
IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 3, MARCH 2001 125

A Fast IP Routing Lookup Scheme
Pi-Chung Wang, Chia-Tai Chan, and Yaw-Chung Chen, Member, IEEE

Abstract—A major issue in router design for the next genera-
tion Internet is the fast IP address lookup mechanism. The existing
scheme by Huanget al. performs the IP address lookup in hard-
ware in which the forwarding table can be compressed to fit into
reasonable-size SRAM, and a lookup can be accomplished in three
memory accesses. In this letter, we claim that with a little extra
memory, it is able to further reduce the lookup time to two memory
accesses.

Index Terms—Gigabit networking, Internet, IP address, lookup.

I. INTRODUCTION

I P ROUTES have been identified by arouting prefix, prefix
length pair [5], where the prefix length ranges from 1 to

32 bits. The most straightforward way to perform a lookup is
to build a forwarding table in hardware for all possible IP ad-
dresses. However, the size of the forwarding table (next-hop
array; NHA) would be too huge (entries) to be practical. An
indirect lookup mechanism with 9-Mbytes memory and three
memory accesses per lookup has been proposed in [2]. In [3],
Huanget al. reduced the NHA size to 470 kbytes based on the
distribution of the prefixes within a segment.

In this letter, we further reduce the IP address-lookup time
to two memory accesses. Although the required memory space
slightly increases, it can be justified by the nowadays SRAM
cost. The rest of this letter is organized as follows. Section II
presents the proposed scheme and the related issue of pipelining
hardware. The performance analysis is addressed in Section III.
Section IV concludes the work.

II. THE PROPOSEDSCHEME

Although the number of Internet hosts grows exponentially,
the routing prefixes within a router are still in sparse distribu-
tion. In fact, there are approximately 45 000 routing prefixes out
of a total of 65 536 segments in today’s backbone routers. We
observed that only few segments contain multiple routing pre-
fixes. For most segments, there are fewer or even no routing
prefix to define the route. Thus, we can properly arrange pre-
fixes for these segments to reduce the required memory. From
the sample prefixes in Fig. 1, it requires NHA en-
tries using Huang’s algorithm. By examining these prefixes, we
can find that their first 17 bits0 001 100 000 110 000are the
same. This means we only have to record 7-bit (the 18th bit to
the 24th bit) patterns of these prefixes with -entry

Manuscript received February 17, 2000. The associate editor coordinating the
review of this letter and approving it for publication was Prof. N. Shroff.

P.-C. Wang and Y.-C. Chen are with the Department of Computer Science and
Information Engineering, National Chiao Tung University, Hsinchu, Taiwan,
R.O.C. (e-mail: pcwang@csie.nctu.edu.tw; ycchen@csie.nctu.edu.tw).

C.-T. Chan is with the Telecommunication Laboratories, Chunghwa Telecom
Company, Ltd., Taipei, Taiwan, R.O.C. (e-mail: ctchan@ms.chttl.com.tw).

Publisher Item Identifier S 1089-7798(01)03558-X.

Fig. 1. NHA construction example.

NHA. Obviously, the more common bits there are, the fewer
NHA entries will be.

By tracing the Mae-Eat NAP router [4], we found that approx-
imately 54% of the segments use less than two output ports, and
96% of the segments use less than four output ports. Thus we
could use fewer bits to encode the output port identifier in an
NHA. At first, we use a bit-vector to collect all possible output
port identifiers, which are then encoded using the smallest port
identifier as the . Each associate NHA entry will be set to
the value of its output port identifier minus thebase.Two extra
fields and are appended to the entry of the segment
table. Thus the can be read before indexing the associated
NHA, and the physical output port index can be calculated by
adding the index to the NHA indexing result. This process
can be completed within two memory accesses plus the calcu-
lation time which can be ignored.

The NHA construction algorithm for a segment is given
below. Let and be the length and the output port identifier
of a routing prefix , respectively. The represents
the common bits of routing prefixes beyond the first 16 bits
in a segment, and is the valid length of .

is equal to the longest prefix length minus 16,
thus . Let represent the bit
pattern from the th bit to the th bit in . The entries
from
to

will be updated with minus base,
where represents the value of bit pat-
tern . Taking the prefix 24.48.40/22/1in
Fig. 1 as an example, obviously is 8 and is 22. So we
can calculate that ,
where , and the number of updated entries is

. There are four entries (the 40th entry to the

1089–7798/01$10.00 © 2001 IEEE

126 IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 3, MARCH 2001

43rd entry) in the NHA to be updated. Since most routers
have a default route with zero prefix length which matches all
addresses, the table entries would be assigned the value of the
default route initially.

A. NHA-Construction Algorithm

Input: The set of routing prefixes of a seg-

ment.

Output: The corresponding NHA of this segment.

Step 1) Let P = fp0; p1; . . . ; pm�1g be the set of

sorted prefixes of an input segment. For any

pair of prefixes pi and pj in the set, i < j if

and only if li < lj .

Step 2) Assign cprefix = p0(17; i0); clength = l0 � 16

and Mlength = lm�1 � 16.

Step 3) For i = 0 to m � 1 do

cprefix = common bits between cprefix and

pi(17; li).

clength = valid length of cprefix.

Step 4) Calculate the cbits and base from the

vector.

Step 5) Construct the NHA with size

2Mlength�clength � cbits and initialize it with

default route.

Step 6) For i = 0 to m � 1 do

calculate the range of updated entries and

fill them with the output port index minus

base.

Step 7) Stop.

The time complexity of the above algorithm is ,
which is bounded by the prefix sorting. Upon receiving a new
routing prefix, Step 3 will be repeated and NHA will be rebuilt
if necessary. By applying the proposed algorithm, the number
of entries in the generated NHA can be 25% less than that in
Huang’s algorithm. Although the table compression ratio in our
proposed scheme is not so notable, it is able to accomplish an IP
lookup with two memory accesses. Also the proposed scheme is
implementation feasible with pipelining hardware. Notice that
in Huang’s algorithm, the memory locations accessed in the
second and the third lookup are the same because it appends
the CNHA to the tail of CWA [3]. Therefore, it may cause the
structural hazard for implementation in pipelining hardware.
Such potential structural hazard can be avoided in our proposed
scheme without requiring any specific hardware such as dual
port memory.

The entry of the segment table consists of 6 fields:
pointer/next hop, , and

. The length of pointer/next hop is 20 bits which can map
up to 1 Mega memory addresses. Since the maximum prefix
length minus the length of the segment (16) is smaller than 16,
the number of bits needed for is 4. Trivially, the
is 8 bits and the maximum number of encoded bits is 8. Thus
the bit count of is 3. If we use with length 3,
then the is 2 bits. As a consequence, if an NHA entry
is 40 bits, it will result in the segment table size bits,
i.e., 320 kbytes.

Fig. 2. Effect of thecprefix length.

TABLE I
THE COMPARISON OFMEMORY REQUIREMENTS

III. PERFORMANCEANALYSIS

Through simulation, we show that the proposed scheme fea-
tures low memory requirement while achieving very high IP
lookup performance. We use the real world data obtained from
the IPMA project [4] as a basis for comparison, these data pro-
vide a daily snapshot of the routing tables used by some major
Network Access Points (NAP’s).

In Fig. 2, we demonstrate the effect of the through
the trace available in the router of the Mae-East NAP. By cou-
pling the effect of , the resulted number of entries is
25% less than that in Huang’s scheme. Also the size of the for-
warding table in our scheme is no larger than 565 kbytes. While
the length of increases, the number of NHA entries de-
creases.

In Table I, we log five traces to build the forwarding table.
Although the size of the forwarding table might become larger
as a trade-off for throughput enhancement, we can find that the
required memory size does not increase too much, or even de-
crease in two traces (AADS and Pac-Bell). This is because that
the use of reduces the number of NHA entries effec-
tively. While in the traces of two backbone NAP’s (Mae-East
and Mae-West), the memory increment is notable, this is due to
the diverse routing prefixes in the backbone, in which the effect
of is degraded.

IV. CONCLUSIONS

In this letter, we propose a fast IP-address lookup scheme
which is implementation feasible with nowadays high-speed
SRAM. Our scheme can complete a lookup with two memory
accesses. From the simulation results, the required memory is
no larger than 565 kbytes. With two memory accesses for an IP

WANG et al.: A FAST IP ROUTING LOOKUP SCHEME 127

lookup, the proposed scheme can avoid the structural hazard in
hardware pipelining. By applying state-of-the-art SRAM (i.e., 5
ns access time) technology, our scheme is able to achieve more
than a hundred million routing lookups per second.

REFERENCES

[1] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” inProc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 3–14.

[2] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” inProc. IEEE INFOCOM’98, San Francisco,
USA, March 1998.

[3] N. Huang, S. Zhao, and J. Pan, “A fast IP routing lookup scheme for
gigabit switch routers,” inProc. IEEE INFOCOMM’99, New York, NY,
March 1999.

[4] Merit Networks, Inc., “Internet performance measurement and analysis
(IPMA) statistics and daily reports,”, http://www.merit.edu/ipma/rout-
ingtable/.

[5] Y. Rekhter and T. Li, “An architecture for IP address allocation with
CIDR,”, RFC 1518, Sept. 1993.

[6] M. Waldvogel, G. Vargnese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” inProc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 25–36.

