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Divide-and-Conquer Learning and Modular
Perceptron Networks

Hsin-Chia Fu, Member, IEEE, Yen-Po Lee, Cheng-Chin Chiang, and Hsiao-Tien Pao

Abstract—A novel modular perceptron network (MPN) and
divide-and-conquer learning (DCL) schemes for the design of
modular neural networks are proposed. When a training process
in a multilayer perceptron falls into a local minimum or stalls in
a flat region, the proposed DCL scheme is applied to divide the
current training data region (e.g., a hard to be learned training
set) into two easier (hopely) to be learned regions. The learning
process continues when a self-growing perceptron network and
its initial weight estimation are constructed for one of the newly
partitioned regions. Another partitioned region will resume
the training process on the original perceptron network. Data
region partitioning, weight estimating and learning are iteratively
repeated until all the training data are completely learned by the
MPN. We have evaluated and compared the proposed MPN with
several representative neural networks on the two-spirals problem
and real-world dataset. The MPN achieves better weight learning
performance by requiring much less data presentations (99.01%

87.86% lesser) during the network training phases, and better
generalization performance (4.0%better), and less processing time
(2.0% 81.3% lesser) during the retrieving phase. On learning
the real-world data, the MPN’s show less overfitting compared
to single MLP. In addition, due to its self-growing and fast local
learning characteristics, the modular network (MPN) can easily
adapt to on-line and/or incremental learning requirements for a
rapid changing environment.

Index Terms—Divide-and-conquer learning, modular percep-
tron network, multilayer perceptron, weight estimation.

I. INTRODUCTION

M ULTILAYER perceptrons (MLPs) have been widely
used in various types of applications [21] due to their

abilities to capture the underlying global structure and to
generalize on untrained data. However, two issues are usually
encountered in applying backpropagation learning on some
fairly difficult problems: 1) how to successfully and fast
converge to a learning goal and 2) how to predict a proper
network size (e.g., the number of hidden neurons or layers).
Alternative approaches have been proposed in pursuit of faster
learning algorithms and efficient learning architectures. Hanson
proposed the Meiosis networks [13] and Wynne-Jones [29]
used the node splitting methodology to alternate hidden node
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sizes and structures to achieve a flexible learning architecture
in an MLP. Cascade-correlation networks [9] were proposed
to recursively augment hidden nodes and hidden layers of
an MLP. According to these methods, an MLP can adjust its
hidden nodes as well as hidden layer so that the networks can
learn a fairly difficult problems, such cases include problems
possessing strong nonlinearities, problems with many inputs or
systems with many state variables, or problems having a large
noise component. However, sometimes, these methods may
expand the size of an MLP larger than necessary. Alternatively,
committee machines were proposed. The idea of using a
committee machine to realize a complex task may be traced
back to Nilsson [24] in 1965; the network consisted of a layer
of elementary perceptrons followed by a vote-taking perceptron
in the second layer. This approach is based on commonly
used engineering principle: divide and conquer. According to
this principle, a complex supervised learning is achieved by
distributing the learning task among a number of experts (a
simple MLP), which in turn divides the input space into a set
of subspaces. The combination of experts is said to constitute
a committee machine. Committee machines can be classified
into two major categories [15].

1) Static Structure:In this class of committee machines, the
responses of several experts are combined by means of
a method that does not involve the input signal. Major
approaches in this class are:

• ensemble averaging[23], [14], where the outputs of
different experts are linearly combined to produce
an overall output;

• boosting [10], [6], [7], [28], [27], where a weak
learning algorithm is converted into one that
achieves arbitrarily high accuracy.

The ensemble averaging or boosting based committee
machines rely on the learning algorithm itself to do
the integration. Ensemble averaging improves error
performance by: 1) reducing of error due to bias by pur-
posely overfitting the individual experts or 2) reducing
of error due to variance by using different initial condi-
tions in the training of the individual experts, and then
ensemble-averaging their respective outputs. Boosting
improves error performance: 1) by filtering [27], [10]
the distribution of the input data in a manner causing the
weak learning models (i.e., experts) to eventually learn
the entire distribution or 2) by resampling the training
examples according to a certain probability distribution
as in the AdaBoost [11], [8]. The advantage of AdaBoost
over boosting by filtering is that it works with a training
sample of fixed size.
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2 Dynamic Structure:Instead of having a global network,
several modular nets are used to learn the whole input
space. Also, the input space is split up into several regions,
and each modular net is trained to approximate the data
in the designate region. The outputs of the modular nets
are mediated by an integrating unit to produce the final
output. Major architectures in this class are:

• mixture of experts(ME) [16]: Mixture of experts
claim that it can be viewed either as a modular
version of multilayer supervise network, and/or as
an associative version of competitive learning. In
this design, the training of a local expert on a given
training case can alleviate interference from the
weights within other local expert;

• gated expert[1]: Instead of using a probabilistic
formulation in the gating network [16], an algo-
rithm called optimization theory framework was
adopted in the gated network to combine all the
outputs of the expert networks to produce the
final output. The algorithm also slices up the input
space and approximates each of the partitioned
regions using an expert network, separately. When
comparing with the backpropagation algorithm,
this method achieved considerable improvements
particularly for hard problems;

• hierarchical mixture of experts(HME) [17]: In this
architecture, the individual outputs of the experts
are combined by means of several gating networks
arranged in a hierarchical manner.

As to previous research on modular neural networks, we rec-
ommend two papers [2], [25] and references therein for a more
complete survey. The advantages of using various types of mix-
ture of experts are: 1) splitting the whole input space into smaller
regions can accelerate the learning processes; 2) partitioning a
global network into several modular can imply a reduction of
the number of parameters (i.e., weights); 3) using one module
to learn one subregion of input data can avoid the interference
matters, such as temporal and/or spatial crosstalk.

However, some problems remain to be solved so that mod-
ular network can be efficiently implemented for various appli-
cations:

1) how to split the input space properly, such that the decom-
position can be beneficial to both learning and generaliza-
tion;

2) how to decide the proper number of experts in a com-
mittee machine for a particular task.

Frequently, these problems were handled by trial and error. In
this paper, we propose a new approach for the design of an
MLP based modular neural networks, the modular perceptron
network (MPN).

In this new approach, we have designed two learning algo-
rithms: one is the error correlation baseddivide-and-conquer
learning (DCL) scheme [3], and the other is theweight esti-
mation (WE) method [20]. According to the error correlation
scheme, the DCL divides a complex training data set into two
subsets, one is an easy to learn region, and the other is a hard to
learn region. And, then a new MLP is created to learn the hard

region, in the meantime the original MLP continues to learn the
easy region. The divide and conquer process continues until all
the training data are learned successfully. It can be seen that
the number of input data subregions and the number of MLP
subnets were created by the system itself, instead of being pre-
dicted by neural network designers or users. Before the stan-
dard error backpropagation learning process is conducted in a
subnet, weight estimation for the subnet is applied first. The
WE method, which is motivated by Oriented principal compo-
nent analysis [5], seeks to guide the initial weight vector toward
the desired orientation, such that faster weight learning and less
subnet creating can be achieved during the construction of the
MPNs.

To observe the feasibility and effectiveness of the proposed
modular network, we applied DCL to learn the two-spirals
problem (TSP) [19] and to classify the Pima Indians diabetes
dataset [22] for purposes of evaluation and comparison.
According to our experimental results, DCL with the WE
scheme can effectively deal with the slow learning and the
unpredictable network size (i.e., the number of hidden units)
problems in the design of an MLP-based system. Compared to
the cascade correlation network [9] with 17 (or 10) layers and a
conventional 2–30–1 neural network using hybrid fast learning
schemes [18], the learning time of an MPN is about 8.24 to
108.14 times faster. In order to see the quality of the decision
boundary generated by the proposed methods, we present here
a few sets of testing data, which are located around the original
TSP sample data (cf. Section III-A-2). The average generaliza-
tion performance of the MPN can reach 97.97%. However, the
average generalization performance of the cascade-correlation
networks can only reach 96.25%. On the Pima dataset, the
MPN achieves an averaging training and testing performance
at 78% and 76%, respectively. This result seems to outperform
Adaboost slightly [11] but this comparison is less compelling.

The rest of this paper is organized as follows. Section II
presents the architecture of the MPN, DCL and the WE method.
In Section III, simulation results are presented and compared
with some other neural networks. Finally, concluding remarks
are given in Section IV.

II. M ODULAR PERCEPTRONNETWORKS

Most of previously proposed modular neural networks
(MNNs) demand designers and users to specify the number of
subnets during system configuration. However, because a user
may not know the target problems very well, then this specifi-
cation would be difficult for estimate. Unlike existing MNN,
the proposed MPN does not require the designer or the user to
specify the number of subnets for solving any given problems.
The designer just needs to specify a general architecture for
the MPN (cf. Section II-A). The proposed DCL scheme can
automatically create new subnets according to the particular
problem’s needs during the learning phase. The design of the
DCL scheme and MPN is also motivated by the concept of
divide-and-conquer strategy. Initially, the MPN contains only
one subnet. When the learning status of the subnet cannot be
improved further, the MPN partitions the data set into two
subsets, and then automatically adds a new subnet into the
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(a)

(b)

Fig. 1. DCL algorithm processes flow diagram. (a) Learning phase of the DCL modular perceptron network. (b) Retrieving phase of the DCL modular perceptron
network.

MPN. After the data partitioning, the MPN has two subnets for
the learning of the two smaller data subsets. The partitioning
process continues until the whole training data are well learned.
According to the described learning scheme, three important
issues have to be addressed during the learning and retrieving
phases of the network. For the learning phase, the first issue
is how to partition the data set in a systematic and reasonable
way. Blind partitioning may not be of any help to the learning
of the target problem. The second issue is how to initialize the
newly added subnets efficiently. Random initialization might
trap the subnets into a local optimum very frequently and
thus results in many unnecessary partitioning and redundant
subnets. For the retrieving phase, the most important issue is
how to derive the final output from these subnets. Improper
integrating scheme would degrade the retrieving speed and
accuracy. Based on the addressed issues, we proposed the
following schemes for the proposed DCL and the MPN. The
first is the error correlation partitioning (ECP) which is used
for partitioning the input dataset. Instead of partitioning the
data according to thelabel of each data, the ECP partitions
the data according to theease of learningof each dataset. In
other words, the purpose of ECP is to partition the training
data set into two groups, the easy-to-learn data group and the
difficult-to-learn group. The ideal result of the ECP would be
that only the difficult-to-learn data subset needs to be further
trained or partitioned, while the easy-to-learn data subset would
be well-learned after the partitioning. The second scheme
proposed for the DCL modular perceptron network is the initial
WE method for the of newly created subnets. The design of WE
scheme is motivated by the observation that a weight vector
of an MLP classifier acts like a partition plane, separating

different classes of a data set. In Section II-C, we propose a
method to find the partition plane and to convert its parameters
into the initial weight vector. By this way, the learning process
in each subnet can be faster and, most importantly, redundant
subnet creation can be significantly reduced. The third scheme
is the integration method of all subnets’ outputs. The DCL
modular perceptron network uses an integration engine (IE) to
derive the final output from the multiple cooperative subnets.
The basic function performed in IE is to identify the location
in the problem space for the input data and then select the
appropriate subnet to generate the output. Since the IE needs
to associate the input data with the corresponding subnet, IE
must be designed tightly coupled with the ECP. Fig. 1 depicts
a high-level flow diagram for the learning and retrieval phases
of the DCL modular perceptron network. The details of the
operations are provided in subsequent sections.

A. Network Architecture

The architecture of the proposed MPN is shown in Fig. 2.
As mentioned, the MPN consists of two modules: the DCL
engine and the IE. The DCL engine, which consists of a set
of self-growing MLP subnets, performs training data parti-
tioning, subnet self-growing and weight learning. The IE is a
self-growing two-layer feed-forward neural network with the
Heaviside(hard-limit) activation function at each hidden and
output neurons. Acting as a gating network of the MPN, the IE
performs the function of a mediator among the subnets in the
DCL engine. The number of output neurons of the IE is equal to
the number of subnets in the DCL engine. During the learning
phase, each subnet in the DCL engine learns its designated
subset of training data, respectively. When the learning process
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of a subnet falls into a local minimum, the current training data
set is then partitioned according to the proposedECP scheme
(cf. Section II-B1) into two subsets. In the meantime, at the IE
side, a new output neuron and a hidden neuron are also created
to provide the mediating function for the newly created subnet
in the MPN. During the retrieving phase, when the IE receives
an input pattern, it generates proper control signals to select a
proper subnet in the DCL engine for the current input pattern.

The system dynamics of the MPN during the retrieving phase
can be formulated as follows:

if
if , (1)

if

if

(2)

(3)

where denotes theHeavisidefunction. As shown in Fig. 2,
let and represent the input and the output vectors of
an MPN. Assume that a trained MPN containssubnets in
the DCL engine; then, there are output and hidden
neurons in the IE. denote the
output vectors of theth subnet of the DCL engine, whereis
the dimension of the output vector. Let denote the con-
trol signal generated by theth output neuron of the IE, and
let denote the output of theth hidden neuron of the IE.
For the connection weights in the IE, and

denote the weight vector of theth
hidden neuron and the weight vector of theth output neuron,
respectively. In addition, and represent the biases of
the th hidden neuron andth output neuron, respectively.

B. Learning Process of the Modular Perceptron Network

The learning process of the proposed MPN consists of two
concurrent learning processes: the learning of the DCL Engine
and the learning of the IE. We will describe the data partition
scheme first, and then the training scheme of this two engines
in the following sections.

1) DCL and the Error Correlation Partition:In the DCL en-
gine, each subnet, concurrently learns its corresponding part of
the training data during the learning phase. The learning phase
for each subnet can adopt almost any type of supervised learning
scheme (e.g., LMS, BP, ). When a subnet successfully learns
its designated training data subset, i.e., the error (MSE) of each
training pattern is less than a prescribed error tolerance, then
the subnet stops its learning process. On the other hand, if a
subnet can not continuously reduce its training error at a pre-
determined rate, then the current training data set is suggested

Fig. 2. The architecture of an MPN: (a) DCL engine, (b) IE, and (c) the output
control logics [to the right of (a) and (b)].

to be partitioned into two subsets. Frequently, if the partitioning
of the training data is carried out without referencing the pre-
vious training status; then, the partitioned data subsets may still
be a hard-to-learn data region. In this situation, the following
learning process may be even more difficult and yet still slow
after data region partitioning.

In order to have efficient partitioning for a training data set,
analyzing the training status of the current subnet and its cor-
responding training data set before the partitioning process is
necessary. Heuristically, the training error of each training pat-
tern is a good quantitative indicator of the “easiness of learning”
(EOL) for each individual training pattern. Basically, a training
set can be partitioned into two subsets, one of which contains
patterns with good EOL (small training error) while the other
subset contains patterns with poor training qualities. For the par-
titioned subset with good EOL, the current subnet should be a
desired candidate for this part of the training data. If the training
quality of the subset is not good enough, a new subnet with a
proper estimated initial weight vector seems a good choice for
the proceeding training process. Based on this concept, we pro-
pose the error correlation partitioning (ECP) scheme to EOL. In
the ECP, a cost function is defined as

(4)

where
number of training data in the current subset to be parti-
tioned;
normalized linear projection vector, i.e., ;
mean of the current training data, i.e.,

.
Let denote the training error of the training pattern, and
denote the average error of the training subset. The basic goal of
ECP is to find a linear projection vector such that is max-
imized. As shown in (4), in order to maximize , both terms

and need to have the same sign (i.e., both
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in positive or in negative values). In other words, if we project
the vector along the unit vector , i.e., ,
then the projection vector of patterns with training error less
than the average errorshould be in the opposite direction with
respect to the projection direction of the patterns with training
error larger than the average error. Moreover, along with the
proposed projection direction, most of the patterns in the same
category will have the same sign of projection value. Fig. 3 de-
picts this concept of partition scheme, where the training data is
partitioned into two categories and with minimum corre-
lation error. The ECP scheme can be formally described using
the following rules:

R1: if , then ;
R2: if , then .

In the following, we will proceed to find the linear projection
vector . The error correlation cost function (4) can be
further derived as follows:

Let ;
then

(5)

Since , the weight vector which maximizes the
error correlation is equal to the first eigenvector (corre-
sponding to the largest eigenvalue) of the error correlation
matrix .

2) Learning Scheme in the Integration Engine:As indicated
in (2), the function of an IE is to generate the control signal

to enable the right subnet to derive the final output, given
an input . Thus, the major learning task of the IE is to obtain
appropriate values for its two types of weights, i.e.,s and s.
Corresponding to the ECP processes during the learning phase
of the DCL engine, the IE synchronously generates a hidden
neuron and an output neuron for each partitioning occurred in
the DCL engine. The new hidden neuron actually acts as a par-
tition hyperplane in the input space. Consequently, the weight
vector and the bias of the hidden neuron in the
IE should be determined according to the projection vector
derived from the ECP rules R1 and R2, i.e.,

and

Fig. 3. Graphical representation of the ECP of two data setsS andS .

After determining the weight vector of the new hidden
neuron, it is not difficult to derive the connection weights
between the new hidden neuron and the output neurons based
on the concepts of decision tree. We leave the detail derivation
in the Appendix. To summarize the whole algorithmic steps of
the IE learning, the algorithm is listed as follows.

Algorithm 1: Learning Algorithm for the
Integration Engine
1: Initialize the first output neuron

with a fixed value 1; connect the output
neuron directly to the input layer for
the moment (i.e., no hidden neuron yet).

2: While ECP is performed in the DCL en-
gine, execute Step 3.

3: Assume that the training data subset
with an identification string

is to be partitioned. Let
be the projection vector obtained by
the ECP method, and let be the mean
vector of . Insert a hidden neuron,
say , at the hidden layer of the IE,
and set its bias and weight vector

as

and

Proceed to Steps 3a 3b. (Assign weights
between output and hidden neurons.)
3a: If there is only one output neuron

in the output layer, then perform
Steps 3a-(i) 3a-(v); otherwise, perform
Step 3b.

3a-(i): Create a new output neuron .
3a-(ii): Connect to the hidden

neuron with a connection weight
(i.e., ) and set the bias of
as (i.e., ).

3a-(iii): Connect to the hidden
neuron with a connection weight one
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(i.e., ) and set the bias of as
(i.e., ).

3a-(iv): Set the identification string
of the new subset of training data cor-
responding to as and set the path
depth of this new subset as one.

3a-(v): Set the identification string
of the new subset of training data cor-
responding to as and set the path
depth of this new subset as one.
3b: Let be the output neuron corre-
sponding to the original unpartitioned
subset . Perform Steps 3b-(i) 3b-(vi).

3b-(i): Create a new output neuron .
3b-(ii): Assign the weight vector

to the weight vector of .
3b-(iii): Set the identification

string of the new subset of training
data corresponding to as
and increase the depth of this new
subset by one.

3b-(iv): Set the identification string
of the new subset of training data cor-
responding to as and in-
crease the depth of this new subset
by one.

3b-(v): Connect to the new hidden
neuron with connection weight
(i.e., ) and set the bias of

as , (i.e., ).
3b-(vi): Connect to the new hidden

neuron with connection weight one
(i.e., ) and set the bias of as

, (i.e., ).

C. Weight Estimation for DCL

This section introduces the weight estimation method that can
reduce the number of data presentation and the number of sub-
nets during the DCL process in an MPN.

Basically, a weight vector of an MLP classifier acts like a
data partition hyperplane separating different classes of data in
the input space. As shown in Fig. 4, a weight vector represented
by plane A can be one of the partition planes for the two classes
( ). Suppose plane corresponds to a randomly initialized
weight vector. Since plane is nearly perpendicular to plane,
then training the weight vector representing planeto a weight
vector representing plane may require a lot of training itera-
tion. It is clear to see that if one can initialize a weight vector at
or close to plane , then training process can be much shorter.
However, for real-world applications, the data class distribution
can be highly nonlinear. To construct a partition plane like the
plane in Fig. 4, is not straightforward. In this section, we
propose a method, which is motivated from principal compo-
nents analysis (PCA) to roughly partition the data space into
two classes. And then, its parameters are used to initialize the
weight vector of an MLP. In addition, during DCL process, the
data space is repeatly partitioned according to the ECP scheme.

Fig. 4. (a) Class distribution of two data classes� and�. PlaneA corresponds
to a well-trained weight vector of the MLP in (b), and planeB represents a
randomly initialized weight vector. (b) An MPN contains one hidden layer and
two hidden nodes.

Thus, a highly nonlinear data space, e.g., the two classes in TSP
[19], will turn into less nonlinearly or even linearly separable
after a few partition cycles. Therefore, the proposed weight es-
timation method can significantly improve the learning perfor-
mance of the DCL MPNs.

Without loss of generality, we use an MLP containing one
hidden layer with two hidden nodes as the basic MLP based
subnet for the MPN. In [5], Diamantaras and Kung proposed
oriented principal components analysis (OPCA), which can op-
timally separate two data classes along the direction of the ori-
ented principal component. In this paper, we apply the OPCA
method to initiate the orientation of the weight vector. Suppos-
edly, the data classesand are used to train the weight vector
of an MLP. We first find the direction vector that maximizes
the energy ratio of and

(6)

where and . The solution to (6)
is called the principal oriented component of the two classes,
which means that when the principal component ofis steered
by the distribution of , it will be oriented toward the directions
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where has minimum energy while an attempt is made to max-
imize the projection energy of. The oriented principal compo-
nent is the principal generalized eigenvector of the symmetric
generalized eigenvalue problem

(7)

Where and . In
addition, all the components that maximize (6) should satisfy
the following constraints:

(8)

For initialization of the weight vector of an MLP based
subnet, the largest generalized eigenvectoris assigned to all
the hidden nodes in the MLP.

Through oriented principal component analysis, we can
achieve only the direction of the hyperplane for separating the
data space into two classes. However, the proper location for
the hyperplane along the OPC is still to be decided. According
to the Bayesian decision rule, if the distribution of data sets

and on the OPC axis is known, then the point where
two probability density curves cross will be the solution of
discrimination for these two data sets. As shown in Fig. 5, if the
OPC axis of the two sets is determined, then the distribution of
these two data sets can be also estimated by projecting on the
axis. Suppose the minimum error position for classification is

; the decision boundary can be constructed as follows.
Let and be the projection of and on the OPC axis,

i.e., , and .
Assume the projected data have a-dimension Gaussian

distribution, with means and variances as ,
respectively. The conditional probability functions ,

for and are

(9)

where
input data;
mean vector; and diagonal
matrix

diag covariance matrix.
The index can be either or . and denote the prior
probabilities of or . By definition, .

Let us define a discriminate functionas

(10)

where can be either or .
The decision boundary along OPC for classesand can

be achieved by solving the following equation:

(11)

Fig. 5. Data projection and decision boundary of two data setszzz andvvv along
the OPC axis.

Thus, the initial weight and bias for the partition hyperplane
can be achieved.

As shown in Fig. 5, the partition hyperplane
decided by OPCA and the Bayesian decision rule seems to be a
good initial partition hyperplane for the two data setsand .

D. On-Line Learning of MPN

In this section, we will discuss that the MPN with WE is suit-
able for on-line and/or incremental learning problems. Some-
times, a well-trained neural network may occasionally receive
new training samples in order to further improve its generaliza-
tion capabilities. If the neural network learns only these new pat-
terns, its generalization performance will be usually degraded
seriously. To tackle this problem, neural networks have to keep
all the original patterns as well as the new patterns. Obviously,
this is not a desirable way to conduct the learning process be-
cause of the high computational complexity. In our proposed
method, it is easy to see that when a new training pattern is added
to the original training set, there is only one subnet that needs
to be retrained. In other words, suppose a new pattern is in one
of the partitioned subsets of the training set; then, the IE will
select its corresponding subnet in the DCL Engine in order to
perform the retraining process after weight estimation, and the
rest of the subnets need not be retrained. If the allocated subnet
can not learn the new training pattern in a few learning cycles,
then an ECP partition process and a new subnet are created to
learn the newcomer. In this situation, a simple subnet can learn
much faster than a complex MLP when a new training pattern is
coming. Thus, we can claim that the DCL of an MPN can model
and learn a dynamically changing environment.

III. COMPARATIVE SIMULATIONS

In order to evaluate the learning and retrieving performance
of the proposed MPN and DCL, two experimental results will
be discussed. In the first part, we use the TSP [19] as the bench-
mark. The TSP is an extremely difficult problem for multilayer
perceptron networks. As shown in Fig. 6, the training set con-
sists of 194 – values, which are arranged in two interlocking
spirals that go around the origin for three times. The training
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Fig. 6. The data distribution for the TSP with 194 training points.

goal is to develop a feedforward network with sigmoidal units
that properly classifies these 194 training points in two classes.
The second experiment explores the classification ability of the
MPN on a real-world dataset, the Pima Indians diabetes dataset
[22], which is available at the university of California-Irvine
repository. We will show the generalization performance of the
MPN before and after the training converges. This is an impor-
tant issue, especially in applying flexible machine learning tech-
niques to noisy real-world data.

A. Experiments on Two-Spirals Problem

1) Training Phase of MPN:In this two-spirals benchmark
comparative study, we used two different MLPs as the kernel
model of the MPN. One was a conventional MLP that con-
tained one hidden layer with two hidden nodes, and the other
was a modified MLP called the dynamic-threshold quadratic
sigmoidal neural network (QSNN) [4]. QSNN had the same ar-
chitecture as the conventional MLP except that it used a different
activation function called the quadratic sigmoid function (QSF)
[4] in each hidden neuron.

During the learning phase of the DCL engine, if the mean
squared learning error could not be improved by 0.001 within
15 epochs, then the current training subset was partitioned ac-
cording to the error correlation partitioning scheme. We also as-
signed the squared error toleranceto be 0.1225 (i.e., )
for each training pattern. As long as the squared training error
of a training pattern was larger than, this pattern was not con-
sidered to be correctly learned yet. Fig. 7 depicts the learning
results obtained by an MPN for the TSP.

Experimental Results:The learning performance of sev-
eral different types of neural networks are compared and listed
in Table I. Each performance results were repeated for ten trials
with random initial weight values. In a training process, one
epoch is defined as a full presentation of each of the I/O pat-
terns in the training set. It should be noted that it is appropriate
to compare performance in terms of the number of presentations
in the MPN. This is because the number of pattern presentations
in each epoch will be gradually reduced as the DCL iterations
continue, so the number of presentations is a true measure for

Fig. 7. The output classification image created by an MPN with 25 subnets
and 40 012 data presentations.

problems that do not cycle through the entire training set be-
tween each weight-update iteration.

The cascade-correlation learning algorithm reported in [9] is
able to produce reasonably good performance on this “two-spi-
rals” benchmark. The cascade-correlation algorithm uses a sig-
moidal activation function for both the output and hidden units
and a pool of eight candidate units. All the trails were suc-
cessful, requiring 1700 epochs or pat-
tern presentations for 194 patterns. After the training phase,
the number of hidden units built into the net varied from 12
to 19, with an average of 15.2 and a median of 15, which ac-
counts for 168 connection weights. Fig. 8 shows the output of
a 12-hidden-unit network based on cascade-correlation, as the
input was scanned over the– field. Karayiannis [18] pro-
posed a hybrid learning scheme, which combines bottom-up
unsupervised learning and top-down supervised learning tech-
niques to achieve fast and efficient training of an MLP. By using
the hybrid learning scheme on a 2–30–1 MLP, a TSP of 150 data
points could be learned in 28 874 epochs, or

pattern presentations with a total error of 0.01. The
proposed DCL technique with WE requires sub-
nets, and 2082 478 epochs or pattern presenta-
tions to learn Two-spirals problem. In other words, an MPN can
learn the Two-spirals problem for much less data presentation
(99.07% 87.86% lesser).

In the lower part of Table I, the learning performance
of MPNs with or without weight estimation is presented.
Applying the weight estimation method to the DCL for the
MLP-based MPN, the number of the epochs presented and the
number of subnets needed can be reduced by about 33.61%
and 33.14% respectively, and the number of data presentations
can be reduced 4.15%. As for the QSNN-based MPN, weight
estimation can reduce the number of epoch and data presen-
tation and subnet creation by 76.28%, 3.16%, and 28.23%,
respectively. In general, the number of subnets required can
be significantly reduced by applying weight estimation. Also,
the weight estimation improves the learning performance of
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TABLE I
EXPERIMENTAL RESULTS OF THEMLP WITH THE HYBRID LEARNING METHOD, CASCADE NEURAL NETWORKS AND VARIOUS MPN TYPES OF

NEURAL NETWORKSUSING DCL AND WE TO LEARN TWO-SPIRALS PROBLEM

Fig. 8. The output classification image created by the cascade-correlation
neural network [9] with 12 Sigmoid hidden units.

the MLP and QSNN-based MPNs significantly in terms of the
number of presentations and the number of epochs required.

In the following, we would like to comment on the learning
behavior of the MLP and QSNN-based MPNs in terms of DCL
and weight estimation. As shown in Table I, an MLP-based MPN
requires a lot of epochs to learn a TSP, however a QSNN requires
much lesser epoch but more data presentations to achieve the
same goal. In [4], it has been shown that a QSNN has much more
learning and modeling power than an MLP. As shown in Fig. 9,
at each creation of a subnet, the learning curve of the QSNN-
basedMPNshowslowererrorratethananMLP-basedMPNdoes.
Basically, a QSNN-based MPN requires more data presentation
to learn a given data subset before it claims learning failure and
requests a new subnet creation. Hence, in terms of the number of
subnet creation, a QSNN consumes more training presentation
than an MLP-based MPN does.

As stated in Section II-C, the function of weight estimation is
to direct the initial weight vector toward a desired orientation,
such that faster weight learning can be expected. As shown in
Figs. 9 and 10, by including the weight estimation in DCL, both
the MLP and QSNN-based MPNs can achieve their learning
goal for less number of epochs, data presentation and subnet
creation. Especially, the weight estimation significantly reduces
the number of data presentation for the QSNN-based MPNs.

Fig. 9. The learning curves for the error rate and the number of data
presentation with respect to the creation of subnets by four types of MPNs
during learning for the TSP. The error rate is defined as the ratio between the
number of unlearned patterns and total number of training patterns.

Fig. 10. The learning curves for the TSPamong four types of MPNs. The error
rate is defined as the ratio between the number of unlearned patterns and total
number of training patterns.

2) Retrieving Phase of MPN:The generalization perfor-
mance is an important index for evaluating the proposed MPN
and the learning methods. We suggest the following procedures
for generating testing data points for the TSP. Letbe the
smallest distance between two sampling points that belong to
two classes of TSP, and also multiplyby a few scale values
(e.g., 0.1, 0.2, 0.3, 0.4) as the variance of a normal distribution
centered at each training point of TSP. Fig. 11 depicts the
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TABLE II
GENERALIZATION PERFORMANCE OF THECASCADE NN AND VARIOUS TYPES OFMPNS FOR THETWO-SPIRALS PROBLEM. “MLP-MPN” M EANS AN MLP BASED

MPN. “WE” M EANS THE DCL ASSOCIATED WITH WE �S ARE THE VARIANCES OF NORMAL DISTRIBUTIONS CENTERED AT EACH SAMPLE

POINT OF TSP. FOR EACH RANGE SPANNED BY DIFFERENT� VALUES, 1940 TESTING DATA POINTS ARE GENERATED, AND THIS IS

REPEATED FORTEN TIMES TO EVALUATE THE GENERALIZATION PERFORMANCE

Fig. 11. Training and testing data points for generalization performance
evaluation for the TSP. The distancel denotes the smallest distance between
two sampling points from two different classes.l is multiplied by four values
(0.1, 0.2, 0.3 and 0.4) as the variances of four normal distribution data regions
to generate a total of 1940 testing data points in each region.

training points and testing data regions for the evaluation of
generalization performance. Around each training point, ten
testing data points are randomly generated in a normal distri-
bution. In each region, 1940 testing data points are generated,
and this is repeated for ten times. The testing results are listed
in Table II. The generalization performance of the MLP-based
MPN without weight estimation was 96.85% in average.
The average generalization performance for QSNN-based
MPN with weight estimation could reach 97.97%, and for
the cascade-correlation networks was about 96.25%. In this
comparative study, the software packages and the training and
testing data as well as the control parameters for good conver-
gence of the cascade-correlation neural network were obtained
from the public domain of Carnegie Mellon University (CMU)
[9]. In this CMU package, the sigmoidal activation function
is used in both the output and hidden units, a pool of eight
candidate units, and the maximum learning iteration is limited
to 100 for weight-update.

An MPN can be implemented from two different approaches:
1) cost effectiveness (less hardware) or 2) timing (process speed)
efficiency. In the cost effective implementation, the DCL engine
contains only one MLP (two hidden neurons and one output
neuron). The data inputs to the IE first; then, according to the

IE outputs , the weights of th MLP in the DCL engine are
selected and applied to an MLP for forward computation. For
the efficient timing implementation, all the subnets in the DCL
engine are implemented in a parallel structure. The data inputs
to all the subnets (MLPs) and the IE, then the outputof the
IE selects a subnet in the DCL engine for the proper output. In
both cases, the computation time ranges from two to four layers
of feedforward network processing time.

According to these two different implementations, we can also
measure the retrieving time based on multiplication and accumu-
lationsteps.Thismeasureleavesoutthecomputationofactivation
functions, which can be implemented by table look up. The cas-
cade-correlation neural network with 15 hidden nodes needs 152
multiplications and 152 accumulations and the proposed MPN
with 22 subnets needs 149 multiplications and 149 accumula-
tions. The performance of the proposed method is slightly better
than that of the cascade-correlation neural network based on the
sequential approach. If we consider the parallel approach, the re-
trieving time of the proposed MPN needs only three multiplica-
tions and three accumulations, however, the parallel implemen-
tation of the cascade-correlation neural network with 15 hidden
nodes needs 16 multiplications and 16 accumulations. In other
words, the retrieving time can be reduced from 2.0% by sequen-
tial or 81.3% by parallel impelementation.

B. Experiments on a Real-World Dataset

The second experiment is performed on a real-world task: to
classify the Pima Indians diabetes dataset [22]. The dataset con-
sists of 768 samples taken from patients who may show signs of
diabetes. Each sample is described by eight attributes, each at-
tribute has discrete and continuous values. The training set con-
sists of 384 randomly selected samples, and the rest are testing
samples. We also use as the squared error tolerance
for each training pattern, and perform 30 runs on different ran-
domly sampled training and testing data.

Table III summarizes the learning and testing performance
according to the number of epochs, number of presentations,
number of subnetworks on the Pima database. We have com-
pared the performance of QSNN-based MPN, MLP-based MPN
and a single standtard MLP. The single MLP is composed of an
8–12–1 structure and is trained by backpropagation algorithm.
The MLP and QSNN used in MPN are composed of 8–2–1
structure and are also trained by backpropagation algorithm.
The MLP based MPN shows that the number of presentation
is greatly reduced, and the training and testing performance
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TABLE III
PERFORMANCE OFDIFFERENTNEURAL NETWORKS ON THEPIMA DATABASE [22]. NUMBERS IN ( ) INDICATES THE STANDARD DEVIATION

Fig. 12. Recognition performance versus iteration for a standard 8–12–1 single MLP.

are improved 3.2% and 7.2%, respectively. Incorporating with
weight estimation, the MPN can further reduce the number
of training presentation and subnetworks about 14.9% and
29.0%, respectively. By using QSNN and weight estimation,
the MPN requres only one subnet and 49 learning epochs to
achieve 78.1% and 76.4% of training and testing performance,
respectively. Setiono and Liu [26] achieve a 93.6 (2.77)% and
71.0 (1.74)% training and testing performance. Friedman [12]
report their best testing performance to be 76.30 (1.24)% over
a various of Bayesian network classifiers. By using several
learners with different learning strength, the popular boosting
algorithm [11] reports their testing performance around 74.3%

75.6%.
One of the most serious problems in applying flexible

machine learning techniques to noisy real-world data is the
problem of overfitting. To study the effect of the MPN architec-
ture and the DCL learning scheme on the overfitting, we believe
monitoring the training and testing errors can be very helpful.
One manifestation of overfitting is when the performance
on out-of-sample data, plotted as a function of training time,
starts deteriorating after having reached on optimal point. We
compare the dynamics of overfitting on the three architectures:
a standard single 8–12–1 MLP, an 8–2–1 MLP-based MPN,
and an 8–2–1 QSNN-based MPN.

Figs. 12–14 reveal significantly different degrees of over-
fitting between MPNs and the standard MLP. Whereas the
learning of the MPNs is stable and does not overfit much, the
standard MLP is somewhat worse. Note that the in-sample
(training) error is somewhat lower for the standard MLP than
for the other two MPN architectures: the standard MLP is
trained to minimize precisely one error function, whereas in
the other cases, more error functions are minimized to achieve
an averaged performance. Our explanation that MPNs have
better antioverfitting capabilities is described as follows. In
general, as training proceeds the optimal point, the network
tends to shift its resources toward the high noise regions: the
more noisy data points, the bigger its error and thus bigger its
effect in error backpropagation. We assume that there are some
regions in input space that are more noisy than others (“noise
heterogeneity”). If every data point is equally presented to the
network, the noisy regions tend to attract the resources of the
network, mistaking the noise as signal and trying to model it
(i.e., overfitting). At the same time, the resources are moved
away from the less noisy regions, resulting in underfitting there.
Using modular networks and partitioning input space according
to the error correlation scheme, usually faring much better than
“training until convergence,” can alleviate this problem, since
independent local learning structure and separated input data
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Fig. 13. Recognition performance versus iteration for an 8–12–1 MLP-based MPN.

Fig. 14. Recognition performance versus iteration for an 8–12–1 QSNN-based MPN.

regions prevent an MPN modular network from entering into
such a global error model.

IV. CONCLUDING REMARKS

The modular perceptron network with DCL proposed in this
paper is a self-growing modular neural network. Each of the in-
dividual subnets in an MPN is a very simple MLP and not pow-
erful enough to learn a given complicated nonlinear problem. By
incorporating the DCL scheme with WE, an MPN can generate

appropriate number of subnets to quickly and successfully learn
some very complicated nonlinear problems. As far as general-
ization performance is concerned, the MPN can also maintain
a fairly good level of correctness. Since we only prescribe gen-
eral backprop learning schemes and a layered network structure
in each subnetwork, various backpropagation type learning al-
gorithms and/or layer structures can be applied to the subnets
in the DCL engine for performance enhancement. According to
the simulation results obtained from the TSP, we find that the
MPN with DCL is very effective in learning complex problems.
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Fig. 15. A decision tree is created to represent the data partition in the DCL
engine and the hidden and output nodes in the IE.

It is easy to see that when a new training pattern is added to the
original training set, there is only one subnetwork that needs
to be retrained. In other words, when a new pattern belongs to
one of the partitions of the training set, only the corresponding
subnet needs to be retrained. Also, as long as each subnetwork
is kept simple and small, the training process can be close to real
time. Since all the other partitions, which have been successfully
learned, need not be retrained, the MPN is capable of modeling
in a dynamically changing environment. Thus, we would like
to claim that the MPN is suitable for on-line and incremental
learning problems.

APPENDIX

DERIVATION OF WEIGHT VALUES FOR THEINTEGRATION

ENGINE

First of all, the process of data region partitioning or the
process of subnetwork creation in the DCL engine can be
represented as a decision tree structure. As an example, the root
node in Fig. 15 represents the first partition process, and the
nodes in the following layers represent the subsequent partition
processes. In addition, each nonleaf nodein the decision tree
corresponds to a hidden neuronwith output , and each
leaf node represents a subset of training data which can be
successfully learned by a subnetwork in the DCL engine.

In the following, some properties of the decision tree that
relate to the IE are described. There exists a unique forward
path from the root node to a leaf node. By concatenating
the outputs of the nonleaf (i.e., the hidden) nodes along
the path, a unique identification string can be formed, e.g.,

, , and
denotes the path depth from the root to a leaf node. For

example as shown in Fig. 15, the leaf nodecan be reached
along the string , where represents the positive
output of the th hidden neuron and indicates the negative
output of the th hidden neuron. In a decision tree, for any
two leaf nodes, there exists one and only one common node
with complement output ( or ) values in their identification

strings. For example, is the common node, which outputs
complementary values and to and , respectively.
In addition, when a decision tree containsleaf nodes, then
there exist internal (hidden) nodes in the tree. As far as
data partitioning is concerned, each leaf node corresponds to
a data region which has been learned by a subnet (an MLP) in
DCL engine. Let the sets and represents two types of the
outputs from the hidden nodes

and

For an identification string with path depth , if there are
components in , then there are components in .

Suppose an input patternbelongs to the subset; then, the IE
will generate a control signal from its th output neuron

. We can formulate this concept as follows:

C1: , for
;

C2: , for
;

where denotes theHeavisideactivation function of the
th output neuron. In order to simplify the computation of the

learning algorithm for the IE, the following value assignment
rules for the weights ( ) are suggested:

U1: if is in ;
U2: if is in ;
U3: (no connection), if is not contained in ;

for arbitrary and . Since rules U1, U2, and U3 specify the
connection between hidden neurons and output neurons to
be one of the three possible values:, 0 and , rules C1 and
C2 can be further expressed as follows:

C′1: , for ;
C′2: , for ,

and the hidden neuronin , or
, for , and the hidden neuron

in .

By setting and , ( ) and ( can be rewritten
as

(12)

(13)

(14)

If we set and , the above three relations can be
merged as

(15)

Therefore, the values of can be assigned as .
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