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SUMMARY
In this paper, we describe the theory underlying an empirical Bayesian approach to monitoring two or more process
characteristics simultaneously. If the data is continuous and multivariate in nature, often the multivariate normal
distribution can be used to model the process. Then, using Bayesian theory, we develop techniques to implement
empirical Bayes process monitoring of the multivariable process. Lastly, an example is given to illustrate the use
of our techniques. Copyright 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When monitoring a process, one often has data on
several variables that simultaneously impact quality
or the yield of the process. In addition, two or more
variables can ‘interact’, so that even if each variable
is within its specification limits, the product may
not function. These situations make it imperative to
monitor more than one variable at the same time.

Many authors have investigated methods of
monitoring multivariate continuous data. In 1947,
Hotelling [1] developed his multivariate ‘T 2’ statistic
for quality control purposes. Multivariate generaliza-
tions of the CUSUM procedure have been studied
by Woodall and Ncube [2] and Crosier [3]. Lowry
et al.[4] developed and investigated multivariate expo-
nentially weighted moving averages to identify qual-
ity problems. The use of multivariate exponentially
weighted moving averages in monitoring multivariate
data have been enhanced by Rungeret al. [5]. Mon-
itoring principal components of multivariate data has
been studied by Mastrangeloet al. [6]. We propose
developing empirical Bayesian techniques to monitor
multivariate continuous data.

Using a Bayesian approach to monitor process data
is not entirely new. In the univariate setting, Sturm
et al. [7] developed empirical Bayesian techniques
to monitor continuous data. For count data, Yousry
et al. [8] used a binomial model with a beta prior
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to monitor yield and defect data. These techniques
were found to be very useful in industrial settings. In
the multivariate framework, Jainet al. [9] described
a Bayesian approach to multivariate quality control.
In their paper, they showed that their multivariate
control chart procedure was better at identifying out-
of-control processes than existing procedures.

In this paper, we describe the theory underlying
an empirical Bayesian approach to monitoring multi-
variate continuous data, generalizing the approaches
developed by Jainet al. [9] and Sturmet al. [7]. Using
this theory, we develop methods to implement the
empirical Bayes process monitoring for multivariate
normal data. In addition, discussions on improving
estimation of the process parameters and tips on how
to implement the empirical Bayes technique in an
industrial environment will be provided. Lastly, an
example to illustrate the use of the empirical Bayes
process monitoring is given.

2. EMPIRICAL BAYESIAN THEORY FOR
MULTIVARIATE PROCESS CONTROL

Suppose that we want to monitorp process
characteristics simultaneously. Define the value of the
process characteristics at timet to be Xt . This is a
vector of observations, each an observation of one of
thep process characteristics. Because our multivariate
observationXt has sampling error, assume that, at a
given timet , it is normally distributed about a mean
vector µt with variance–covariance matrix6. The
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probability density function (pdf) forXt givenµt is

g1(Xt |µt ) = 1

(2π)p/2|6|
× exp

[
−1

2
(Xt − µt )

′6−1(Xt − µt )

]

(1)

whereµt is the average process response at timet

and6 is an unknown non-negative matrix. Although
we allow the process average to change over time, we
assume that the sampling variability6 is constant.

To model the process average’s changes over time,
assume thatµt is distributed as a multivariate normal
with mean vectorµ and variance–covariance matrix
G. The probability density function forµt is

g2(µt |µ) = 1

(2π)p/2|G|
× exp

[
−1

2
(µt − µ)′G−1(µt − µ)

]

(2)

Notice that the above model allows two sources of
variability: (i) the sampling variability, indicating the
amount of spread present between samples if the
process is not changing; and (ii) process variability,
indicating the amount of variability due to process
changes over time. This generalizes the approach
of Jain et al. [9]. In their 1993 paper, Jain and
his coauthors assumed that the underlying process
variability is the same as the sampling variability, i.e.
G = 6. In our work in the electronics industry,
we found that by allowing the process to have
its own variability, we gained information about
the process behavior as well as information about
how the sample behaves around the process mean.
Allowing the process variability to be different from
the sampling variability will make our estimation
of process parameters more difficult, but also more
rewarding.

Our problem is then to estimate the location of
the process at timet , using the prior information of
where the process was at timet − 1 and the current
observationXt . Using Bayes Theorem, the pdf of the
conditional distribution ofµt givenXt is

f (µt |Xt ) = g1(Xt |µt )g2(µt )∫
g1(Xt |µt )g2(µt )dµt

(3)

This distribution is known as a posterior distribution
in Bayesian terminology, with equation (2) called
the prior distribution ofµt . It is easy to derive that
this posterior distribution,f (µt |Xt ), is a multivariate
normal distribution with mean

E(µt |Xt ) = Xt − 6(6 + G)−1(Xt − µ) (4)

and variance–covariance matrix

COV(µt |Xt ) = 6 − 6(6 + G)−16 (5)

LettingW = 6(6 + G)−1 be a weighting matrix, the
posterior mean (4) can be rewritten as

Wµ + (I − W)Xt (6)

Intuitively, it is difficult to see what effectW has on
the posterior mean. However, if6 andG are diagonal
matrices (i.e. there is no correlation between process
characteristics) thenW is also a diagonal matrix, and
it is easier to see the effect ofW. Those components
of W which are large indicate that the corresponding
process characteristics have a large sampling variation,
which will pull the estimate of the process mean for
those process characteristics at timet toward their
prior means. Similarly, components ofW which are
small indicate a large process variation compared to
the sampling variability will pull the estimate of the
process mean at timet toward the current observation,
Xt . Usually in practice, there is correlation between
process characteristics and the effect ofW is not so
clear.

With the components of the model in place, we can
now focus on using the process data to estimate the
different components.

3. ESTIMATING THE PROCESS PARAMETERS

In estimating the process parameters, consider first the
overall process mean vector,µ.

3.1. Estimatingµ (the overall process mean)

To estimateµ, note that expected value ofXt is

E(Xt ) = Eµt EXt (Xt |µt ) = µ (7)

for any time t . Because eachXt is an unbiased
estimate ofµ, a reasonable estimator ofµ, µ̂, is the
overall average of theXt ’s. Assume that we have
observedn data vectorsX1, . . . , Xn. Then

µ̂ = 1

n

n∑
t=1

Xt (8)

Next we must estimate the sampling and process
variability. If one had multiple independent obser-
vations at timet , one could estimate the sampling
variance,6, using standard formulas. However, in our
experience, replications are usually not available.

To circumvent this obstacle, we need to assume
that theµt are fairly stable, i.e. the process mean is
not shifting uncontrollably all of the time. Assuming

Copyright 2001 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2001;17: 119–124



MULTIVARIATE PROCESS CONTROL CHART 121

that the process average at timet remains relatively
constant over short time intervals, the correlation
betweenµt and µt+1 is close to 1 when the time
intervals of taking data are small. If there is very little
time lag between theXt ’s, consecutiveXt ’s can be
thought of as independent random variables from the
same distribution. Under this assumption, one estimate
of 6 is

6̂ = 1

2n

n∑
t=1

(Xt − Xt+1)(Xt − Xt+1)
′ (9)

3.2. EstimatingG (the process variance–covariance
matrix)

In estimating G, we first note that the overall
variance ofXt can be expressed by the variance–
covariance matrix

V = E(Xt − µt )(Xt − µt )
′ = 6 + G (10)

Usingµ̂ in equation (8) as an estimator forµ, then the
overall variance ofXt can be estimated in the usual
way by

V̂ = 1

n

n∑
t=1

(Xt − µ̂)(Xt − µ̂)′ (11)

With our estimator of6 and our estimator of the
overall variation ofXt , V, we can estimateG by
subtraction. That is,̂G = V̂ − 6̂.

The reader may note that we are using the maximum
likelihood estimate of the variance and covariance,
where the denominator is the number of data points
instead of the unbiased estimator in which one is
subtracted from the number of data points in the
denominator. This will aid us in the weighted case to
be presented in Section4.

Although we have all the key estimators in
place, implementing Bayesian process monitoring in
a manufacturing environment requires some special
features.

4. IMPLEMENTING EMPIRICAL BAYESIAN
PROCESS CONTROL

When simulating the behavior of their Bayesian
multivariate process monitor, Jainet al. [9] found that
their estimate of the prior mean contained all previous
data points from 1 ton − 1. For many processes this
could be a disaster, as the process mean would soon be
weighted down with ‘old’ data. Sturmet al. [7] found
a way around this problem in the univariate case by
giving the current data more weight than older data.

By using a weighting factor that is less than one, an
exponentially weighted moving average is created. By
incorporating the weighting into the empirical Bayes
approach, we maintain our distributional structure, so
that we can partition the variability into the sampling
and process variability as well as using the distribution
to identify shifts in the process mean. An added benefit
is that we never have to delete data from the system.
Old data is automatically weighted out.

To incorporate weighting into our estimators,
assume theXt ’s are ordered in time (X1, X2, . . . , XT )
so thatXT is the most recent observation. Then let

µ̂ =
∑T

t=1 λT −tXt∑T
t=1 λT −t

(12)

6̂ =
∑T

t=1λ
T −t (Xt − Xt−1)(Xt − Xt−1)

′

2
∑T

t=1λ
T −t

(13)

V̂ =
∑T

t=1λ
T −t (Xt − µ̂)(Xt − µ̂)′∑T

t=1λ
T −t

(14)

Hereλ defines the weight given to each time period,
whereλ is an arbitrary number (usually 0.80 < λ <

1.0). The choice ofλ depends on the process. If data
taken 50, 100 or 200 observations ago are no longer
relevant to where the process is currently, then the
λ should be chosen appropriately. To weight away
data that is 50 observations ago,λ is chosen to be
0.832. Similarly, to weight away data that is 100 or
200 observations ago,λ = 0.912 andλ = 0.955,
respectively.

To make the analysis more computationally
efficient, the above weighted estimators can be written
in the form of recursive equations. Then one need
only take the previous estimate of the process mean,
sampling variance–covariance and process variance–
covariance matrix and update with the current
observation. The recursive equations are given below.

Given the observation vectorsX1, X2, . . . , Xt , for
theith variable, denote the sample mean byx̄i,t and the
sample variance bŷv2

i,t , and the covariance of theith
andj th variables bŷvij,t . v̂ij,t is the (i, j )th element of
the matrixV̂ at the timet andv̂2

i,t = v̂ii,t . Without the
weighting factor, recursive estimation formulas of the
mean and overall variance at timet for theith variable
are given by:

x̄i,t = x̄i,t−1 + xi,t − x̄i,t−1

t
(15)

and

v̂2
i,t = (t − 1)v̂2

i,t−1

t
+ (t − 1)(xi,t − x̄i,t−1)

2

t2 (16)
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The covariance of theith andj th variables at timet
are:

v̂ij,t = (t − 1)v̂ij,t−1

t

+ (t − 1)(xi,t − x̄i,t−1)(xj,t − x̄j,t−1)

t2
(17)

Also, for the(i, j)th element of the matrix̂6 at time
t , denoted bŷσij,t , the recursive formula is given by

σ̂ij,t = 2(t−1)σ̂ij,t−1+(xi,t −xi,t−1)(xj,t − xj,t−1)

2t
(18)

In the weighted case, the recursive formulas are
more complicated. For the mean computation, we
simply multiply the previous average with the old sum
of the weights, multiply by the weighting factor, add
the new data point, and divide by the new weight.
Operations are similar for computing the variance and
covariance. Denote the sum of the weights at timet by
wt = ∑t

k=1 λt−k. Then the recursive formulas for the
mean, variance and covariance are

x̄i,t = λwt−1x̄i,t−1 + xi,t

wt

(19)

v̂2
i,t = λwt−1(v̂

2
i,t−1+(x̄i,t −x̄i,t−1)

2) + (xi,t −x̄i,t )
2

wt

(20)

v̂ij,t = λwt−1(v̂ij,t−1+(x̄i,t −x̄i,t−1)(x̄j,t −x̄j,t−1))

wt

+ (xi,t − x̄i,t )(xj,t − x̄j,t )

wt

(21)

The(i, j)th element of6̂ at timet can be recursively
computed by

σ̂ij,t = 2λwt−1σ̂ij,t−1+(xi,t −xi,t−1)(xj,t −xj,t−1)

2wt

(22)

To identify process drifting, the decision rule
developed by Jainet al. [9] will be used. Letµ∗ and
6∗ be the mean and covariance matrix obtained from
a set of in-control data. Then, denoting our posterior
mean as

µ∗
t = Xt − 6(6 + G)−1(Xt − µ)

= Xt − 6V−1(Xt − µ) (23)

the test statistic is the quadratic form

Bt = (µ∗
t − µ∗)′(6∗)−1(µ∗

t − µ∗). (24)

The test statistic is then compared to a critical value,
Cp = χ2

p,0.9973, the 99.73th percentile of a chi-
square withp degrees of freedom, which corresponds

Table 1. Variables and their target means

Characteristic Variable name Target value

Outside diameter X1 90.0
Width X2 19.7
Seat height X3 25.2
Seat angle X4 0.48
Seat concentricity X5 4.52

Table 2. The sample covariance matrixV̂

Variable X1 X2 X3 X4 X5

X1 8.990 0.137 0.223 0.067−0.055
X2 0.137 0.830 −0.122 −0.030 −0.050
X3 0.223 −0.122 2.220 0.589 0.041
X4 0.067 −0.030 0.589 0.310 0.004
X5 −0.055 −0.050 0.041 0.004 0.830

to the regular 3-sigma control chart limits and
wherep is the number of variables being monitored
simultaneously. In the empirical Bayes setting, all the
prior parameters in equation (23) and (24) are replaced
by the corresponding estimates in equations (12),
(13) and (14), which can be computed recursively by
equations (15) to (17) for the unweighted case, and by
equations (18) to (22) for the weighted case.

An example of the technique is given in the
following section.

5. AN ILLUSTRATIVE EXAMPLE

The example presented in Jainet al. [9] will be
used to illustrate the multivariate empirical Bayesian
technique. In this example, data from a machining
operation for valve seat inserts is presented. The
variables and their target means are given in Table1.

Using all the data, Jainet al. [9] computed the
sample covariance matrix shown in Table2.

Jainet al.[9] then used ten observations to illustrate
their multivariate Bayesian procedure. Because the
covariance matrix above includes all the data, over a
span of time, this covariance matrix would correspond
to our V̂ = 6̂ + Ĝ. Without additional information,
let 6̂ = Ĝ = V̂/2. Similarly, let the target values be
the initial prior estimate of the mean. Let the target
values also be theµ∗ in the test statistic,B1. Then
letting our weighting factor,λ = 0.9, we can monitor
the ten observations and use the results to get a more
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Table 3. Results from ten observations

Observation X1 X2 X3 X4 X5 Posterior mean Bi

Target 90.0, 19.7, 25.2, 0.48, 4.52
1 93 20.0 24.0 0.0 5.0 91.6, 19.9, 24.6, 0.22, 4.77 1.3
2 90 18.0 25.0 0.0 5.0 90.6, 18.9, 24.9, 0.13, 4.87 3.1
3 90 19.0 26.0 1.0 6.0 90.1, 19.1, 25.5, 0.65, 5.42 3.0
4 94 18.0 26.0 1.0 3.0 92.1, 18.8, 25.8, 0.91, 4.35 4.5
5 91 20.0 27.0 1.0 6.0 91.9, 19.1, 26.1, 0.76, 4.46 2.4
6 88 20.0 25.0 0.0 6.0 89.9, 19.5, 25.1, 0.26, 4.91 0.9
7 95 21.0 25.0 0.0 5.0 91.9, 20.3, 25.1, 0.11, 5.12 4.0
8 91 20.0 28.0 2.0 5.0 91.9, 19.9, 26.3, 0.91, 4.64 2.2
9 93 19.0 25.0 1.0 4.0 91.4, 19.4, 25.6, 0.94, 4.74 2.6

10 92 21.0 25.0 0.0 3.0 90.8, 20.2, 25.4, 0.61, 4.11 1.2

Table 4. Estimate of6

Variable X1 X2 X3 X4 X5

X1 5.555 0.114 −0.743 −0.282 −0.861
X2 0.114 0.723 0.025−0.120 0.183
X3 −0.743 0.025 1.39 0.581 0.243
X4 −0.282 −0.120 0.581 0.372 0.115
X5 −0.861 0.183 0.243 0.115 0.809

Table 5. Estimate ofG

Variable X1 X2 X3 X4 X5

X1 0.519 0.094 0.711 0.327 0.196
X2 0.094 0.166 −0.110 −0.020 −0.199
X3 0.711 −0.110 0.181 0.037−0.030
X4 0.327 −0.020 0.037 0.026−0.062
X5 0.196 −0.199 −0.030 −0.062 0.211

up-to-date estimate of the process meanµt , 6̂ andĜ
as shown in Table3. (We chose the weighting factor to
beλ = 0.9 to see how much the sampling covariance
matrix 6̂ and the process covariance matrixĜ differ
at the end of the eight runs. A largerλ moves the
estimates more slowly from the prior distribution.)

The cut-off point for the test statistic isχ2
5,0.9973 =

18.2, so none of the observations were close to being
significant. After the ten observations, our estimates of
6 andG are shown in Table4 and5 respectively.

Note that the process variance for each of the
variables is substantially smaller than the sampling
variance. When implementing the empirical Bayes
process monitoring in factories, we usually found the
process variance was much smaller than the sampling
variance.

6. CONCLUSION

This paper develops a method for monitoring
continuous multivariate data using an empirical Bayes
model. The empirical Bayes model gives us process
information as well as sampling information about
the process parameters being monitored. By putting
a multivariate normal structure on the data, we can
identify correlations between the variables that may
have an effect on the quality of our product. By
estimating both the process variation as well as
the sampling variation, we get a more thorough
understanding of our process.

APPENDIX A. SAS PROGRAM FOR
MULTIVARIATE EMPIRICAL BAYES PROCESS

MONITORING

proc iml;
infile ’data.dat’;
v={
8.990 0.137 0.223 0.067 -0.055,
0.137 0.830 -0.122 -0.030 -0.050,
0.223 -0.122 2.220 0.589 0.041,
0.067 -0.030 0.589 0.310 0.004,
-0.055 -0.050 0.041 0.004 0.830};
testsig=v/2.0;
sig=v/2.0;
lambda=.9;
w=1/(1.0-lambda);
gamma=sig;
print sig;
print gamma;
priormu={90.0, 19.7, 25.2, 0.48, 4.52};
x=priormu;
oldxbar=priormu;
oldx=priormu;
do data;
input x1 x2 x3 x4 x5;
x[1]=x1;
x[2]=x2;
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x[3]=x3;
x[4]=x4;
x[5]=x5;
print x;
xbar=w*lambda*oldxbar+x;
xbar=xbar/w;
v=w*lambda*v+(xbar-oldxbar)*(xbar-oldxbar)

‘+(x-xbar)*(x-xbar)‘;
v=v/w;
sig=2.0*w*lambda*sig+(x-oldx)*(x-oldx)‘;
sig=sig/(2.0*w);
postmu=x-sig*(v**-1)*(x-xbar);
b1=(postmu-priormu)‘*(testsig**-1)

*(postmu-priormu);
oldx=x;
oldxbar=xbar;
print xbar;
print postmu;
print b1;
end;
print v;
print sig;
gamma=v-sig;
print gamma;
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