterances are well-designed, phonetically b each of these 100 RCitial unit. A five-state model was
anced sentences. Texts of these 200 paragraphic utterancesraireed for eacliinal unit. For silence, a single-state model was
news selected from a large news corpus covering a varietyusfed. The number of mixture Gaussian components in each state
subjects. There are, intotal, 6021 and 29 073 syllables in the sefithese HMM models varied from one fd depending on the
tential- and paragraphic-utterance sets, respectively. All utt@mount of training data. All HMM models were ML-trained and
ances were spoken naturally at a speed of about 4.5 syllablessted using the same database mentioned previously. The ex-
The database was divided into two parts. The one containipgrimental results are also displayed in Fig. 3. The best base-syl-
28060 base-syllables with a length of about 3.5 h was uskatble accuracy rate was 82.9%. Obviously, this result was infe-
for training and the other containing 7034 base-syllables witlor to that achieved by the MRNN-B recognizer. It can also
a length of about half an hour was used for testing. All speebleen seen from Fig. 3 that the number of parameters used in
signals were A/D-converted at a rate of 10 kHz and preemplthe best ML-trained HMM-B recognizer is about two times of
sized with a digital filter] —0.952~!. They were then analyzedthat used in the best MRNN-B recognizer. So the ML-trained
to extract recognition features for each 20-ms Hamming-wittMM-B recognizer has higher computational complexity.
dowed frame with a 10-ms frame shift. The recognition featuresFor a fairer comparison, the baseline HMM-B recognizer was
included 12 MFCCs, 12 delta MFCCs, 12 delta-delta MFCCsfarther refined using a string-level MCE/GPD training algo-
delta log-energy, and a delta-delta log-energy. All RNNs usediithm. In the training, the MCE/GPD algorithm used top 20 best
the MRNN recognizer had the same three-layer, simple recbiase-syllable sequences to fine-tune the HMM models. The ex-
rent structure with all outputs of the hidden layer being fed baglerimental results are also displayed in Fig. 3. The best base-
to the hidden layer itself as additional inputs [35]. The length @lyllable accuracy rate increased to 86.0%. This performance
the input window was seven frames for both the boundary-detég-comparable to that of the MRNN-B recognizer. As for the
tion RNN and the intersyllable-segment discrimination RNNsystem complexity, the best MCE/GPD-trained HMM-B recog-
and was five frames for the other four RNNs. All output-layenizer used less parameters as compared with the best MRNN-B
nodes of the six RNNs used linear output functions instead @fcognizer.
nonlinearsigmoidfunctions to make their responses have larger To compare with the MRNN-I recognizer, the baseline
dynamic ranges. HMM-B recognizer was extended to become an RCD HMM

First, we checked the performance of the MRNN systeraystem by letting alfinal models right depend on thitial of
Two versions of the system were realized and tested. Tthe succeeding base-syllable. It is referred to as the HMM-RCD
first one was a basic recognizer without invoking the intersytecognizer. It used a decision tree to select appropriate contex-
lable-segment discrimination RNN module. It is referred to asal models for eacfinal. The expanded tree shown in Fig. 4
MRNN-B. The second one, referred to as MRNN-I, was thwas built using the phonetic knowledge of Mandarin base-syl-
complete system with the intersyllable-segment discriminatidebles. A rule based on comparing the number of training

IV. SIMULATIONS
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Fig. 3. Experimental results for two MRNN-based recognizers, MRNN-B and MRNN-I, and four HMM-based recognizers, ML-HMM-B, ML-HMM-RCD,
MCE/GPD-HMM-B and MCE/GPD-HMM-RCD. Here the (z = 3, 5, 8. 10, 12, 15, 20) for HMM recognizers denotes the maximum mixture number used
in each state and the(y = 100, 150, 200) for MRNN recognizers denotes the number of the hidden neurons usediitide final, and intersyllable-segment
discrimination RNNs.
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Fig. 4. Decision tree used in the HMM approach to choose the right-context-depéndémntodels.

samples with a pre-determined threshold (50 training samptesined using the ML criterion. To efficiently use the training
per model) was applied to determine the clusters of contextsdata, the first three states of all RCD models of the séna

total of 210 RCDfinal models were finally constructed. Theywere tied together. The experimental results are also displayed
all used the same five-state HMM structure. All models aiia Fig. 3. It can be found from Fig. 3 that the best base-syllable
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Fig. 5. Typical example showing the responses of the MRNN-I recognizer to the input utterance “/chi-i-eng/ /b-a/ /j-e/ /[l-an/ lt-ul /tz/ /szweefidiértical

lines denotes silend@itial/final boundaries given by the HMM-based method): (a) input waveform, (b) three outputs of the primary weighting RNN (solid line:
initial, dashed linefinal, dotted line: silence), (c) 11 weighting functions added to subsyllable recognition units (solidditiaks, dashed linefinal, dotted line:
silence), (d) weighted discriminant functions for 100 Riridials, (e) weighted discriminant functions for 39 @als, (f) two outputs of the boundary-detection
RNN (solid line: syllable boundary, dashed line: nonsyllable boundary), and (g) weighted discriminant score for 143 intersyllable diphadtee-like un

accuracy rate was raised to 83%. This performance is still mualgorithm was applied to improve the HMM-RCD recognizer.
lower than the MRNN-I recognizer. It is worth to note that thes€he best recognition rate is 86.7% which is comparable to that
results are comparable to those obtained in a recent SD Mahthe MRNN-I recognizer. As for the system complexity, the
darin speech recognition (MSR) study using a female-speakest HMM-RCD recognizer is higher because it used more
data set of the HKU93 database [16], and is much inferiparameters than that of the best MRNN-I recognizer. Besides,
to those achieved in other two SD MSR studies [15], [28]. if needs much larger memory space to perform its recognition
we consider the fact that both databases used in [28] and [$8hrch.

are much smaller and contain only short sentential utterancesVe then used the MRNN-I to examine the efficiency of the
with all syllables being clearly pronounced, the performancaultilevel pruning scheme. Each base-syllable is now repre-
differences are reasonable. Finally, the MCE/GPD trainirggnted by three left-to-right states designated, respectively, as
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TABLE IV
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EXPERIMENTAL RESULTS OF THEMRNN RECOGNIZERINVOKING WITH THE
MULTI-LEVEL PRUNING SCHEME

linguistic knowledge thaihitials are more important for distin-
guishing highly confusable base-syllables [15] as in the Eng-
lish E-set recognition [29], [30]. Fourth, as shown in Fig. 5(f),

Thresholds | AA€tive syllable | Active syllabllle Base-syllable  the two timing functions generated by the boundary-detection
states transition paths| accuracy rate _ .

Baseline A 100.0% 1000% |~ 86.9% RNN module respond v_veII to mos@ b_ase syllable boundaries.
TH,: -50/30/-30 They can therefore provide proper timing cues to help solve the
Multidovel gc: 03-58//%29 s 48.6% 23.0% 87.1% time-alignment problem. Lastly, the weighted intersyllable-seg-

ulti-leve s 0.25/-0. . L . . .
pruning | THo: ~40/-20/-20 ment gh_scnmmant scores are d_lsplayed in Fig. 5(g). By carefully
THe: 0.775/0.225|  45.6% 21.8% 86.8% examining these scores, we find that they respond well to the

THy: -0.00-0.95 143 intersyllable diphone-like units.

initial, medial andfinal. All threshold values of the two FSMs V. CONCLUSIONS

Were_emplrlcally de_z'Fermlned to be as loose as poss_lble Wh|IeIn this paper, a new MRNN-based method for CMSR has
keeping the recognition accuracy almost the same as in the babse- ; . .
) . een discussed. It differs from the conventional HMM/ANN
line system. In this test, they were set to @8/0.2 for the

preclassification prunind).25/—0.95 for the presegmentation hybrid approach by applying prior domain knowledge in the

: . .. MRNN architecture design to build up multiple RNN modules
pruning, and-50/—-30/—30 for the base-syliable deactlvanonto extract more useful information, other than the basic discrim-
pruning. Here, the more stringent value-650 was set for the

itial state while another value of30 was set for both the ination information of acoustic units, to enhance the ability of

medialandfinal states. This setting allowed mairetial states the recognizer in discriminating the vocabulary of 412 highly

confusable Mandarin base-syllables. Experimental results have

to survive for the initial .parts'of the input utterance. The ©Xonfirmed that it outperformed the ML-trained HMM method
perimental results are listed in Table IV. It can be seen from

the table that the performance of the baseline system degraﬁgg was comparable to the MCE/GPD-trained HMM method.
slightly to 86.9% as we changed the number of clone states iS therefore a promising method for CMSR. Further studies to

Qr. : :

each base-syllable from eight to three. It can also be found fr(fé%stﬁg (ift ?oenrgfézgdn%é?]c;r:g?éiitg? Cﬁi;edmow:fféo ;??oﬁlr?]teze

Table IV that only 48.6% of the surviving base-syllable states he fut It g Id also b h id 9! pl ing thi

and 23% of the surviving base-syllable transitions were needltgdI © Tuture. 1t would aiso be worth considering applying this
: . ; . ._method to other language.

to be considered in the search without degrading the recognition

accuracy. This is a moderate saving.

To illustrate the MRNN, a typical example of the responses of
the MRNN-I to an input sentential utterance is shown in Fig. 5. The authors thank Chunghwa Telecommunication Laborato-
This figure reveals information to explain the detailed operges, R.O.C., for kindly supplying the database.
tions of the MRNN. First, it can be seen from Fig. 5(b) that the
primary weighting functions for the three broad classemif
tial, final, andsilencerespond very well, respectively, to the syl- o
lablednitial, syllablefinal, and silence parts of the input speech
signal. They can therefore provide proper weights to identify the[2]
recognition units belonging to the correct broad classes as well
as to reject those belonging to the incorrect broad classes f0[3
each of the above three parts of the input speech signal. This can
be confirmed by examining the weighted discriminant functions [4]
for 100 RFDinitials and 39 Clfinalsdisplayed in Fig. 5(d) and
(e), respectively. Second, it can also be seen from Fig. 5(b) thats]
the active regions of the two primary weighting functions for
initial andfinal broad classes are overlapped by several frames[e]
This makes the MRNN use thtial-final transitional segments
of the input speech signal simultaneously in both ithiial .
andfinal discriminations. The intrasyllable coarticulation effect
can therefore be partially compensated. According to a previous
study [34], this is of great help in distinguishing highly confus- [&l
able Mandarin base-syllables. Third, the actual weighting func-
tions added to the recognition units of tfxeal broad-class, si-
lence, and the niniaitial subclasses are displayed in Fig. 5(c). It
can be seen from Fig. 5(c) that all weighting functions for thes<T10
nineinitial sub-classes have much higher averaged active levels
than those for théinal broad-class. This shows that the MRNN
recognizer relies more heavily on the syllaiéial part in the
base-syllable discrimination. This complies with aupriori
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