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Abstract

Shortest-path (minimum travel time) routing has been adopted over the past few decades. However,
many studies have shown that a driverÕs route and the shortest path di�er widely in signi®cant ways, and
that most drivers use several criteria in selecting their routes. Since route choice criteria have been the
subject of controversy, this study develops an individual behavioral-based mechanism for exploring the
crucial criteria a�ecting driversÕ route-selection decisions. On the basis of the weight-assessing model and
the habitual domain theory, this study presents the dynamic change of route choice criteria according to
their dynamic weights. Furthermore, the e�ects of information on driversÕ route-formulating behaviors are
investigated as well in order to provide some valuable suggestions for implementing Advanced Traveler
Information Systems (ATIS) in the future. An empirical study in Taipei City was conducted to show the
feasibility and applicability of our proposed method and the empirical results indicate excellent perfor-
mance in practice. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

DriversÕ route choice and switching behavior are, in general, the primary issues in Intelligent
Transportation Systems (ITS). Since route choice is the basis of tra�c assignment, the results of
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choice have a tremendous e�ect on the tra�c volume in a tra�c network. Over the last few de-
cades, the most widely used route-selection criterion has been the minimization of travel time that
was proposed by Wardrop (1952). Travel time has played an important role in determining route
choice because of its simplicity and linkage with tra�c assignment models for generating a static
equilibrium. However, under the in¯uence of supplying real-time tra�c information, this sole
criterion cannot clearly grasp the dynamic changes in driversÕ route choice behaviors. Addition-
ally, it is di�cult for researchers to understand the e�ects of information on driving behavior and
develop new tra�c assignment models. Since fastest-path routing is indeed unrealistic in real life
and may not match individual driving behavior, how to explore the crucial determinants of route-
selection behavior becomes increasingly important for implementing Advanced Traveler Infor-
mation Systems (ATIS).

A considerable number of empirical studies on route choice behavior indicated that drivers use
numerous criteria in formulating a route. These criteria include travel cost, travel time and its
reliability, tra�c safety, tra�c comfort, roadway characteristics, utility, information supply,
driversÕ habits, driversÕ experience, cognitive limits, socio-economic and demographic character-
istics, and other behavioral considerations. However, it is impossible for drivers to consider all
route-selection criteria. What criteria does driversÕ route choice depend on? In addition, do these
criteria have the same degree of importance in di�erent situations? Since drivers often consider
distinct criteria in speci®c situations, maybe we should not assume that the degrees of importance
for route choice criteria are not dynamically varying. Should the criterion importance vary in
some dynamic way, the question then arises as to how to explore the dynamic changes.

In summary, the traditional route-selection criterion has provoked a great deal of controversy,
yet the truly important criteria considered by drivers are still open to question. Therefore, the
purpose of this study is to develop an individual behavioral-based mechanism for determining the
in¯uential criteria for driversÕ route choice decision-making. An empirical study determining
commutersÕ route-selection criteria in Taipei City was conducted to show the applicability of the
proposed method.

This paper is organized as follows: the related works about route choice criteria are introduced
in Section 2. In Section 3, an analytical procedure for specifying the changes in in¯uential criteria
is presented. Furthermore, the solution procedure for assessing dynamic criterion weights through
the connectivity network is established. Then, in Section 4, an empirical study of commutersÕ
route choice behavior on intracity trips in Taipei City is undertaken to implement this model.
Finally, the conclusions are presented in Section 5.

2. Related works on route choice

Exploring route choice criteria is an important issue for implementing ITS. Numerous attempts
have been made in the past to study route choices. Wardrop proposed a criterion for minimizing
travel time in 1952. Travel time was considered to be the most important criterion a�ecting road
usersÕ route choices as found by Wachs (1967), Huchingson et al. (1977) and Du�ell and Kalombaris
(1988). Pursula and Talvitie (1992) studied the urban route choice behavior with multinomial logit
models. They assumed that driversÕ preferences in determining route choice were based on a min-
imization of generalized costs. This generalized cost is a combination of travel time and travel costs.
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The above route choice models applied to conventional tra�c assignment procedures are
typically based on a single measure of travel impedance, such as travel time or generalized travel
cost. Nevertheless, from a behavioral perspective and based on ®eld observations, drivers do not
always select the fastest or cheapest path in the real world. Viewed in this light, some researchers
investigated the maximization of the utility for route choice, where the utility function is expressed
in terms of several criteria for the alternatives (Pursula and Talvitie, 1992; Adler et al., 1993).

In addition, some observations indicated that road users, for regular trips in familiar areas,
preferred to choose their usual route instead of selecting the routes with fewest costs or maximum
utility (Bonsall and Parry, 1990; Khattak et al., 1991). UsersÕ usual routes are called ``habitual
routes.'' Initially, drivers select their desirable route based on minimum cost, maximum utility or
other judgment rules. Then, drivers have formed a circuit pattern (Lindsay and Norman, 1972;
Bloom et al., 1985; Carlson, 1986) that represents the travel experience of the selected route. If
they continue to choose the same route in their daily trip, the circuit pattern about that route will
be reinforced and strengthened and a sense of comfort and familiarity will evolve. The stronger
the circuit pattern, the easier it can be retrieved and applied (Carlson, 1986; Yu, 1990). Unless
extraordinary events arrive, driversÕ route-selection behavior will reach some steady state or may
even become ®xed. Thus, habitual ways of thinking and acting will be manifested most of the
time. This is the formation of habitual routes.

DriversÕ experiences also produce variations in route selection (Bonsall and Parry, 1990; Iida
et al., 1991; Adler et al., 1993; Yang et al., 1993). Many studies concluded that tra�c information
and driversÕ perception of such information are important criteria a�ecting commutersÕ behavior
in general and route choice in particular (Fricker and Tsay, 1984; Bonsall and Parry, 1990;
Bonsall and Joint, 1991; Caplice and Mahmassani, 1992; Adler et al., 1993; Chen and Mah-
massani, 1993; Janssen and van-der-Horst, 1993; Khattak et al., 1993; Mahmassani and Shen-
Te-Chen, 1993; Uchida et al., 1994).

In fact, the above criteria may exist simultaneously in driversÕ minds, but only the criteria with
high activation possibilities tend to have signi®cant e�ects upon driversÕ route choice decision
process. That is, if a criterion enjoys a strong possibility, it will have a prominent representation in
route changing. Thus, the importance of each criterion (i.e., criterion weight) is the key to con-
trolling whether the criterion occurs or not. Note that when the weight of travel time is equal to 1
and other criterion weights are all equal to 0, travel time is the sole criterion (i.e., minimizing
travel time), and this is also the route choice criterion proposed by Wardrop (1952). If we can
specify the changes in criterion weights, the salient criteria a�ecting route formulation will cor-
respondingly be found.

On the other hand, in order to draw some useful suggestions for implementing ATIS, this paper
investigates as well how information a�ects driversÕ route choice behavior and we explore driversÕ
responses when faced with an external information stimulus.

3. Analytical model for weight-assessing

Since we intend to use weights to present the changes in route choice criteria, we must focus our
e�orts on weight-assessing methods. In the following, we illustrate a new method proposed by the
authors (Tzeng et al., 1998).
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3.1. Overview

Trade-o�s between criteria signi®cantly in¯uence the decision-making process for route choice.
These trade-o�s can be computed in terms of the relative ratio of their importance, which can be
presented in a ``weight'' form. From the behavioral viewpoint, the in¯uential factors determining
the weight of a criterion include: the di�erence between the ideal and actual values of the criterion
(i.e., level of charge), the diversi®cation and intensi®cation of other ideas which can activate the
criterion (i.e., connectivity), the duration of the criterion belonging to the core of habitual do-
mains (i.e., the input frequency of information stimuli), the driverÕs personality and social-
economic attributes, the intrinsic value of the weight, and the interaction among other criteria. In
summary: criterion weights are variable in di�erent situations, including input information, time,
learning process, environment, etc. Therefore, it is not easy to clearly delineate the absolute
weightings for decision-making criteria.

Most traditional weighting methods (Hwang and Yoon, 1981), such as the eigen-vector
method, weighted least-squares method, entropy method, and utility function method, consider
only the ``interaction among other criteria'' and forego consideration of the other factors.
Moreover, these methods are based on static analysis, and their results usually re¯ect only peo-
pleÕs intuition or perception at that time. Even if some newly developed techniques for assessing
dynamic weights (Zhang et al., 1992; Saaty, 1980, 1994; Hashiyama et al., 1995) exist, most of
them do not take all in¯uential factors into consideration.

On the other hand, the authorsÕ model treats decision-making as a dynamically adjusting
process from the ideal state to the actual state, allowing us to realize the dynamic change of
weights depending on di�erent situations. The authors considered simultaneously the in¯uential
factors discussed above and utilized the concept of habitual domains, which was proposed by Yu
in 1980. Next, we introduce the concept of connectivity and use the connectivities between criteria
to establish the network structure.

3.2. Establishment of connectivity network

When drivers begin their trips, their ®rst problem is how to choose their routes. For the route
choice problem, denoted by E, there exists a set of goal functions to be achieved for a satisfactory
solution. Goal functions can be measured by a collection of elementary criteria, fx1; x2; x3; . . . ; xng.
Let the collection of all elementary criteria be the discussion universe, X, for the route choice
problem E. For instance, the possible objectives which drivers consider during the route choice
process include the minimal travel cost, the fastest driving speed, optimal safety and comfort, the
fewest risks, the most familiar route, and the least number of (left) turns and stops. Thus, the
discussion universe X� {travel time, delay, driving speed, degree of safety, degree of comfort,
degree of risk, familiarity with the route, number of turns, number of stops}.

Yu (1990) summarized peopleÕs memory and thought processes according to four basic hy-
potheses. One of them is the analogy and association hypothesis, that is, our brain interprets
incoming information using analogy and association with the existing memory. There is a pre-
existing code or memory structure that can potentially alter or aid in interpreting an arriving
symbol or event. Of course, the premise of this interpretation is that a relationship between the
arriving symbol and the pre-existing code must be established. This relation-formulation process
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is called analogy and association. Furthermore, the grade of relationship can be measured by a
connectivity function (Tzeng et al., 1998).

Let (xi,xj) be an arc that joins criteria xi and xj (starting from xi and arriving at xj). A function
Ct(xi,xj) de®ned on X � X at time t is called a connectivity function on X if it satis®es the fol-
lowing axioms:

(i) Ct�xi; xj� 2 �0; 1�;
(ii) Ct�xi; xi� � 18xi 2 X (re¯exivity).
Because the learning process is usually directed (i.e., the connectivity from xi to xj is not equal

to the connectivity from xj to xi), Ct is not necessarily a symmetric connectivity function. Then, we
use the discussion universe X and the connectivity function Ct(xi,xj) to set up a connectivity
network, G. G is a fuzzy directed graph (i.e., digraph) G(X,Ct) consisting of a ®nite set
X � fx1; x2; x3; . . . ; xng and a fuzzy relation Ct on X at time t.

In order to facilitate our discussion, let us consider the following example. Suppose that a
personÕs route-selection criteria include travel time (x1), delay (x2), comfort (x3), and familiarity
(x4). Thus, X � fx1; x2; x3; x4g. The connectivity from one criterion to another is given by Table 1.
For instance, Ct�x2; x1� � 0:9 means the connectivity from x2 to x1 at time t (or stage t) is 0.9.

The above information can be more vividly expressed as in Fig. 1. Note that in Fig. 1, the
number on each directed arc represents the connectivity starting from a criterion and arriving at
another one. Additionally, the dotted lines indicate that it is practically impossible to arrive the
column criteria from corresponding row criteria (as in Table 1). Since any criterion is absolutely
reachable from itself (i.e., re¯exible), Ct�xi; xi� � 1. Observe that this illustration performs a di-
rected graph; that is, Ct(xi,xj) is not necessarily equal to Ct(xj,xi).

Since the connectivity is measured by a fuzzy relation, we use the max±min operator to cal-
culate the actual degree of connectivity between two criteria. Fig. 1 shows that connecting x2 from
x4 and x1 �min�Ct�x4; x1�;Ct�x1; x2�� � min�0:7; 0:8� � 0:7� is easier than connecting that from x4

directly �Ct�x4; x2� � 0:4�. Moreover, although there is no arc connecting x3 directly from x4, we
can still use the sequence of ``starting x4, then x2, and then x3'' to form the directed path. x2 can be
considered as a mediator or intermediate node (Li and Yu, 1994). As mentioned above, we must
transfer all connectivities in the original network to ``connectivity index,'' which is calculated by
the max±min composition rule.

Let k be the length of a path. Let Ck
t �xi; xj� be the maximum connectivity level so that there is a

path of length k starting from xi and arriving at xj. The connectivity Ck
t ; k P 2 is calculated using

the max±min composition rule:

C2
t �xi; xj� � max

x2X
min�Ct�xi; x�;Ct�x; xj��; �1�

Table 1

Connectivity matrix of the illustration

Ct(xi,xj) x1 (travel time) x2 (delay) x3 (comfort) x4 (familiarity)

x1 (travel time) 1 0.8 0.1 0.3

x2 (delay) 0.9 1 0.2 0

x3 (comfort) 0 0 1 0

x4 (familiarity) 0.7 0.4 0 1
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Ck
t �xi; xj� � max

x2X
min�Ckÿ1

t �xi; x�;Ct�x; xj�� �36 k6 n�; �2�

where n is the number of criteria in G.
C�t �xi; xj� is the maximum level, such that xj is reachable from xi. We call the connectivity C�t on

X as a connectivity index. The connectivity index is calculated from Ck
t ; k � 1; 2; 3; . . . ; n; as

described in the following proposition:

C�t �xi; xj� � maxfCt�xi; xj�;C2
t �xi; xj�; . . . ;Ck

t �xi; xj�; . . . ;Cn
t �xi; xj�g: �3�

Furthermore, the connectivity index C�t is also given by

C�t �xi; xj� � maxfminfCt�v; y� �v; y� 2 Path�xi; xj�
�� g Path�xi; xj�

�� g; �4�

where Path(xi,xj) is a path in G from xi to xj.
For instance, in our illustration there are two paths from x1 to x2, as follows:
(i) When k � 1; x1 !

ct�0:8
x2 and C1

t �x1; x2� � 0:8;

(ii) When k � 2; x1 !
ct�0:3

x4 !
ct�0:4

x2 and C2
t �x1; x2� � 0:3.

Thus, C�t �x1; x2� � maxfC1
t �x1; x2�;C2

t �x1; x2�g � 0:8.
Similarly, there are three paths from x1 to x3, as follows:
(i) When k � 1; x1 !

ct�0:1
x3 and C1

t �x1; x3� � 0:1;

(ii) When k � 2; x1 !
ct�0:8

x2 !
ct�0:2

x3 and C2
t �x1; x3� � 0:2;

(iii) When k � 3; x1 !
Ct�0:3

x4 !
Ct�0:4

x2 !
Ct�0:2

x3 and C3
t �x1; x3� � 0:2.

Fig. 1. Connectivity network of the illustration.
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Thus, C�t �x1; x3� � maxfC1
t �x1; x3�;C2

t �x1; x3�;C3
t �x1; x3�g � 0:2. According to the max±

min composition rule, we can acquire the matrix of the connectivity indexes as shown in
Table 2.

The bold-type number in Table 2 exhibits the di�erence between the connectivity index and the
connectivity in Table 1. These di�erences occur in the paths from x1 to x3, from x2 to x4, from x4

to x2, and from x4 to x3.
(i) The connectivity index from x1 to x3 is 0.2, and the practical paths include x1 ! x2 ! x3 and
x1 ! x4 ! x2 ! x3.
(ii) The connectivity index from x2 to x4 is 0.3: The practical path is x2 ! x1 ! x4.
(iii) The connectivity index from x4 to x2 is 0.7. The practical path is x4 ! x1 ! x2.
(iv) The connectivity index from x4 to x3 is 0.2, and the practical paths include x4 ! x2 ! x3

and x4 ! x1 ! x2 ! x3.
We revised Fig. 1 according to the matrix of connectivity indexes, as presented in Fig. 2. Note

that in Fig. 1, it is practically impossible to connect x4 from x2 and connect x3 from x4 directly.
However, through analogy and association, x4 is reachable from x2 and x3 is reachable from x4, as
shown in Fig. 2.

Table 2

Connectivity index of the illustration

C�t (xi,xj) x1 (travel time) x2 (delay) x3 (comfort) x4 (familiarity)

x1 (travel time) 1 0.8 0.2 0.3

x2 (delay) 0.9 1 0.2 0.3

x3 (comfort) 0 0 1 0

x4 (familiarity) 0.7 0.7 0.2 1

Fig. 2. Revised connectivity network of the illustration.
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3.3. Formation of generalized current domain

This section describes the formation process of the actual domain and its neighborhood when
an information stimulus occurs. Note that each information stimulus is related to a set of goal
functions. A goal function can be measured by ®nite criteria, fx1; x2; x3; . . . ; xng. There is an ideal
state to reach and maintain for each goal function, and this process is called goal setting (Yu,
1980, 1990). The ideal values of the criteria are denoted by q� � fq�1; q�2; q�3; . . . ; q�ng. For the ex-
ternal information stimuli, drivers continuously investigate, measure and attempt to detect any
current deviations from their ideal goal states. This process is called state evaluation. The actual
values of the criteria are denoted by q � fq1; q2; q3; . . . ; qng.

When there is an unfavorable deviation of the perceived value from the ideal, each goal
function will produce a corresponding level of charge. The totality of the charge by all goal
functions is called the charge structure. The charge structure often changes dynamically since, at
any point in time, peopleÕs attention will be drawn to the event that has the greatest in¯uence on
the charge structure. The di�erence between the ideal and actual values of each criterion is cal-
culated by kq� ÿ qk. The level of charge, denoted by Qi, of xi, is measured by the di�erence be-
tween the ideal and actual values:

Qi � q�i


 ÿ qi



 8i 2 �1; n�; �5�
where k k is a meaning norm such that 06Qi6 1 for all xi 2 X :

Given an external information stimulus St at time t of the route choice problem E, we assume
that the arriving stimulus can be broken down into several elementary criteria belonging to X; that
is, St � X . The corresponding level of charge for each criterion xi is denoted by Qi. For a 2 �0; 1�,
the a-core of St at time t, denoted by Sa

t , is de®ned as the collection of criteria that can be activated
with a level of charge larger than or equal to a. That is,

Sa
t � xi 2 St \ X jQif P ag: �6�

Sa
t is the actual domain in a narrow sense at the time t concerned with an external stimulus St, where

the actual domain is a collection of ideas or operators that are actually activated (Yu, 1991).
Taking n � 4 for example, Fig. 3 shows a connectivity network with four criteria

�X � fx1; x2; x3; x4g� and 12 connectivities. We indicated a low weight by drawing a circle with a
thin line. Similarly, a high weight is indicated by a thick line. In this illustration, we assume that
the initial weights of all criteria are the same. In addition, the thick arrow represents a strong
connection between criteria, and a thin line means a weak connection. We also assumed that the
initial connectivity indexes are the same.

When an external information stimulus St arrives at time t, the criteria that can be activated
include x1 and x2 since their corresponding levels of charge are larger than the a value. Thus, the
actual domain in a narrow sense at time t, Sa

t , is {x1, x2}, as shown in Fig. 4.
Before illustrating the actual domain in a broad sense and the reachable domain, we de®ne the

connectivity from the existing domain to a particular criterion. The function, Ct, is called a
connectivity function of criteria with subsets of X at time t if it satis®es the following axioms:

(i) Ct P 0 (non-negativity);
(ii) Ct�Kj; xi� � 1 8xi 2 Kj;
(iii) Ct�Kj; xi�6Ct�Kk; xi� 8xi 2 X ; if Kj � Kk (monotonicity).
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In the relationship between the connectivity function of a criterion to a criterion and that of a
domain to a criterion, the latter can be considered an extension of the former. As mentioned
before, Sa

t is the existing domain which represents a criterion set activated by an external stimulus
at time t for the problem E. Then, we denote Ct�Sa

t ; xi� as the connectivity of a criterion xi with the
existing domain Sa

t . When there is no confusion, we treat a connectivity function of criteria with
the actual domain as a connectivity function.

According to the analogy and association hypothesis, new things are more easily learned if they
are similar to some things that are already known. Additionally, frequently repeated events have a
stronger in¯uence on analogy and association. However, those events which pre-exist in weak
codes and are stored in remote areas of the brain, will have little impact on the analogy and
association process. Thus, we must specify the in¯uential domain from the pre-existing memory
through external information stimuli. We restrict the neighborhood of the actual domain in the
narrow sense to be the reachable domain, where the reachable domain is a collection of ideas or
operators that can be generated from the original idea set and the original operator set (Yu, 1991).
To determine the neighborhood of the actual domain in this case, we facilitate our discussion
using the connectivity of criteria with the existing domain.

Fig. 4. Formation of the actual domain in a narrow sense.

Fig. 3. Initial connectivity network of the illustration.
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Given a connectivity network G(X,Ct) and an external information stimulus St at time t, the a-
core of St is denoted by Sa

t and Ct is a connectivity function of the criteria with the existing
domain. Let 2X denote the collection of all non-empty subsets of X. The e-neighborhood of Sa

t for
Sa

t 2 2X is de®ned by Nt�Sa
t ; e�

Nt�Sa
t ; e� � fxj 2 X n Sa

t j 9xi 2 Sa
t ;3 Ct�Sa

t ; xj�P eg 8Sa
t 2 2X : �7�

Sa
t can be considered as the actual domain that contains the set of criteria that are actually

activated. Moreover, Nt�Sa
t ; e� represents the reachable domain that contains the collection of

criteria that are reachable from the existing domain through external information stimuli.
Therefore, Sa

t [ Nt�Sa
t ; e� is the actual domain in a broad sense, and we call it the ``generalized

current domain.''
Continuing our illustration with n � 4, the formation of the e-neighborhood of the actual

domain is presented in Fig. 5. Assume that the connectivity from x2 to x3 is stronger than the
threshold e. Thus, x3 has a close connection with the actual domain, Sa

t , and lies within its e-
neighborhood. Thus, Nt�Sa

t ; e� � fx3g.
Since Sa

t � fx1; x2g and Nt�Sa
t ; e� � fx3g, the generalized current domain Sa

t

S
Nt�Sa

t ; e� �
fx1; x2; x3g, as shown in Fig. 6. When external stimuli are repeated, the corresponding circuit
patterns will be reinforced and strengthened. Furthermore, the stronger the circuit patterns be-
come, the more easily the corresponding circuit patterns are retrieved in the learning processes.
Therefore, it seems reasonable to assume that the connection between a pair of criteria in the
actual domain and its e-neighborhood will be reinforced as the learning process progresses. In
other words, the connectivity between pairs of criteria in the generalized current domain will
increase. Hence, the connectivity function Ct must be updated after each learning iteration. It can
be observed that the connectivities between criteria in Sa

t [ Nt�Sa
t ; e� will be reinforced, including

Ct(x1,x2), Ct(x2,x1), Ct(x2,x3), Ct(x3,x2), Ct(x1,x3), and Ct(x3,x1).
The uncertainty that arises from driversÕ thought processes and the randomness associated with

experiments is often confusing. Some of the data obtained in this manner are hybrid; that is,
their components are not homogeneous but rather a blend of precise and fuzzy information

Fig. 5. Formation of the e-neighborhood of the actual domain.

206 T.-Y. Chen et al. / Transportation Research Part A 35 (2001) 197±224



(Kaufmann and Gupta, 1991). To simplify matters, we suppose that Ct(xi,xj) is a continuous

random variable, uniformly distributed within the interval ��C�xi; xj��1=b; �C�xi; xj��b�, where
C�xi; xj� is the mean of Ct(xi,xj). b is called the determinate index and its value is in the unit
interval [0,1]. b characterizes the degree of certainty since the higher the b value, the less change is
performed by the connectivity function. Let u(0,1) represent a continuous random variable that is
uniformly distributed over the interval [0,1]. Then we can write

Ct�xi; xj� � �C�xi; xj��1=b � �C�xi; xj��b
h

ÿ �C�xi; xj��1=b
i
� u�0; 1�: �8�

To re¯ect the fact that the connectivity between each pair of criteria is enhanced through the
learning processes, we de®ne an index parameter It(xi,xj) for each pair (xi,xj) belonging to X at
time t and a concentration parameter d. The initial values of I for pairs of criteria are set to zero. If
xi is activated when xj is presented to the input stimuli, the value of I increases by 1. d represents
the change size of the de®nition domain, and 0 < d < 1. Thus, the connectivity function is derived
within the adjustment interval ��C�xi; xj� � It�xi; xj�d�1=b; �C�xi; xj� � It�xi; xj�d�b� and now Ct(xi,xj)
is given by

Ct�xi; xj� � min 1; �C�xi; xj�
n

� It�xi; xj�d�1=b � �C�xi; xj�
h

� It�xi; xj�d�b

ÿ �C�xi; xj� � It�xi; xj�d�1=b
i
� u�0; 1�

o
�9�

To avoid the condition where the connectivity exceeds 1, we use a ``min'' operator. That is, we use
the index parameter, I, and the concentration parameter, d, to indicate the reinforcement change
of circuit patterns.

3.4. Weight-assessing procedure

In this section, we propose the weight-assessing procedure according to the connectivity net-
work. The weight-assessing method is based on competitive learning (Grossberg, 1969; Kohonen,
1989). In competitive learning, the output ideas of the network compete among themselves to be

Fig. 6. Formation of the generalized current domain.
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active. Competitive learning begins with a random arrangement of weights and gives all output
ideas a chance to compete. It also limits the strength of the weights. Let wt(xi) be the weight of the
criterion xi from the input information stimulus St. The weights are limited to values between 0
and 1; that is, wt�xi�P 0 for each xi. In addition,

Pn
i�1 wt�xi� � 1.

The authorsÕ weight-assessing method performs a generalized winner-take-all competition.
That is, the criteria in the generalized current domain are chosen as the winners during the
learning process. This is di�erent from the conventional concept of winner-take-all because there
is not necessarily only one criterion in the winner group when the competition is completed.

Let Sa
t denote the actual domain of all winning criteria, and its e-neighborhood be Nt�Sa

t ; e�. The
output signals of the generalized current domain are set to be equal to one. The output signals of
all of the criteria that lose the competition are set to be equal to zero. The output signal is also
called the index parameter It. We use the winning set and its neighborhood to update the weights
of the network. In the following, we will use a simpli®ed illustration to explain the process of our
weight-assessing method.

Fig. 7 is an example that illustrates the weight-updating procedure. For simplicity, we do not
show the connectivity links between criteria in the measurable space (X). Assume that
X � fx1; x2; x3; . . . ; x8g. Suppose that each external information includes only one stimulus in each
stage. When the ®rst information stimulus is input, Sa

1 � fx5; x6g and N1�Sa
1 ; e� � fx7g. Thus, the

output signals of {x5,x6,x7} are set to be equal to one (i.e., on), and the output signals of other
criteria are set to be equal to zero (i.e., o�). Correspondingly, the criterion weights of the winning
set, {x5,x6,x7} will increase, but the weights of other criteria will decrease. Repeat the above
procedure until there are no more information stimuli to be input. At the last stage, we observe
that criterion x6 enjoys the highest weight, the next is x7.

A new weight vector can be formed according to a linear combination of the old weight vector
and the current input vector. Weight corrections are accumulated over an entire epoch of training
patterns (i.e., batch updating). The learning rule of the weight correction is as follows:

wt�1�xi� � wt�xi� � Dwt�xi�: �10�
We de®ne the adjustment factor -i for each criterion xi through the level of charge and the

connectivity function. For each xi 2 Nt�Sa
t ; e�, xk is the precedent criterion of xi so that

C�t �xk; xi� � max C�t �xj; xi� xj 2 Sa
t

��� 	
:

The level of charge of xk is denoted by Qk. The adjustment factor -i is computed by

-i �
Qi if xi 2 Sa

t ;
Qk � Ct�Sa

t ; xi� if xi 2 Nt�Sa
t ; e�;

0; o:w:

8<: �11�

Assume that the input stimulus contains a set of p vectors. Let -i be the average of all -iÕs during
the particular learning iteration; then -i is

-i �
X

p

-i=p: �12�
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Using the average adjustment factor, we can obtain the change Dwt�xi�

Dwt�xi� � st � -i

X
j

-j

, ! "
ÿ wt�xi�

#
; �13�

where st is the learning-rate parameter and its value is chosen by users. Note that the values of
stÕs must be between 0 and 1.

Fig. 7. Simpli®ed illustration of weight assessment.
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Fig. 8 shows the solution procedure for assessing dynamic weights. We ®rst initialize or
survey weights for all of the criteria belonging to X. Under a situation in which the stopping
condition is not satis®ed, the connectivity of each criterion with the existing domain is com-
puted for each stimulus vector. Then we can specify the actual domain in the narrow sense and
its e-neighborhood. The collection of the actual domain and the neighborhood is the gener-
alized current domain. The connectivities between the criteria within the generalized current
domain should be updated until all stimulus vectors have been input. After batch learning,
compute the adjustment value for each criterion. Thus, the weights for all criteria within X can
be derived.

According to the procedure indicated in this ®gure, the authors proposed the algorithm for
solving dynamic weights as shown in the previous study (Tzeng et al., 1998). Thus, we omit the

Fig. 8. Solution procedure of dynamic weights.
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algorithm in this paper. To show the applicability of the weight-assessing model in the route
choice problem, we applied the proposed method to the following empirical case in Taipei
City.

4. Empirical study

The purpose of our empirical study was to determine the in¯uential criteria of commutersÕ
route choice in Taipei City. Two-stage questionnaire surveys were conducted to commuters
and the empirical results can be used to show the feasibility and applicability of the proposed
model.

4.1. Questionnaire design and investigation

When we intend to apply the weight-assessing model, the required input data primarily include
the initial criterion weights, the ideal and actual values for each criterion, and the connectivities
between criteria. Since it is troublesome to specify the ideal values of all criteria, we decided to
adopt a tolerance value for each criterion instead of an ideal value. Therefore, in this study the
di�erence between the tolerance and actual values for each criterion can be used to identify the
level of charge.

To design the input information stimuli for each respondent, we conducted two-stage ques-
tionnaire investigations. In the ®rst stage, we acquired the initial weights, the tolerance and
current values of all criteria, and the connectivities. Then we used the current criterion value of
each person to generate the required scenarios for the second-stage questionnaire. Thus, we could
observe the e�ects of these input information stimuli.

4.1.1. First-stage questionnaire
In the ®rst-stage questionnaire, respondentsÕ socio-economic and demographic characteristics

include gender, age, marital status, education level, profession, and average monthly income. We
determined nine in¯uential criteria related to route choice according to the relevant studies. These
criteria include:

(i) travel time (x1), this refers to the average travel time from the origin (home) to the destina-
tion (work location);
(ii) travel time reliability (x2), this demonstrates the variability of the average travel time;
(iii) travel expense (x3), this includes the recharging cost, the parking expense, etc.;
(iv) travel distance (x4), this refers to the total trip length from the origin to the destination;
(v) driversÕ habits (x5), this is used to determine whether habitual routes exist or not;
(vi) tra�c condition (x6), this refers to the tra�c volume, directness, number of intersections,
tra�c signals, driving speed, and other tra�c-related factors;
(vii) tra�c safety (x7), this refers to the degree of safety during driving;
(viii) tra�c comfort (x8), this refers to the degree of comfort during driving, and it can re¯ect
indirectly roadway characteristics;
(ix) driversÕ familiarity (x9), this refers to driversÕ familiarity with a particular route.
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In general, the evaluation criteria must be independent of each other if the traditional analysis
methods are used. However, the nine criteria selected by this study are more or less dependent;
that is, they are interactive. The interrelation between criteria can be well captured by the con-
nectivity matrix. Thus, even if the nine criteria are not independent of each other, the weight-
assessing method can still be applied to identify the importance of route choice criteria.

In summary, we investigated the initial weights, the tolerance and actual values of all nine
criteria, as well as the connectivity matrix considered by commuters during their usual route-
selection process. Connectivity means the degree of ease from one criterion to another by analogy
and association. The mean value of the connectivity C(xi,xj) for all respondents will be denoted as
C�xi; xj�; then the connectivity network can be constructed correspondingly. On the other hand,
the measurements of criteria x2, x6, x7, x8, and x9 are subjectively judged by respondents on a ®ve-
point scale. For example: the tolerance and actual values of tra�c comfort are labeled as ``very
uncomfortable'', ``uncomfortable'', ``fair'', ``comfortable'', and ``very comfortable''. As for other
criteria, since they are quantitative and crisp, respondents only gave the true value.

The population was the commuters who use private vehicles as their primary mode for intracity
trips within Taipei City. A total of 100 questionnaires were sent out and 93 valid copies retrieved.
Then the second-stage survey was subsequently conducted. Since we wished to implement ex-
perimental design with each respondent, the same persons were interviewed in this stage.

4.1.2. Second-stage questionnaire
Because ATIS is not available in Taiwan, we used ®ctitious situations consisting of various

scenarios instead of true tra�c information. According to the actual values of the criteria ob-
tained in the ®rst-stage survey, we designed the virtual information provided by ATIS person-
by-person for the second-stage questionnaire. Then we investigated the criterion weights
considered by respondents in the various scenarios. It follows that these scenarios were viewed as
the actual criterion values during the learning process of the connectivity network.

In general, there are four types of traveler information in ATIS, including incident information,
en-route guidance, pre-trip guidance, and congestion information. For simplicity, we combined
en-route and pre-trip guidance as guidance information. First, in our experiment we assumed that
the criteria related to congestion information were travel time (x1), travel expense (x3), and tra�c
condition (x6). Next the criteria related to the incident information included travel time reliability
(x2), tra�c safety (x7), and tra�c comfort (x8). Last, the criteria related to the route guidance
information were travel distance (x4), driversÕ habits (x5), and driversÕ familiarity (x9). In addition,
these three information stimuli were classi®ed into six levels: worse-than-current situation amount
to 10%, 30%, and 50%; and better-than-current situation amount to 10%, 30% and 50%. We
summarized the experimental scenarios in Table 3. There are 18 scenarios in our experiment from
Table 3. In the second-stage survey, respondents ®lled in the criterion weights concerning each
scenario.

As mentioned before, we already obtained from the ®rst-stage investigation the tolerance values
of nine criteria based on respondentsÕ commuting experiences. Then the tolerance values were
compared to the actual values for each scenario to ®nd out what criteria might create a change to
the charge structure of drivers. Last, we tested the ®tness of our proposed model through a
comparison between the predicted weight values and the actual weights as elicited from respon-
dents in the second-stage survey.
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4.2. Empirical results for commuters

The statistics of respondentsÕ socio-demographic characteristics are as follows: male respon-
dents comprise 90.3% of the samples, while females comprise 9.7% of the samples; the age group
with the highest proportion was 34.4% 40±49 years old, followed by 30±39 years old (28.0%) and
50±59 years old (20.4%). 30.1% of the respondents were unmarried. Most respondents have re-
ceived high school (49.5%) or college (37.6%) education. The largest proportion of occupations
was public servant, followed by service and commercial sectors. Average monthly incomes ranged
between 45,000±60,000 NT dollars (26.9%) and 30,000±45,000 NT dollars (20.4%).

The average travel time of respondents, calculated as the di�erence between the home de-
parture time and the work arrival time, was found to be 32.8 min, with 65.6% of the samples
having commuting time of 30 min or less. The average travel expense of respondents was 192.5
NT dollars per trip. The average travel distance for the samples was 13.1 km, and 55.9% of the
samples had commuting distance of 10 km or less. Most respondents (80.6%) traveled their
habitual routes ®ve or six days a week. 92.5% of the subjects were familiar with their usual
routes.

Table 3

Experimental scenarios for the route choice problem

Level Congestion information Incident information Guidance information

Worse scenario Scenario 1 Scenario 7 Scenario 13

High (50%) Travel time: +50% Reliability: )50% Travel distance: +50%

Travel expense: +50% Tra�c safety: )50% DriversÕ habits: )50%

Tra�c condition: +50% Tra�c comfort: )50% Familiarity: )50%

Scenario 2 Scenario 8 Scenario 14

Medium (30%) Travel time: +30% Reliability: )30% Travel distance: +30%

Travel expense: +30% Tra�c safety: )30% DriversÕ habits: )30%

Tra�c condition: +30% Tra�c comfort: )30% Familiarity: )30%

Scenario 3 Scenario 9 Scenario 15

Low (10%) Travel time: +10% Reliability: )10% Travel distance: +10%

Travel expense: +10% Tra�c safety: )10% DriversÕ habits: )10%

Tra�c condition: +10% Tra�c comfort: )10% Familiarity: )10%

Better scenario Scenario 4 Scenario 10 Scenario 16

Low (10%) Travel time: )10% Reliability: +10% Travel distance: )10%

Travel expense: )10% Tra�c safety: +10% DriversÕ habits: +10%

Tra�c condition: )10% Tra�c comfort: +10% Familiarity: +10%

Scenario 5 Scenario 11 Scenario 17

Medium (30%) Travel time: )30% Reliability: +30% Travel distance: )30%

Travel expense: )30% Tra�c safety: +30% DriversÕ habits: +30%

Tra�c condition: )30% Tra�c comfort: +30% Familiarity: +30%

Scenario 6 Scenario 12 Scenario 18

High (50%) Travel time: )50% Reliability: +50% Travel distance: )50%

Travel expense: )50% Tra�c safety: +50% DriversÕ habits: +50%

Tra�c condition: )50% Tra�c comfort: +50% Familiarity: +50%
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In terms of the current information used by respondents, 80.6% of the samples stated that they
listened to tra�c reports while en-route and 40.9% indicated that they listened to tra�c reports
before leaving home. Thus, en-route information was more frequently received by respondents
than pre-trip information. Furthermore, 65.6% of the samples were con®dent of the reliability of
tra�c information. Even if current tra�c information is limited in Taiwan, according to our
survey results many drivers still used such information. This ®nding shows that a great market
exists for tra�c information and bright prospects for ATIS can be postulated for the future.

Our study intends to establish an individual behavioral-based analytical model for route choice
criteria. Hence, we conducted a learning process for the connectivity network person-by-person.
The input data included the initial weight of all criteria (W), the connectivity matrix of all criteria
(C), the tolerable values for criteria (q�), and the actual values of the criteria for each input in-
formation stimulus (q). It is noteworthy that this data were input for each respondent individu-
ally. Suppose the learning rate (geometric decrease) is st�1 � 0:5st, where s0 � 0:6. Set the
concentration parameter d � 0:0002, the determinate index b � 0:5, and the threshold parameter
a � 0:6. Additionally, suppose the threshold value for an e-neighborhood of Sa

t is e � 0:7. For the
detailed computing procedure, refer to the study of Tzeng et al. (1998).

We obtained the mean values of C for all respondents through the ®rst-stage questionnaire
survey as shown in Table 4.

Table 4 indicates the connectivities between criteria of the total samples, and the connectivity
stands for the degree of di�culty of being connected from criterion I to criterion II by analogy
and association. The connectivity from travel time to tra�c condition ranks the highest (0.925),
followed by connectivity from tra�c condition to travel time (0.860), from travel time reliability
to tra�c condition (0.849), from tra�c safety to tra�c condition (0.839), and from driversÕ fa-
miliarity to driversÕ habits (0.839). On the other hand, those of lower connectivity are from the
association of driversÕ habits to travel expense (0.237), from travel expense to driversÕ habits
(0.258), from driversÕ habits to tra�c comfort (0.301), and from tra�c comfort to driversÕ fa-
miliarity (0.301).

Table 4

Mean values of C in the ®rst-stage survey result

II

x1 x2 x3 x4 x5 x6 x7 x8 x9

I Travel

time

Time

reliability

Travel

expense

Travel

distance

DriversÕ
habits

Tra�c

condition

Tra�c

safety

Tra�c

comfort

DriversÕ
familiarity

x1 1.000 0.559 0.376 0.817 0.430 0.925 0.538 0.516 0.613

x2 0.505 1.000 0.355 0.419 0.366 0.849 0.355 0.398 0.581

x3 0.602 0.387 1.000 0.323 0.258 0.559 0.344 0.548 0.516

x4 0.806 0.634 0.731 1.000 0.581 0.677 0.495 0.441 0.591

x5 0.323 0.462 0.237 0.484 1.000 0.527 0.624 0.301 0.828

x6 0.860 0.828 0.527 0.495 0.441 1.000 0.645 0.570 0.355

x7 0.473 0.419 0.441 0.591 0.613 0.839 1.000 0.602 0.710

x8 0.452 0.344 0.516 0.559 0.452 0.796 0.634 1.000 0.301

x9 0.731 0.645 0.473 0.667 0.839 0.591 0.699 0.559 1.000

Avg. 0.594 0.535 0.457 0.544 0.498 0.720 0.542 0.492 0.562
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The average connectivity stands for the degree of di�culty of the speci®c criterion being as-
sociated with other criteria, that is, the degree of ease of other criteria that can activate the speci®c
criterion. From Table 4, we know that tra�c condition enjoys the highest average connectivity
(0.720); thus, it can be easily activated by other criteria.

The initial weight wt(xi) of each criterion xi for all respondents was obtained through the ®rst

stage survey, as listed in the following table. Note that
P9

i�1 wt�xi� � 1. Among the nine in¯uential
criteria, the most important criterion is travel time (x1) and its weight is 0.1312; the second is
tra�c condition (x6) with weight 0.1279. The criterion of least importance is driversÕ habits (x5)
and its weight is 0.0814; the next is travel distance (x4) with weight 0.0824.

According to our design procedure, respondents ®lled in the criterion weights regarding 18
experimental scenarios in the second-stage survey. After a pre-test, we learned that this was highly
infeasible and di�cult in practice. Thus, for simplicity we randomly assigned 12 scenarios to
respondents. In other words, respondents were required to answer the weights regarding only 12
scenarios.

In order to judge the performance of the weight-assessing results, we used the average error sum
of squares between the predicted values and the investigated data of criterion weights under ex-
perimental scenarios. Let ŵj

t�xi� and wj
t�xi�, respectively represent the actual value (obtained by

second-stage investigation) and the predicted value of the weight by subject j regarding criterion
xi. Let N be the total number of drivers interviewed (regarding the particular scenario). The
average error sum of squares, Z, for each experimental scenario is de®ned as

Z �

������������������������������������������������������������P
xi2X

PN
j�1 wj

t�xi� ÿ ŵj
t�xi�

h i2

9 �N

vuut
: �14�

We list the average error sum of squares for weight-assessing results in Table 5. From the table
we know that the range of Z values is [0.0008, 0.0042]. This means that the maximal di�erence of
the estimated and actual values is approximately 5% of the investigated value (0.0042±
0:0814 � 0:05�. Thus, the estimated results of criterion weights are very close to the actual data,
indicating excellent performance by using the weight-assessing model to solve dynamic weights for
route choice criteria.

Fig. 9 shows a comparison of the criterion weights under di�erent scenarios of congestion
information. According to our experimental design, the criteria related to congestion information
are travel time (x1), travel expense (x3), and tra�c condition (x6). Thus, as we expected, the
weights of x1, x3, and x6 increase in Scenarios 1±3 under the in¯uence of congestion information.
It should be noted that the weights of travel time and tra�c condition display rapid growth in
Scenarios 1 and 2. The possible reason for this phenomenon is that the original weights for travel
time and tra�c condition are larger than travel expense. Moreover, the average connectivities of
travel time and tra�c condition are greater than travel expense, indicating that the degree of ease
of travel time and tra�c condition activated by other criteria are higher than of travel expense. In

x1 x2 x3 x4 x5 x6 x7 x8 x9

W 0.1312 0.1265 0.1191 0.0824 0.0814 0.1279 0.1252 0.0939 0.1124
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contrast, the weights of these three criteria do not have the obvious change in the better exper-
imental levels such as Scenarios 4±6.

On the other hand, the weights of other criteria except x1, x3, and x6 are decreasing in Scenarios
1±3 because of the high weight values of x1, x3, and x6. In addition, the weights of these criteria
have only little change in Scenarios 4±6.

From Fig. 9, we know that light tra�c information (e.g., Scenarios 4±6) produces a marginal
e�ect on the weight patterns of all criteria. This implies that the criterion weights are not sensitive
to tra�c improvement information. Furthermore, in Scenario 6 the criteria can be divided into
two groups according to their weights: x1, x2, x3, x6, x7, and x9 (wt�xi�P 0:1); and x4, x5, and x8

(wt�xi� < 0:1). On the contrary, the sensitivity of the criterion weights is very apparent in Scenarios
1±3.

In brief, the congestion information has a prominent e�ect on the criterion weights only in
those scenarios worse than the current situation (Scenarios 1±3). It is di�cult to change the
weights through the release of tra�c congestion, since the weight patterns are stable in Scenarios

Fig. 9. Comparison of criterion weights under the di�erent scenarios for congestion information.

Table 5

Average error sum of squares (Z) for weight-assessing results

Information Level

Worse scenario Better scenario

High

(50%)

Medium

(30%)

Low

(10%)

Low

(10%)

Medium

(30%)

High

(50%)

Congestion information Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

0.0011 0.0013 0.0008 0.0010 0.0015 0.0012

Incident information Scenario 7 Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12

0.0017 0.0021 0.0018 0.0012 0.0010 0.0009

Guidance information Scenario 13 Scenario 14 Scenario 15 Scenario 16 Scenario 17 Scenario 18

0.0019 0.0023 0.0042 0.0008 0.0013 0.0016
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4±6. Thus, the e�ective in¯uential range of congestion information falls in the level of worse
10±50%.

The dynamic weights of criteria in the di�erent scenarios of incident information are presented
in Fig. 10. The weights of the criteria related to incident information (x2, x7, and x8) diminish as
the scenario condition becomes better. As for the other criteria, the criterion weights increase
slowly in the better scenarios except for travel distance (x4). The main cause of this special case is
that the in¯uential factors of criterion weights include not only the di�erence between the ideal
(tolerance) and actual values but also the connectivity, random term, and other potential factors.

After the incident rate reduces to Scenario 12, all criteria can be classi®ed into two groups based
on the weight values, including x1, x3, x6, x7, and x9 (wt�xi�P 0:1); and x2, x4, x5, and x8

(wt�xi� < 0:1). We should notice that the criterion weights present the dynamic change in di�erent
scenarios, and they do not seem to show a stable tendency. Hence, the in¯uential range is large
regarding incident information on driversÕ route choice behavior. Furthermore, any incident in-
formation may produce an e�ect on criterion weights.

Fig. 11 depicts the criterion weights under the di�erent scenarios for guidance information. The
weights of travel distance (x4), driversÕ habits (x5), and driversÕ familiarity (x9) related to guidance
information decrease from Scenarios 13 to 18. It is not necessary for other criteria to tend to
increase in the better scenarios. For example, the weight of tra�c safety (x7) is maximal in Sce-
nario 15 among all experimental scenarios.

The criteria of x1, x2, x3, x6, and x7 can be grouped into the same class in Scenario 18
(wt�xi�P 0:12). Moreover, the weights of these criteria show little change in Scenarios 16±18. On
the other hand, the weights of x4, x5, x8, and x9 show an obvious change in Scenarios 16, 17, and
18. Thus, we can infer that the route guidance information signi®cantly a�ects the weights of x4,
x5, x8, and x9 in the better scenarios.

Fig. 12 shows the weight comparison for travel time (x1) under all experimental scenarios.
Among 19 scenarios (including the original situation), only the weight in Scenario 7 is smaller

Fig. 10. Comparison of criterion weights under the di�erent scenarios for incident information.
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than 0.1; thus, the weights for travel time are high on average. On the other hand, the weight of
travel time increases in the better scenarios of incident and guidance information. Consequently,
we know that drivers attach importance to travel time without incidents or with better route-
guidance messages. Finally, the maximum of the weight value is as high as 0.2367 in Scenario 1. In
addition, even in the better situations of congestion information (e.g., Scenarios 4±6) the weight
does not decrease very much. Thus, drivers are still concerned about travel time even when there
are no tra�c jams.

The weight comparison of travel time reliability (x2) under all scenarios is indicated in Fig. 13.
Since incident information will produce uncertainty in travel time, the weight of travel time re-
liability has a drastic change from Scenarios 7 to 12. In addition, the weight decreases in the worse
scenarios of congestion and guidance information, and stabilizes in the better scenarios.

The weights for travel expense (x3) do not have marked changes, as shown in Fig. 14. Thus, the
importance of travel expense considered by drivers does not show great variation in di�erent

Fig. 11. Comparison of criterion weights under the di�erent scenarios for guidance information.

Fig. 12. Weight comparison of travel time (x1) under the experimental scenarios.
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scenarios. The main cause of unvarying importance may include a low sensitivity to travel ex-
pense. Additionally, drivers, except for Scenario 1, do not think the di�erent scenarios have
di�erent in¯uences on travel expense. Moreover, since the proportion of the parking expense is
obviously larger than the recharging cost for many respondents, the saving of recharging costs
(resulting from external information) is not critical. Thus, the weight change in travel expense
among di�erent scenarios is not clearly apparent.

Fig. 15 indicates that the weights for travel distance (x4) do not signi®cantly vary with the
experimental scenarios of congestion and incident information. On the other hand, the weights for
travel distance decrease from Scenarios 13 to 18 for guidance information. Unlike x1, x2, and x3,
the weights of x4 are larger than 0.1 only in two scenarios. Thus, travel distance acquires low
importance on average.

From Fig. 16, we know that the weight values for driversÕ habits (x5) are low level under congestion
and incident information. Especially, the weights in Scenarios 1, 7, and 8 are smaller than 0.05. It is
noted that the weights show a substantial increase in Scenarios 15, 14, and 13 (wt�x5� > 0:1). Thus,
when guidance information signi®cantly deviates from driversÕ habits, more attention will be given

Fig. 14. Weight comparison of travel expense (x3) under the experimental scenarios.

Fig. 13. Weight comparison of travel time reliability (x2) under the experimental scenarios.
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to this criterion x5. In addition, the weights of driversÕ habits make no di�erence in the better
scenarios (from the original to better 50%), and the values are about 0.08.

The weights of tra�c condition (x6) in all scenarios are very high, as indicated in Fig. 17. For
example: the weights in Scenarios 1 and 2 are, respectively, 0.2435 and 0.1776. Except for Scenario
13, the weights in all scenarios are greater than 0.1. The weights of tra�c condition do not ob-
viously decrease even in the better scenarios for congestion information. Furthermore, the im-
portance of tra�c condition enhances gradually without the in¯uence of incidents. Finally, the
weight patterns are similar under incident and guidance information.

Fig. 18 shows the weight comparison for tra�c safety (x7) under the experimental scenarios.
Incident information has a great e�ect on tra�c safety, especially in the worse case situations (i.e.,
Scenarios 7, 8, and 9). When an incident occurs, the di�erence between the actual and ideal values
for tra�c safety is enlarged and the weight of tra�c safety will increase correspondingly. The
weight of tra�c safety has a special change in Scenario 15 of guidance information. As for
congestion information, the weight change varies little among the experimental scenarios. Since
tra�c safety is closely related to matters of life and death, the weights for tra�c safety are rel-
atively high on average and the weights are larger than 0.12 in many scenarios.

Fig. 16. Weight comparison of driversÕ habits (x5) under the experimental scenarios.

Fig. 15. Weight comparison of travel distance (x4) under the experimental scenarios.
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From Fig. 19, we know that the weight pattern for tra�c comfort (x8) is similar to tra�c safety
under the congestion information. In incident information, the weights increase when the scenario
condition becomes worse. Additionally, the weights for the same scenario level are almost equal in

Fig. 18. Weight comparison of tra�c safety (x7) under the experimental scenarios.

Fig. 19. Weight comparison of tra�c comfort (x8) under the experimental scenarios.

Fig. 17. Weight comparison of tra�c condition (x6) under the experimental scenarios.
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congestion and guidance information. Since half of the weights in all scenarios are smaller than
0.1, the weights of tra�c comfort are medium in our experiment.

As Fig. 20 indicates, the weights of driversÕ familiarity (x9) are low in Scenarios 1±3 of con-
gestion information, and there is no apparent change from the original situation to Scenario 6.
The weights of driversÕ familiarity increase from Scenarios 7 to 12 under incident information.
However, the weights of driversÕ familiarity decrease under guidance information. When the route
guidance message deviates greatly from driversÕ familiar routes, the weight of driversÕ familiarity
will signi®cantly increase.

Based on the aforementioned analysis process, we investigate the information e�ect on driversÕ
route choice behavior through the dynamic changes in criterion weights. The empirical results
perform well in the average error sum of squares for all 18 experimental scenarios. Furthermore,
the prominent criteria can be selected according to their dynamic weights, and these criteria
provide the behavioral basis for dynamic tra�c assignment. Since tra�c assignment must follow
the route choice criteria, our dynamic weight-assessing model is, in fact, fundamental for devel-
oping the dynamic tra�c assignment models. Moreover, the empirical result also demonstrates
the outstanding applicability of the proposed model in the route choice problem. Therefore, we
suggest that the weight-assessing model can be applied to explore the prominent criteria under the
in¯uence of ATIS in the future.

5. Conclusions

From a behavioral perspective, the criteria with higher activation possibilities tend to have a
prominent e�ect on driversÕ route choice behavior. Since the importance of the criteria is the
crucial key to control the in¯uential criteria in formulating a route, we provided a method to
assess the criterion weights for determining the route-selection criteria. Our proposed method
does not require independence between criteria. Instead, the interrelation between criteria can be
truly described through the connectivities. Thus, the proposed method demonstrates more
practical ¯exibility than other weighting methods do.

Fig. 20. Weight comparison of driversÕ familiarity (x9) under the experimental scenarios.
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An empirical study on identifying commutersÕ route-selection criteria was conducted in Taipei
City. According to the experimental results, weights do indeed seem to vary dynamically.
Moreover, the results show satisfactory performance by applying the weight-assessing method to
derive dynamic criterion weights. Furthermore, we also investigated the information e�ects of the
experimental scenarios on route choice. These information e�ects can provide some valuable
suggestions for the future implementation of ATIS or ITS.

In our empirical study, we ®xed the origin and destination as the experiment progressed for
simplicity. However, if simulators or ATIS become available, researchers can apply our proposed
model as well by adjusting the criterion values according to the variable origin/destination. In
other words, researchers only need repeat the weight-assessing procedure to derive the dynamic
weights, and then the critical criteria of route choice can be obtained correspondingly. Thus, the
e�ects of ATI route choice can be easily investigated in practice, and the en-route switching rule
can be also speci®ed for ATIS. Another suggestion for future research is that the related criteria
for each information type can be rede®ned according to the actual contents of the information
supply. In addition, the correlation analysis of social-economic characteristics and the weight
change can be conducted as the basis of market segment.
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