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Hsin-Chia FyMember, IEEE Yen-Po Lee, Cheng-Chin Chiang, and Hsiao-Tien Pao

Abstract—A novel modular perceptron network (MPN) and
divide-and-conquer learning (DCL) schemes for the design of
modular neural networks are proposed. When a training process
in a multilayer perceptron falls into a local minimum or stalls in
a flat region, the proposed DCL scheme is applied to divide the
current training data region (e.g., a hard to be learned training
set) into two easier (hopely) to be learned regions. The learning
process continues when a self-growing perceptron network and
its initial weight estimation are constructed for one of the newly
partitioned regions. Another partitioned region will resume
the training process on the original perceptron network. Data
region partitioning, weight estimating and learning are iteratively
repeated until all the training data are completely learned by the
MPN. We have evaluated and compared the proposed MPN with
several representative neural networks on the two-spirals problem
and real-world dataset. The MPN achieves better weight learning
performance by requiring much less data presentations (99.01%
~ 87.86% lesse} during the network training phases, and better
generalization performance (4.0%bettel), and less processing time
(2.0% ~ 81.3% lesse} during the retrieving phase. On learning
the real-world data, the MPN's show less overfitting compared
to single MLP. In addition, due to its self-growing and fast local
learning characteristics, the modular network (MPN) can easily
adapt to on-line and/or incremental learning requirements for a
rapid changing environment.

Index Terms—DPivide-and-conquer learning, modular percep-
tron network, multilayer perceptron, weight estimation.

. INTRODUCTION

ULTILAYER perceptrons (MLPs) have been widely

used in various types of applications [21] due to their
abilities to capture the underlying global structure and to
generalize on untrained data. However, two issues are usually
encountered in applying backpropagation learning on some
fairly difficult problems: 1) how to successfully and fast
converge to a learning goal and 2) how to predict a proper
network size (e.g., the number of hidden neurons or layers).
Alternative approaches have been proposed in pursuit of faster
learning algorithms and efficient learning architectures. Hanson
proposed the Meiosis networks [13] and Wynne-Jones [29]
used the node splitting methodology to alternate hidden node
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sizes and structures to achieve a flexible learning architecture
in an MLP. Cascade-correlation networks [9] were proposed
to recursively augment hidden nodes and hidden layers of
an MLP. According to these methods, an MLP can adjust its
hidden nodes as well as hidden layer so that the networks can
learn a fairly difficult problems, such cases include problems
possessing strong nonlinearities, problems with many inputs or
systems with many state variables, or problems having a large
noise component. However, sometimes, these methods may
expand the size of an MLP larger than necessary. Alternatively,
committee machines were proposed. The idea of using a
committee machine to realize a complex task may be traced
back to Nilsson [24] in 1965; the network consisted of a layer
of elementary perceptrons followed by a vote-taking perceptron
in the second layer. This approach is based on commonly
used engineering principle: divide and conquer. According to
this principle, a complex supervised learning is achieved by
distributing the learning task among a number of experts (a
simple MLP), which in turn divides the input space into a set
of subspaces. The combination of experts is said to constitute
a committee machine. Committee machines can be classified
into two major categories [15].

1) Static Structureln this class of committee machines, the
responses of several experts are combined by means of
a method that does not involve the input signal. Major
approaches in this class are:

e ensemble averagiri@3], [14], where the outputs of
different experts are linearly combined to produce
an overall output;

« boosting[10], [6], [7], [28], [27], where a weak
learning algorithm is converted into one that
achieves arbitrarily high accuracy.

The ensemble averaging or boosting based committee
machines rely on the learning algorithm itself to do
the integration. Ensemble averaging improves error
performance by: 1) reducing of error due to bias by pur-
posely overfitting the individual experts or 2) reducing
of error due to variance by using different initial condi-
tions in the training of the individual experts, and then
ensemble-averaging their respective outputs. Boosting
improves error performance: 1) by filtering [27], [10]
the distribution of the input data in a manner causing the
weak learning models (i.e., experts) to eventually learn
the entire distribution or 2) by resampling the training
examples according to a certain probability distribution
as in the AdaBoost [11], [8]. The advantage of AdaBoost
over boosting by filtering is that it works with a training
sample of fixed size.

1045-9227/01$10.00 © 2001 IEEE
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2 Dynamic Structureinstead of having a global network,region, in the meantime the original MLP continues to learn the
several modular nets are used to learn the whole inpeaisy region. The divide and conquer process continues until all
space. Also, the input space is split up into several regioriBe training data are learned successfully. It can be seen that
and each modular net is trained to approximate the ddkte number of input data subregions and the number of MLP
in the designate region. The outputs of the modular netabnets were created by the system itself, instead of being pre-
are mediated by an integrating unit to produce the findicted by neural network designers or users. Before the stan-
output. Major architectures in this class are: dard error backpropagation learning process is conducted in a

* mixture of expert§ME) [16]: Mixture of experts subnet, weight estimation for the subnet is applied first. The
claim that it can be viewed either as a modulaWE method, which is motivated by Oriented principal compo-
version of multilayer supervise network, and/or agent analysis [5], seeks to guide the initial weight vector toward
an associative version of competitive learning. Ithe desired orientation, such that faster weight learning and less
this design, the training of a local expert on a givesubnet creating can be achieved during the construction of the
training case can alleviate interference from thMPNs.
weights within other local expert; To observe the feasibility and effectiveness of the proposed

» gated experfl]: Instead of using a probabilistic modular network, we applied DCL to learn the two-spirals
formulation in the gating network [16], an algo-problem (TSP) [19] and to classify the Pima Indians diabetes
rithm called optimization theory framework wasdataset [22] for purposes of evaluation and comparison.
adopted in the gated network to combine all thAccording to our experimental results, DCL with the WE
outputs of the expert networks to produce thecheme can effectively deal with the slow learning and the
final output. The algorithm also slices up the inputinpredictable network size (i.e., the number of hidden units)
space and approximates each of the partitiongaioblems in the design of an MLP-based system. Compared to
regions using an expert network, separately. Whehe cascade correlation network [9] with 17 (or 10) layers and a
comparing with the backpropagation algorithm¢onventional 2—-30—1 neural network using hybrid fast learning
this method achieved considerable improvemensghemes [18], the learning time of an MPN is about 8.24 to
particularly for hard problems; 108.14 times faster. In order to see the quality of the decision

* hierarchical mixture of experttHME) [17]: In this boundary generated by the proposed methods, we present here
architecture, the individual outputs of the experta few sets of testing data, which are located around the original
are combined by means of several gating networRs$SP sample data (cf. Section IlI-A-2). The average generaliza-
arranged in a hierarchical manner. tion performance of the MPN can reach 97.97%. However, the

As to previous research on modular neural networks, we ré¥erage generalization performance of the ca§cade—correlation
ommend two papers [2], [25] and references therein for a md}gtworks.can only reach. 96.25?/9. On the Pllma dataset, the
complete survey. The advantages of using various types of mi4PN achieves an averaging training and testing performance
ture of experts are: 1) splitting the whole input space into smal@} 78% and 76%, respectively. This result seems to outperform
regions can accelerate the learning processes; 2) partitioningdgoost slightly [11] but this comparison is less compelling.
global network into several modular can imply a reduction of 1he rest of this paper is organized as follows. Section II
the number of parameters (i.e., weights): 3) using one modieesents the architecture of the MPN, DCL and the WE method.

to learn one subregion of input data can avoid the interferei@eSection Ill, simulation results are presented and compared
matters, such as temporal and/or spatial crosstalk. with some other neural networks. Finally, concluding remarks

However, some problems remain to be solved so that mdy€ given in Section IV.
ular network can be efficiently implemented for various appli-

cations: II. M ODULAR PERCEPTRONNETWORKS

1) howto splitthe input space properly, such that the decom-
position can be beneficial to both learning and generaliz
tion;

2) how to decide the proper number of experts in a co
mittee machine for a particular task.

Most of previously proposed modular neural networks
ﬁ\’/INNs) demand designers and users to specify the number of
subnets during system configuration. However, because a user
rPﬁay not know the target problems very well, then this specifi-
cation would be difficult for estimate. Unlike existing MNN,
Frequently, these problems were handled by trial and error.the proposed MPN does not require the designer or the user to
this paper, we propose a new approach for the design of gisecify the number of subnets for solving any given problems.
MLP based modular neural networks, the modular perceptrhe designer just needs to specify a general architecture for
network (MPN). the MPN (cf. Section 1I-A). The proposed DCL scheme can
In this new approach, we have designed two learning algadtomatically create new subnets according to the particular
rithms: one is the error correlation basdiide-and-conquer problem’s needs during the learning phase. The design of the
learning (DCL) scheme [3], and the other is theeight esti- DCL scheme and MPN is also motivated by the concept of
mation (WE) method [20]. According to the error correlationdivide-and-conquer strategy. Initially, the MPN contains only
scheme, the DCL divides a complex training data set into tvame subnet. When the learning status of the subnet cannot be
subsets, one is an easy to learn region, and the other is a haridyoroved further, the MPN partitions the data set into two
learn region. And, then a new MLP is created to learn the hasdbsets, and then automatically adds a new subnet into the
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Fig. 1. DCL algorithm processes flow diagram. (a) Learning phase of the DCL modular perceptron network. (b) Retrieving phase of the DCL moduar percep
network.

MPN. After the data partitioning, the MPN has two subnets fdadifferent classes of a data set. In Section 1I-C, we propose a
the learning of the two smaller data subsets. The partitioningethod to find the partition plane and to convert its parameters
process continues until the whole training data are well learnéato the initial weight vector. By this way, the learning process
According to the described learning scheme, three importanteach subnet can be faster and, most importantly, redundant
issues have to be addressed during the learning and retriexdn@net creation can be significantly reduced. The third scheme
phases of the network. For the learning phase, the first issgethe integration method of all subnets’ outputs. The DCL
is how to partition the data set in a systematic and reasonabiedular perceptron network uses an integration engine (IE) to
way. Blind partitioning may not be of any help to the learningerive the final output from the multiple cooperative subnets.
of the target problem. The second issue is how to initialize tAdne basic function performed in IE is to identify the location
newly added subnets efficiently. Random initialization mighn the problem space for the input data and then select the
trap the subnets into a local optimum very frequently armppropriate subnet to generate the output. Since the IE needs
thus results in many unnecessary partitioning and redundémtassociate the input data with the corresponding subnet, IE
subnets. For the retrieving phase, the most important issuanast be designed tightly coupled with the ECP. Fig. 1 depicts
how to derive the final output from these subnets. Improparhigh-level flow diagram for the learning and retrieval phases
integrating scheme would degrade the retrieving speed asfdthe DCL modular perceptron network. The details of the
accuracy. Based on the addressed issues, we proposedofferations are provided in subsequent sections.

following schemes for the proposed DCL and the MPN. The )

first is the error correlation partitioning (ECP) which is use- Network Architecture

for partitioning the input dataset. Instead of partitioning the The architecture of the proposed MPN is shown in Fig. 2.
data according to thé&abel of each data, the ECP partitionsAs mentioned, the MPN consists of two modules: the DCL
the data according to thease of learningf each dataset. In engine and the IE. The DCL engine, which consists of a set
other words, the purpose of ECP is to partition the trainingf self-growing MLP subnets, performs training data parti-
data set into two groups, the easy-to-learn data group and tiading, subnet self-growing and weight learning. The IE is a
difficult-to-learn group. The ideal result of the ECP would begelf-growing two-layer feed-forward neural network with the
that only the difficult-to-learn data subset needs to be furtheleaviside(hard-limit) activation function at each hidden and
trained or partitioned, while the easy-to-learn data subset wowddtput neurons. Acting as a gating network of the MPN, the IE
be well-learned after the partitioning. The second scherperforms the function of a mediator among the subnets in the
proposed for the DCL modular perceptron network is the initi@CL engine. The number of output neurons of the IE is equal to
WE method for the of newly created subnets. The design of Wke number of subnets in the DCL engine. During the learning
scheme is motivated by the observation that a weight vecisiiase, each subnet in the DCL engine learns its designated
of an MLP classifier acts like a partition plane, separatingubset of training data, respectively. When the learning process
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of a subnet falls into a local minimum, the current training da Divide-and-Conguer Engine
set is then partitioned according to the propoE&P scheme
(cf. Section 1I-B1) into two subsets. In the meantime, at the |
side, a new output neuron and a hidden neuron are also cre:
to provide the mediating function for the newly created subn
in the MPN. During the retrieving phase, when the |E receivt
an input pattern, it generates proper control signals to selec
proper subnet in the DCL engine for the current input pattern

The system dynamics of the MPN during the retrieving pha:
can be formulated as follows:

hz(:c) :27‘[(1112‘70 + w; :B) -1
-1 ifwi70+w,--:c<0 1
11 if w;o+w;- x>0, @)

N-1
CZ(.’L') =H Ui 0 + Z U,iyjhj(.’l,')
J=1

Integration Engine

N-1
0 if w0 + Z ui,jhj (:c) <0 s(i)%trzél I(g;gsa[rt%htiLee(:tr?g;ﬁto(;fa(r;)wl;ﬁ:((ba))].DCL engine, (b) IE, and (c) the output
= e (2)
1 if w0+ Z u; ;hi(x) >0 to be partitioned into two subsets. Frequently, if the partitioning
=t of the training data is carried out without referencing the pre-

vious training status; then, the partitioned data subsets may still

Al be a hard-to-learn data region. In this situation, the following
olz) = Z a(@)Fi(z) (3) learning process may be even more difficult and yet still slow
after data region partitioning.
whereF( ) denotes théleavisidefunction. As shown in Fig. 2, In order to have efficient partitioning for a training data set,
let z(e ™) ando represent the input and the output vectors efnalyzing the training status of the current subnet and its cor-
an MPN. Assume that a trained MPN contaiNssubnets in responding training data set before the partitioning process is
the DCL engine; then, there aré output andN — 1 hidden necessary. Heuristically, the training error of each training pat-
neurons in the IEF;(x) = (¥}, 1(), ..., I}, r.(x)) denote the tern is a good quantitative indicator of the “easiness of learning”
output vectors of théth subnet of the DCL engine, whefeis  (EOL) for each individual training pattern. Basically, a training
the dimension of the output vector. Let(x) denote the con- set can be partitioned into two subsets, one of which contains
trol signal generated by tha&h output neuron of the IE, and patterns with good EOL (small training error) while the other
let 2;(x) denote the output of thah hidden neuron of the IE. subset contains patterns with poor training qualities. For the par-
For the connection weights in the Ho;(=w;, 1, ..., w; ») and titioned subset with good EOL, the current subnet should be a
uwi(= uj 1, ..., uj n—1) denote the weight vector of théh  desired candidate for this part of the training data. If the training
hidden neuron and the weight vector of tfta output neuron, quality of the subset is not good enough, a new subnet with a
respectively. In additiomy; o andu; o represent the biases ofproper estimated initial weight vector seems a good choice for
theith hidden neuron angth output neuron, respectively.  the proceeding training process. Based on this concept, we pro-
pose the error correlation partitioning (ECP) scheme to EOL. In
the ECP, a cost functiof.. is defined as

=1

B. Learning Process of the Modular Perceptron Network

The learning process of the proposed MPN consists of two 5
concurrent learning processes: the learning of the DCL Engine B _ - E B [wl _ 4
and the learning of the IE. We will describe the data partition c= 2 (Bi - E) [w" (: - 7)] )

scheme first, and then the training scheme of this two engines

in the following sections. where
1) DCL and the Error Correlation Partition:In the DCL en- P number of training data in the current subset to be parti-

gine, each subnet, concurrently learns its corresponding part of  tioned;

the training data during the learning phase. The learning phasev normalized linear projection vector, i.dw|| = 1;

for each subnet can adopt almost any type of supervised learning mean of the current training data, i.exz =

scheme (e.g., LMS, BP, .). When a subnet successfully learns 1/P Ef;l ;.

its designated training data subset, i.e., the error (MSE) of eda#t £; denote the training error of the training pattegnand®

training pattern is less than a prescribed error tolerance, ttdamote the average error of the training subset. The basic goal of

the subnet stops its learning process. On the other hand, E@P is to find a linear projection vecter* such that?, is max-

subnet can not continuously reduce its training error at a piigtized. As shown in (4), in order to maximizg., both terms

determined rate, then the current training data set is suggestg— £) andjw* 7 (x;—%)] need to have the same sign (i.e., both
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in positive or in negative values). In other words, if we projec P;f)ﬂﬁg:ing
the vector(x; — ) along the unit vectow*, i.e.,[w* T (z; — )], t . , y
then the projection vector of patterns with training error les W*X <Ww*X ',/

1 . . . . . s _
than the average errét should be in the opposite direction with / W#XZW*{X

respect to the projection direction of the patterns with trainin
error larger than the average erir Moreover, along with the
proposed projection direction, most of the patterns in the sar
category will have the same sign of projection value. Fig. 3 de
picts this concept of partition scheme, where the training data
partitioned into two categorieg, and.S; with minimum corre-
lation error. The ECP scheme can be formally described usii
the following rules:

R1: if w*Tx; < w*Tz, thenz; € Sg;

R2: if w*Tx; > w*T%, thenz; € Sy.

In the following, we will proceed to find the linear projection
vectorw*. The error correlation cost functiof, (4) can be
further derived as follows:

D : patterns with errors > E

D : patterns with errors < E

Fig. 3. Graphical representation of the ECP of two data.SetndS; .

After determining the weight vector of the new hidden
r 2 neuron, it is not difficult to derive the connection weights
E.= <Z (E; — E) [w" (z; — E)]) between the new hidden neuron and the output neurons based

i=1 on the concepts of decision tree. We leave the detail derivation
r o in the Appendix. To summarize the whole algorithmic steps of
= <Z (E; — B) [w” (= — f)]) the IE learning, the algorithm is listed as follows.
=1
r
: <Z (E; — E) [w" (2 —f)]) Algorithm 1: Learning Algorithm for the
i=1 Integration Engine
r o 1: Initialize the first output neuron c1
=w" |> (B - E)(=: — f)] with a fixed value 1; connect the output

neuron directly to the input layer for
the moment (i.e., no hidden neuron yet).
w. 2. While ECP is performed in the DCL en-
gine, execute Step 3.
= _.p. 3. Assume that the training data subset
S; with an identification string I (=
Si18i2 ... Sq,) 1S t0 be partitioned. Let w
be the projection vector obtained by
the ECP method, and let x; be the mean

S _ h iah « which o h vector of S;. Insert a hidden neuron,
ince||w|| = 1, the weight vectow* which maximizes the say hx, at the hidden layer of the IE,

error correlationE. is equal to the first eigenvector (corre- and set its bias weo and weight vector
sponding to the largest eigenvalue) of the error correlationwk as ’
matrix S.

2) Learning Scheme in the Integration EnginAs indicated we = w?
in (2), the function of an IE is to generate the control signal "
¢;(x) to enable the right subnet to derive the final output, given Proceed to Steps 3a ~3b. (Assign weights
an inputz. Thus, the major learning task of the IE is to obtain between output and hidden neurons.)
appropriate values for its two types of weights, he.s andu;s. 3a: If there is only one output neuron
Corresponding to the ECP processes during the learning phasce1 in the output layer, then perform
of the DCL engine, the IE synchronously generates a hiddenStelos 3a-(i) ~3a-(v),' otherwise, perform
neuron and an output neuron for each partitioning occurred inStep 3b. ’ ’

E.=w'Sw. (5)

1
and wy o = —w; X;.

the DCL engine. The new hidden neuron actually acts as a par- 3a-(); Create a new output neuron cs.
tition hyperplane in the input space. Consequently, the weight 3a-(i): Connect ¢, to the hidden
vector (w;) and the biagw; () of the hidden neuron in the neuron h; with a connection weight 1
IE should be determined according to the projection vestor (e. wii = —1) and set the bias of o
derived from the ECP rules R1 and R2, i.e., as —1 (i . ui o = —1)
€., 1,0 .
3a-(iii): Connect ¢ to the hidden

T . . .
w; =w", and w; o =—-w; T. neuron hy; with a connection weight one

T
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(i.e., us 1 = 1) and set the bias of co as
-1 (i.e., U2,0 = —1)
3a-(iv): Set the identification string
of the new subset of training data cor-
responding to ci as h; and set the path
depth d; of this new subset as one.
3a-(v): Set the identification string
of the new subset of training data cor-
responding to ce as hy; and set the path
depth d; of this new subset as one.
3b: Let ¢ be the output neuron corre-
sponding to the original unpartitioned
subset S;. Perform Steps 3b-(i) ~3b-(vi).
3b-(i): Create a new output neuron ¢ >
3b-(ii): Assign the weight vector w; @
to the weight vector of hyj.
3b-(iii): Set the identification
string of the new subset of training
data corresponding to c; @S 8182 ..5id Dk
and increase the depth d; of this new
subset by one.
3b-(iv): Set the identification string
of the new subset of training data cor-
responding to cj as §18i2... %4, and in-
crease the depth d; of this new subset

by one.
3b-(v): Connect ¢; to the new hidden

neuron h; with connection weight -1 b)

(i.e., Ui, k = —1) and set the bias of

¢ as —d;, (e, u;0 = —d;). Fig.4. (a) Class distribution of two data classeando. Plane4 corresponds
3b-(vi): Connect ¢; to the new hidden to a well-trained weight vector of the MLP in (b), and plaBerepresents a

randomly initialized weight vector. (b) An MPN contains one hidden layer and

neuron h; with connection weight one to hidden nodes.

(i.e. u; . = 1) and set the bias of c; as
—d;, (i.e., Uj,0 = —dz)
Thus, a highly nonlinear data space, e.g., the two classes in TSP
[19], will turn into less nonlinearly or even linearly separable
C. Weight Estimation for DCL after a few partition cycles. Therefore, the proposed weight es-

This section introduces the weight estimation method that cfation method can significantly improve the learning perfor-
reduce the number of data presentation and the number of stgnce of the DCL MPNs.
nets during the DCL process in an MPN. Without loss of generality, we use an MLP containing one

Basically, a weight vector of an MLP classifier acts like &idden layer with two hidden nodes as the basic MLP based
data partition hyperplane separating different classes of datgpnet for the MPN. In [5], Diamantaras and Kung proposed
the input space. As shown in Fig. 4, a weight vector representidented principal components analysis (OPCA), which can op-
by plane A can be one of the partition planes for the two clasdé®ally separate two data classes along the direction of the ori-
(x, o). Suppose plan@ corresponds to a randomly initializedented principal component. In this paper, we apply the OPCA
weight vector. Since plang is nearly perpendicular to plang method to initiate the orientation of the weight vector. Suppos-
then training the weight vector representing plaht a weight edly, the data classesandw are used to train the weight vector
vector representing piar}e may require a lot of training itera- of an MLP. We first find the direction vectap that maximizes
tion. It is clear to see that if one can initialize a weight vector € energy ratio o andv
or close to planed, then training process can be much shorter.
However, for real-world applications, the data class distribution
can be highly nonlinear. To construct a partition plane like the o E{(w"2)
plane A in Fig. 4, is not straightforward. In this section, we e E{(wTv)?
propose a method, which is motivated from principal compo-
nents analysis (PCA) to roughly partition the data space inihereR, = {zzT} andR, = {sz}. The solutionw* to (6)
two classes. And then, its parameters are used to initialize thecalled the principal oriented component of the two classes,
weight vector of an MLP. In addition, during DCL process, thevhich means that when the principal component &f steered
data space is repeatly partitioned according to the ECP schelmethe distribution o, it will be oriented toward the directions

w' R, w

wl R,w

(6)

b _
}
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wherew has minimum energy while an attempt is made to may Pv(vICv)Pv
imize the projection energy af The oriented principal compo- Decision bounda
nent is the principal generalized eigenvector of the symmetr
generalized eigenvalue problem

Pz(zICz)Pz
R,w=\R,w. @)

Wherew = {wy, wa, ...,wy}andd = {1, A2, ..., Az }. In
addition, all the components; that maximize (6) should satisfy
the following constraints:

wiTR,ij =0, wiTRij =0, Vj <t (8)

For initialization of the weight vector of an MLP based x: Z-class
subnet, the largest generalized eigenveatois assigned to all o: V-class
the hidden nodes in the MLP.

Through oriented principal component analysis, we cdrg- 5. Data projection and decision boundary of two datasetsdv along
achieve only the direction of the hyperplane for separating tH§ ©PC &xis
data space into two classes. However, the proper location for
the hyperplane along the OPC is still to be decided. AccordingThus, the initial weight and bias for the partition hyperplane
to the Bayesian decision rule, if the distribution of data sets’ = + b = 0 can be achieved.
z and v on the OPC axis is known, then the point where As shown in Fig. 5, the partition hyperplané'z + by = 0
two probability density curves cross will be the solution ofiecided by OPCA and the Bayesian decision rule seems to be a
discrimination for these two data sets. As shown in Fig. 5, if trgood initial partition hyperplane for the two data se@ndv.
OPC axis of the two sets is determined, then the distribution of
these two data sets can be also estimated by projecting onBreOn-Line Learning of MPN

axis. Suppose the minimum error position for classification is |n this section, we will discuss that the MPN with WE is suit-
bi; the decision boundary can be constructed as follows.  aple for on-line and/or incremental learning problems. Some-
Let 2" andv’ be the projection ot andwv on the OPC axis, times, a well-trained neural network may occasionally receive
i.e.,z’ = wlz, andv’ = whv. new training samples in order to further improve its generaliza-
Assume the projected data haveladimension Gaussian tjon capabilities. If the neural network learns only these new pat-
distribution, with means and variancesas, s, 27/, 2%, terns, its generalization performance will be usually degraded

respectively. The conditional probability functiopgz'|C-),  seriously. To tackle this problem, neural networks have to keep

p(v'|C,) for 2" andv’ are all the original patterns as well as the new patterns. Obviously,
1 this is not a desirable way to conduct the learning process be-
P(z|C,) = cause of the high computational complexity. In our proposed

1/2 o e X
(2m)P/2 |5, method, itis easy to see that when a new training pattern is added

Cexp | =Lz —p) —21(:” — ) ) to the original training set, there is only one subnet that needs
2 vy v to be retrained. In other words, suppose a new pattern is in one
of the partitioned subsets of the training set; then, the IE will

where ) select its corresponding subnet in the DCL Engine in order to
z = [z, %2, .., 2] input data; _ perform the retraining process after weight estimation, and the
Py = By, By, oo By, mean vector; and diagonal et of the subnets need not be retrained. If the allocated subnet
o o ) matrix , can not learn the new training pattern in a few learning cycles,
%y =diagoy , oy, , ..., 0y, covariance matrix. then an ECP partition process and a new subnet are created to

The indexy can be either orv. I, and I’, denote the prior o5 the newcomer. In this situation, a simple subnet can learn
probabilities ofz or v. By definition, I’ + P, = 1. much faster than a complex MLP when a new training pattern is
Let us define a discriminate functiohas coming. Thus, we can claim that the DCL of an MPN can model

D and learn a dynamically changing environment.
¢(z|C,) =5 Y Nog(1/oy,) — (1/og, )@ = p1y,)*]
d=1 [ll. COMPARATIVE SIMULATIONS
D log 27 + log Py, (10) In order to evaluate the learning and retrieving performance
2 of the proposed MPN and DCL, two experimental results will
wherey can be eithew or z. be discussed. In the first part, we use the TSP [19] as the bench-
The decision boundaby along OPC for classesandv can mark. The TSP is an extremely difficult problem for multilayer
be achieved by solving the following equation: perceptron networks. As shown in Fig. 6, the training set con-

sists of 194X —Y values, which are arranged in two interlocking
P(be|C.) — (b |C,) = 0. (11) spirals that go around the origin for three times. The training
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Fig. 6. The data distribution for the TSP with 194 training points.

g0a| is to develop a feedforward network with sigmoidal unit%ig' 7. The output classification image created by an MPN with 25 subnets
- L. . ; and 40 012 data presentations.
that properly classifies these 194 training points in two classes.

The second experiment explores the classification ability of the

MPN on a real-world dataset, the Pima Indians diabetes data%ré’[blems that (_jo not cycle_throggh the entire training set be-
tween each weight-update iteration.

[22], which is available at the university of California-Irvine ‘ X . . .
repository. We will show the generalization performance of the 1 N€ cascade-correlation learning algorithm reported in [9] is

MPN before and after the training converges. This is an impdtPl€ to produce reasonably good performance on this “two-spi-

tantissue, especially in applying flexible machine learning tecF!S” Penchmark. The cascade-correlation algorithm uses a sig-
hiques to noisy real-world data. moidal activation function for both the output and hidden units

and a pool of eight candidate units. All the trails were suc-
cessful, requiring 1700 epochs Dro0 * 194 = 329800 pat-
tern presentations for 194 patterns. After the training phase,
1) Training Phase of MPN:In this two-spirals benchmark the number of hidden units built into the net varied from 12
comparative study, we used two different MLPs as the kerrtel 19, with an average of 15.2 and a median of 15, which ac-
model of the MPN. One was a conventional MLP that corecounts for 168 connection weights. Fig. 8 shows the output of
tained one hidden layer with two hidden nodes, and the othed 2-hidden-unit network based on cascade-correlation, as the
was a modified MLP called the dynamic-threshold quadratinput was scanned over the-Y field. Karayiannis [18] pro-
sigmoidal neural network (QSNN) [4]. QSNN had the same aposed a hybrid learning scheme, which combines bottom-up
chitecture as the conventional MLP except that it used a differamsupervised learning and top-down supervised learning tech-
activation function called the quadratic sigmoid function (QSHjigues to achieve fast and efficient training of an MLP. By using
[4] in each hidden neuron. the hybrid learning scheme on a 2—-30-1 MLP, a TSP of 150 data
During the learning phase of the DCL engine, if the megomoints could be learned in 28 874 epochs28847 « 150 =
squared learning error could not be improved by 0.001 withih327 050 pattern presentations with a total error of 0.01. The
15 epochs, then the current training subset was partitioned pmposed DCL technique with WE requir@s.1 + 2.3 sub-
cording to the error correlation partitioning scheme. We also agets, and 2082 478 epochs 0£0 012+ 6905 pattern presenta-
signed the squared error tolerance be 0.1225 (i.e.0.35%) tions to learn Two-spirals problem. In other words, an MPN can
for each training pattern. As long as the squared training erlearn the Two-spirals problem for much less data presentation
of a training pattern was larger thanthis pattern was not con- (99.07%-~ 87.86% lesser).
sidered to be correctly learned yet. Fig. 7 depicts the learningin the lower part of Table I, the learning performance
results obtained by an MPN for the TSP. of MPNs with or without weight estimation is presented.
Experimental ResultsThe learning performance of sev-Applying the weight estimation method to the DCL for the
eral different types of neural networks are compared and liststL P-based MPN, the number of the epochs presented and the
in Table I. Each performance results were repeated for ten trialsmber of subnets needed can be reduced by about 33.61%
with random initial weight values. In a training process, onand 33.14% respectively, and the number of data presentations
epoch is defined as a full presentation of each of the I/O paian be reduced 4.15%. As for the QSNN-based MPN, weight
terns in the training set. It should be noted that it is appropriatstimation can reduce the number of epoch and data presen-
to compare performance in terms of the number of presentatidason and subnet creation by 76.28%, 3.16%, and 28.23%,
in the MPN. This is because the number of pattern presentatioaspectively. In general, the number of subnets required can
in each epoch will be gradually reduced as the DCL iteratiofre significantly reduced by applying weight estimation. Also,
continue, so the number of presentations is a true measuretfa weight estimation improves the learning performance of

A. Experiments on Two-Spirals Problem
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TABLE |
EXPERIMENTAL RESULTS OF THEMLP WITH THE HYBRID LEARNING METHOD, CASCADE NEURAL NETWORKS AND VARIOUS MPN TYPES OF
NEURAL NETWORKSUSING DCL AND WE TO LEARN TWO-SPIRALS PROBLEM

Types of NNs No. of epochs | No. of presentations | No. of subnets
Hybrid learning MLP 28847 4327050 NA
Cascade NNs 1700 329800 NA
MPN(MLP) 11266+1013 88525 £ 7703 52.8 + 5.26
MPN(MLP)+WE 7494+744 84847 £ 4162 353+ 3.6
MPN(QSNN) 2150350 168714 + 33960 294 + 44
MPN(QSNN)+WE 20821478 40012 £ 6905 21.1 £ 2.3
10\ 10 20 30 40 50 6q,
W - ——MLP
08} Vi =0 ‘MLP wiest. wt. -
R — — :QSNN 1" <
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Fig. 9. The learning curves for the error rate and the number of data
presentation with respect to the creation of subnets by four types of MPNs
during learning for the TSP. The error rate is defined as the ratio between the
number of unlearned patterns and total number of training patterns.
T . :
Ny -~
09F N \(% \ ]
Fig. 8. The output classification image created by the cascade-correlat 1 : ‘e
neural network [9] with 12 Sigmoid hidden units. 0.81 i - E
orp | Y ]
the MLP and QSNN-based MPNs significantly in terms of th i \ 1 )
number of presentations and the number of epochs required ;';a’ ' ! : ‘\

In the following, we would like to comment on the learning 5 0.51 ‘_\ g —MLP \ 1
behavpr of thg ML'P and QSNN-pased MPNs in terms of DC & 4| R ‘MLP w/est. ‘}!‘ il
and weight estimation. As shownin Table I, an MLP-based MP ‘ : \
requires alot of epochs to learn a TSP, howeveraQSNNrequi 93] \ — — —QSNN \ i
much lesser epoch but more data presentations to achieve g2l \‘ . —. ~QSNN w/est. wtf‘, ]
same goal. In [4], it has been shown that a QSNN has much m ; \ B \
learning and modeling power than an MLP. As shown in Fig.! ™ l R \\ 1
at each creation of a subnet, the learning curve of the QSN 0 : — :
based MPN shows lowererrorratethanan MLP-based MPN do 0.5 # of presentation S 52
Basically, a QSNN-based MPN requires more data presentat.... x 10

to learn a given data subset ,before I cla!ms learning failure apld. 10. The learning curves for the TSPamong four types of MPNs. The error
requests a new subnet creation. Hence, in terms of the numbeggfis defined as the ratio between the number of uniearned patterns and total
subnet creation, a QSNN consumes more training presentatiomber of training patterns.
than an MLP-based MPN does.

As stated in Section II-C, the function of weight estimation is 2) Retrieving Phase of MPNThe generalization perfor-
to direct the initial weight vector toward a desired orientatio)mance is an important index for evaluating the proposed MPN
such that faster weight learning can be expected. As shownaind the learning methods. We suggest the following procedures
Figs. 9 and 10, by including the weight estimation in DCL, botfor generating testing data points for the TSP. Ldie the
the MLP and QSNN-based MPNs can achieve their learnisgnallest distance between two sampling points that belong to
goal for less number of epochs, data presentation and suhimet classes of TSP, and also multighpy a few scale values
creation. Especially, the weight estimation significantly reducés.g., 0.1, 0.2, 0.3, 0.4) as the variance of a normal distribution
the number of data presentation for the QSNN-based MPNscentered at each training point of TSP. Fig. 11 depicts the
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TABLE I
GENERALIZATION PERFORMANCE OF THECASCADE NN AND VARIOUS TYPES OFMPNS FOR THETWO-SPIRALS PROBLEM. “MLP-MPN” M EANS AN MLP BASED
MPN. “W E” M EANS THE DCL ASSOCIATED WITHWE ¢S ARE THE VARIANCES OF NORMAL DISTRIBUTIONS CENTERED AT EACH SAMPLE
POINT OF TSP. FOR EACH RANGE SPANNED BY DIFFERENT o VALUES, 1940 TESTING DATA POINTS ARE GENERATED, AND THIS IS
REPEATED FORTEN TIMES TO EVALUATE THE GENERALIZATION PERFORMANCE

Generalization Performance among four testing regions
Type of NN o=01 o=0.2] o =03l o =04
Cascade NN 99.20 £ 0.62 | 97.49 & 1.10 | 95.38 £+ 1.69 | 92.93 + 2.18
MPN(MLP) 98.92 4 0.37 | 97.80 & 0.49 | 96.30 £+ 0.61 | 94.36 = 0.69

MPN(MLP)+WE. | 98.92 + 0.58 | 98.30 & 0.50 | 97.35 £ 0.62 | 95.81 + 0.59
MPN(QSNN) 99.31 £ 0.41 | 98.85 + 0.51 | 97.54 £ 0.69 | 96.19 + 0.88
MPN(QSNN)+WE. | 99.41 &+ 0.42 | 98.54 £ 0.70 | 97.41 &+ 0.87 | 96.23 £ 0.68

IE outputsC;, the weights ofith MLP in the DCL engine are
selected and applied to an MLP for forward computation. For
the efficient timing implementation, all the subnets in the DCL
engine are implemented in a parallel structure. The data inputs
to all the subnets (MLPs) and the IE, then the outpubf the

IE selects a subnet in the DCL engine for the proper output. In
both cases, the computation time ranges from two to four layers
of feedforward network processing time.

According to these two differentimplementations, we can also
measure the retrieving time based on multiplication and accumu-
lation steps. Thismeasure leaves outthe computation of activation
functions, which can be implemented by table look up. The cas-
cade-correlation neural network with 15 hidden nodes needs 152
multiplications and 152 accumulations and the proposed MPN
with 22 subnets needs 149 multiplications and 149 accumula-

. tions. The performance of the proposed method is slightly better
=02 -01 o o0t 02 03 than that of the cascade-correlation neural network based on the
Fig. 11. Training and testing data points for generalization performan§§qqent'.al approach. Ifwe consider the parallel approach,the re-
evaluation for the TSP. The distantelenotes the smallest distance betweefirieving time of the proposed MPN needs only three multiplica-
(01,02, 0.3 4nd 04) 25 the variances of four nomal ditribution data regiciar' 211 (€€ accumulations, however, the parallel implemen-
go-génér:ate-  total of 1040 testing data points in each region. 9'%4tion of the cascade-correlation neural network with 15 hidden

nodes needs 16 multiplications and 16 accumulations. In other
rds, the retrieving time can be reduced from 2.0% by sequen-
3% by parallel impelementation.
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training points and testing data regions for the evaluation P
generalization performance. Around each training point, té'ﬁl or 81.
testing data points are randomly generated in a normal distri- .
bution. In each region, 1940 testing data points are generatBd,EXPeriments on a Real-World Dataset
and this is repeated for ten times. The testing results are listed’he second experiment is performed on a real-world task: to
in Table Il. The generalization performance of the MLP-basefassify the Pima Indians diabetes dataset [22]. The dataset con-
MPN without weight estimation was 96.85% in averagesists of 768 samples taken from patients who may show signs of
The average generalization performance for QSNN-basdidbetes. Each sample is described by eight attributes, each at-
MPN with weight estimation could reach 97.97%, and faribute has discrete and continuous values. The training set con-
the cascade-correlation networks was about 96.25%. In thkists of 384 randomly selected samples, and the rest are testing
comparative study, the software packages and the training aagnples. We also ugke5 * 0.5 as the squared error tolerance
testing data as well as the control parameters for good convier-each training pattern, and perform 30 runs on different ran-
gence of the cascade-correlation neural network were obtairtganly sampled training and testing data.
from the public domain of Carnegie Mellon University (CMU) Table Ill summarizes the learning and testing performance
[9]. In this CMU package, the sigmoidal activation functioraccording to the number of epochs, number of presentations,
is used in both the output and hidden units, a pool of eighumber of subnetworks on the Pima database. We have com-
candidate units, and the maximum learning iteration is limitguared the performance of QSNN-based MPN, MLP-based MPN
to 100 for weight-update. and a single standtard MLP. The single MLP is composed of an
An MPN can be implemented from two different approache8=12-1 structure and is trained by backpropagation algorithm.
1) cost effectiveness (less hardware) or 2) timing (process spe€dg MLP and QSNN used in MPN are composed of 8-2-1
efficiency. In the cost effective implementation, the DCL engingtructure and are also trained by backpropagation algorithm.
contains only one MLP (two hidden neurons and one outplihe MLP based MPN shows that the number of presentation
neuron). The data inputs to the IE first; then, according to tle greatly reduced, and the training and testing performance
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TABLE 1lI
PERFORMANCE OFDIFFERENTNEURAL NETWORKS ON THEPIMA DATABASE [22]. NUMBERS IN (') INDICATES THE STANDARD DEVIATION
Types of NN No. of No. of No. of subnets | Training Testing
epochs presentations subnets accuracy(%) | accuracy (%)

8-12-1 MLP 2835(1118) | 1088640(429312) NA 75.71(4.42) 66.62(4.09)
MPN(MLP) 1136(755) 42639(6604) 8.07(3.46) 78.89(2.83) 73.85(1.95)
MPN(MLP)+WE 541(286) 36292(3957) 5.73(1.34) 78.75(1.37) 74.78(1.89)
MPN(QSNN) 100(119) 19284(1778) 2.33(3.11) 78.33(1.72) 76.36(2.08)
MPN(QSNN)+WE 49(3) 18689(1122) 1.0(0.0) 78.13(2.01) 76.41(1.84)

A standard single 8-12-1 MLP
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Fig. 12. Recognition performance versus iteration for a standard 8-12-1 single MLP.

are improved 3.2% and 7.2%, respectively. Incorporating with Figs. 12—-14 reveal significantly different degrees of over-
weight estimation, the MPN can further reduce the numbétting between MPNs and the standard MLP. Whereas the
of training presentation and subnetworks about 14.9% alehrning of the MPNs is stable and does not overfit much, the
29.0%, respectively. By using QSNN and weight estimatiostandard MLP is somewhat worse. Note that the in-sample
the MPN requres only one subnet and 49 learning epochs(t@ining) error is somewhat lower for the standard MLP than
achieve 78.1% and 76.4% of training and testing performandet the other two MPN architectures: the standard MLP is
respectively. Setiono and Liu [26] achieve a 93.6 (2.77)% amGhined to minimize precisely one error function, whereas in
71.0 (1.74)% training and testing performance. Friedman [1&]e other cases, more error functions are minimized to achieve
report their best testing performance to be 76.30 (1.24)% ower averaged performance. Our explanation that MPNs have
a various of Bayesian network classifiers. By using severa¢tter antioverfitting capabilities is described as follows. In
learners with different learning strength, the popular boostimgneral, as training proceeds the optimal point, the network
algorithm [11] reports their testing performance around 74.38nds to shift its resources toward the high noise regions: the
~ 75.6%. more noisy data points, the bigger its error and thus bigger its
One of the most serious problems in applying flexibleffect in error backpropagation. We assume that there are some
machine learning techniques to noisy real-world data is tihegions in input space that are more noisy than others (“noise
problem of overfitting. To study the effect of the MPN architecheterogeneity”). If every data point is equally presented to the
ture and the DCL learning scheme on the overfitting, we beliemetwork, the noisy regions tend to attract the resources of the
monitoring the training and testing errors can be very helpfuietwork, mistaking the noise as signal and trying to model it
One manifestation of overfitting is when the performancg.e., overfitting). At the same time, the resources are moved
on out-of-sample data, plotted as a function of training timeway from the less noisy regions, resulting in underfitting there.
starts deteriorating after having reached on optimal point. Wising modular networks and partitioning input space according
compare the dynamics of overfitting on the three architectures:the error correlation scheme, usually faring much better than
a standard single 8-12-1 MLP, an 8-2-1 MLP-based MPNraining until convergence,” can alleviate this problem, since
and an 8-2—1 QSNN-based MPN. independent local learning structure and separated input data
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An 8-2-1 MLP based MPN
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Fig. 13. Recognition performance versus iteration for an 8-12—1 MLP-based MPN.

An 8-2-1 QSNN based MPN
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Fig. 14. Recognition performance versus iteration for an 8-12—1 QSNN-based MPN.

regions prevent an MPN modular network from entering intappropriate number of subnets to quickly and successfully learn
such a global error model. some very complicated nonlinear problems. As far as general-
ization performance is concerned, the MPN can also maintain
a fairly good level of correctness. Since we only prescribe gen-
eral backprop learning schemes and a layered network structure
The modular perceptron network with DCL proposed in this each subnetwork, various backpropagation type learning al-
paper is a self-growing modular neural network. Each of the igerithms and/or layer structures can be applied to the subnets
dividual subnets in an MPN is a very simple MLP and not pown the DCL engine for performance enhancement. According to
erful enough to learn a given complicated nonlinear problem. Blye simulation results obtained from the TSP, we find that the
incorporating the DCL scheme with WE, an MPN can generakdPN with DCL is very effective in learning complex problems.

IV. CONCLUDING REMARKS
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strings. For examplé)g is the common node, which outputs
complementary values, and hy to S5 and Sg, respectively.

In addition, when a decision tree contaiNsleaf nodes, then
there existV — 1 internal (hidden) nodes in the tree. As far as
data partitioning is concerned, each leaf node corresponds to
a data region which has been learned by a subnet (an MLP) in
DCL engine. Let the setd andH* represents two types of the
outputs from theV — 1 hidden nodes

H={h|l<i<N-1}
and
He={h]1<i<N-1}.

For an identification strind; with path depthd;, if there are
m components irf{, then there ard; — m components irf{¢.
Suppose an input pattesrbelongs to the subssét; then, the IE

Fig. 15. A decision tree is created to represent the data partition in the D(\.’f\ﬂ” generate a control S|gna:Ii(x) from its <th output neuron

engine and the hidden and output nodes in the IE. S;. We can formulate this concept as follows:
Cl: cilx) = Hi(uso0+ Ek L i khi(x)) =1, forz €
Si;

It is easy to see that when a new training pattern is added to the N_1
original training set, there is only one subnetwork that needs C2: ci(x) = Hi(ui,o + 2521 wikhi(w)) = 0, forz ¢

to be retrained. In other words, when a new pattern belongs to Si;

one of the partitions of the training set, only the correspondinghere?;() denotes theHeavisideactivation function of the
subnet needs to be retrained. Also, as long as each subnetw#toutput neuron. In order to simplify the computation of the
is kept simple and small, the training process can be close to fé@rning algorithm for the IE, the following value assignment
time. Since all the other partitions, which have been successfules for the weights:; ;) are suggested:

learned, need not be retrained, the MPN is capable of modelingJ1: u, ; = vif s; ;isin H;

in a dynamically changing environment. Thus, we would like U2: w; ; = ¢'if s; ; isin HE;

to claim that the MPN is suitable for on-line and incremental U3: «; ;, = 0 (no connection), if:; is not contained ir;;

learning problems. for arbitraryv andv’. Since rules U1, U2, and U3 specify the
connectiorw; ; between hidden neurons and output neurons to
APPENDIX be one of the three possible valugs; 0 andv’}, rules C1 and
DERIVATION OF WEIGHT VALUES FOR THEINTEGRATION 2 can be further expressed as follows:
ENGINE C'1l: Hi(u; o +mv—(d; —m)pv')=1,forxz e S;;

First of all, the process of data region partitioning or the ¢z géﬁﬁg:iégenlrzgur;ﬁn(gl,0?2,(11,;1;?;:6 %dsi
process of subnetwork creation in the DCL engine can be m— 1% ++') =0, fore ¢ S;, and the hidden neuron
represented as a decision tree structure. As an example, the root i in He.

node in Fig. 15 represents the first partition process, and
nodes in the following layers represent the subsequent partit
processes. In addition, each nonleaf nodethe decision tree
corresponds to a hidden neurpmith outputh;(z), and each

}ﬁsettmgv > 0andv’ < 0, (C'1) and (C’2) can be rewritten

leaf node represents a subset of training data which can be ui 0 +mv — (d; —m)v’ >0 (12)
successfully learned by a subnetwork in the DCL engine. ui o+ (m—1)w—(d —m)v' —v<0 (13)

In the following, some properties of the decision tree that w0 +mu+ v — (di —m — 1)v' <0. (14)
relate to the IE are described. There exists a unique forward
path from the root node to a leaf nodg. By concatenating |f we setv = 1 andv’ = —1, the above three relations can be

the outputs of the nonleaf (i.e., the hidden) nodes aloRgerged as

the path, a unique identification string can be formed, e.g.,

I( 811812...81(17.),821 € {hkUhk|1 <12 < N—l}, and 2—d; >u 0> —d;. (15)
d; denotes the path depth from the root to a leaf nSgeFor T

example as shown in Fig. 15, the leaf nalecan be reached Therefore, the values af; .o can be assigned asd;.

along the stringhi hohshg, Whereh; _represents the positive
output(1) of theith hidden neuron ankl; indicates the negative
output(—1) of the:th hidden neuron. In a decision tree, for any
two leaf nodes, there exists one and only one common hode The authors would like to thank Prof. S.Y. Kung and Dr. K. I.
with complement outputi; or k;) values in their identification Diamantaras for their helpful suggestions regarding the OPCA.
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