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This paper describes a new diagnosis system, which is based on fuzzy reasoning to monitor the

performance of a discrete manufacturing process and to justify the possible causes. The diagnosis

system consists chie¯y of a knowledge bank and a reasoning mechanism. The knowledge bank

provides knowledge of the membership functions of unnatural symptoms that are described by

Nelson's rules on �X control charts and knowledge of cause-symptom relations. We develop an

approach called maximal similarity method (MSM) for knowledge acquisition to construct the fuzzy

cause-symptom relation matrix. Through the knowledge bank, the diagnosis system can ®rst

determine the degrees of an observation ®tting each unnatural symptom. Then, using the fuzzy

cause-symptom relation matrix, we can diagnose the causes of process instability. In conclusion we

provide a numerical example to illustrate the system.
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1. Introduction

Rapid diagnosis of the manufacturing process in a

plant plays an important role in maintaining product

quality. A good diagnosis system should have the

capability to monitor the status of a process and to

justify the possible causes when a process is becoming

unstable.

Traditionally, statistical process control (SPC) is

widely used to detect a discrete manufacturing

process behavior. When instability is indicated on

an SPC chart, the operators are under stress to justify

the possible causes quickly. By removing the root

cause of instability, the process can be improved.

However, in general the operators lack the knowl-

edge or the experience needed to interpret the signals

indicated on the SPC chart and to relate the signals

with the possible causes. In this paper, we develop an

on-line diagnosis system that is an operational support

system to assist operators to quickly ®nd the correct

causes.

Our diagnosis system is a fuzzy reasoning based

system. �X control charts are applied to monitor

whether or not a process is under control and if not,

to ®nd the cause of variation. Parallel to human

thinking, the diagnosis system needs to detect the

unnatural patterns of symptoms on �X control charts

and construct the knowledge base for diagnosis.

At present, several pattern recognition algorithms

have been developed to detect unnatural patterns of

symptoms on �X control charts. Al-Ghanim (1995)

adopted statistical correlation analysis to generate a

set of optimal matched ®lters for identifying three

speci®c unnatural patterns (trends, cycles, and

systematic variables). Unfortunately his method gets

poor performance on diagnosing trend patterns. Gwee

(1996) applied fuzzy logic control in recognition of

unnatural pattern for �X and R charts, However, he did

not mention how to de®ne suitable sets of membership

functions and rules. Guo and Dooley (1992) proposed

the back-propagation algorithm and Bayesian statis-

tical classi®cation procedure to identify a structure



change in the process behavior. Moreover, Hwarng

and Hubele (1991, 1993) developed an �X control chart

pattern recognizer based on back-propagation neural

networks paradigm. As a whole, these pattern

recognition algorithms need much more sophisticated

skill than the rules-test method.

A rules-test method was ®rstly proposed by West

Electric Company (1985) and developed by Nelson

(1984, 1985) for detecting the unnatural patterns of

symptoms on �X control charts. This method is simple

and most popular in factories, however, the method

lacks the ability to distinguish the degree of an

observation ®tting symptoms. For example, if an

observation point on an �X control chart is very near

but not beyond the control limit, then by Nelson's rule

the state of the process is judged as being in-control as

the state that an observation is near the centerline. In

fact, the two unlike phenomena have re¯ected the

different essential in a process. The former indicates

that the process has a higher possibility to be unstable

in the near future than those in the latter case.

In this research, the concept of fuzzy set is applied

to modify Nelson's rules. The unnatural patterns of

symptoms on �X control charts are indicated by the

modi®ed Nelson's rules. In addition, we represent the

cause-symptom relation as a fuzzy relation matrix

form. Then we develop a new method to acquisition

knowledge from data, called the maximal similarity

method, which is used to establish the fuzzy relation

matrix. Finally by approximate reasoning our diag-

nosis system can justify the possible causes for

unstable processes.

This paper is organized as follows. In Section 2, we

depict the framework of the fuzzy diagnosis system.

In Section 3, we interpret the development of the

system, including the construction of the membership

function of unnatural symptoms and the cause-

symptom relation matrix. In Section 4, a numerical

example is shown. Conclusions are made in the ®nal

section.

2. Framework of fuzzy diagnosis system

In this section, we will depict the concept of the

proposed fuzzy reasoning based diagnosis system for
�X control charts.

As shown in Fig. 1, the system consists of a

knowledge bank and an inference mechanism module.

The knowledge bank comprises both the membership

functions for the unnatural symptoms and the knowl-

edge of cause-symptom relations that supports the

inference mechanism to detect the occurrence of

Fig. 1. Framework of diagnosis system.
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symptoms and furthermore diagnose the possible

cause based on the observable symptoms.

The diagnosis of the inference mechanism is based

on fuzzy reasoning and the process is stated as

follows:

ai1 � � � aij � � � aim

� � �
r11 r12 � � � r1c

r21
. .

.

..

.
rjk

rm1 � � � rmc

26666664

37777775 � bi1 � � � bik � � � bic� �

�1�
abbreviated as ai � R � bi, where 0 � aij, rjk, bik � 1,

i� 1, . . . , n; j� 1, . . . , m; k� 1, . . . , c. Element aij of

vector ai means the membership grade of ith input

observation satisfying the jth symptom. There are m

symptoms considered. Element rjk of matrix R

denotes the relational grade of the jth symptom and

the kth cause. Vector bi represents the diagnostic

results and element bik means the possibility of the kth

cause occurring. ``�'' is the maxmin composition

operator. In terms of the structure of fuzzy reasoning,

it is apparent that the diagnostic result depends

intensely on the construction of the system's knowl-

edge bank.

In the next section, we will introduce the approach

to establish the knowledge bank which contains the

constructions of membership functions of symptoms

and the cause-symptom relation matrix.

3. Establishment of fuzzy diagnosis

In this section, we explain how to develop the

knowledge bank of the system that includes knowl-

edge about detecting symptoms on �X control charts

and the relationship between assignable causes and

symptoms.

3.1. Detection of symptoms

Since rules-test provides a simple and useful tool in

identifying unnatural symptoms, we adopt Nelson's

rules (Nelson, 1985) (Table 1) to detect the unnatural

symptoms on �X control charts. In applying Nelson's

rule tests, one half of the control band at a time is

considered, that is, the area between the central line

and one of the control limits. This area can be

partitioned into three equal zones, labeled as c, b, a, as

shown in Fig. 2. Each symptom is de®ned as the

®tness of observed points to each rule.

In order to capture the most information contained

in the observed points, we extend the crisp threshold

of Nelson's rules to fuzzi®ed results. The extension by

softening the threshold is according to Beliakov's

technique (Beliakov, 1996). For example, we soften

the threshold of Nelson's ®rst rule as ``fuzzily one

point beyond zone a'', which is denoted as ~A. In this

case, we assume the process is monitored by an �X
control chart with centerline u0 � 0 and control limits

u0+3s. Then applying Beliakov's technique we can

de®ne the corresponding membership function, m ~A�x�
of set ~A:

m ~A�x� �
0 x � 2:33sR x

2:33s r�t�dt

�R 3s
2:33s r�t� dt 2:33s � x � 3s

1 3s � x

8><>:
�2�

The membership function (as shown in Fig. 3) is

de®ned as the normalized distance from the observed

point to the control limit, by a speci®c metric, d� ? , ? �,
d�x; y� � j R y

x r�t� dtj, where r�t� (as shown in Fig. 3)

means the probability density of �X in the in-control

state. The subscript number, 2.33s, of integral signs in

the above formula is chosen as the critical point to

maintain the probability of type I error under 0.01,

hence the membership grades of points located within

Fig. 2. One half of the control band.

Table 1. Nelson's rules

Rule 1 One point beyond zone a

Rule 2 Nine points in a row in zone c or beyond

Rule 3 Six points in a row steadily increasing or

decreasing

Rule 4 Fourteen points in a row altering up and down

Rule 5 Two out of three points in a row in zone a or

beyond

Rule 6 Four out of ®ve points in zone b or beyond

Rule 7 Fifteen points in a row in zones c, above and

below the centerline

Rule 8 Eight points in a row on both sides of the

centerline with none in zone c
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2.33s is set to zero. By the de®nition, it is apparent

that the smaller distance has the larger membership

grade of the set ``fuzzily one point beyond zone a''.

Therefore, through the extension we can distinguish

the phenomenon of a point near but not beyond

control limit from the phenomenon of a point near the

centerline.

Similarly, the membership functions for softening

other Nelson's rules (described in Table 1) are

constructed and shown in the Appendix. In the next

section, we will describe the other important part of

the knowledge bank, the knowledge of cause-

symptom relations.

3.2. Construction of cause-symptom relation matrix

The detection of unnatural symptoms on �X control

chart tells us when to look for trouble, but it can not

tell us the cause of the trouble. Cause-symptom

relation is the important tool connecting symptoms

and causes. Therefore, it is necessary to construct the

relationship knowledge in the diagnosis system. We

use the fuzzy relation matrix R to express the

knowledge of cause-symptom relations. In other

words, the task of constructing knowledge of cause-

symptom relations involves ®nding the fuzzy relation

matrix from expert's knowledge or a historical data

set. In the following section, we will show how to

construct it with historical data set.

From the maintenance record and its corresponding
�X control charts, we can de®ne the membership grades

of symptoms and the true assignable cause of unstable

process in each maintenance record. The maintenance

record is treated as the historical data set and is

represented as the form (A, B). A is a fuzzy input

matrix and B is a crisp output matrices. Each ith row

vector of matrix A and B represents the membership

grades of symptoms and the corresponding assignable

cause for a maintenance data respectively. Hence,

®nding the cause-symptom relation matrix in a fuzzy

reasoning based diagnosis system can be described as

solving the following fuzzy relation equation given

known matrices A and B,

A � R � B �3�

However, the exact solution of equation (3) in most

case does not exist since the element of given matrix

B is a crisp value, which is either 0 or 1. Therefore, we

hope to ®nd a matrix R̂ such that matrix B̂, obtained

from A � R̂ � B̂, is as close to matrix B as possible,

that is, approximately to solve the above equations.

Attempts to obtain the approximate solution of

fuzzy relation equations were initiated by Pedrycz

(1983), in which the Quasi-Newton method was used

to ®nd the approximate solution in order to minimize

the variance of B̂ and B. But this method is unsuited to

our problem. The prime reason is that the maximal

deviations of elements between the optimized B̂ and B

Fig. 3. Fuzzi®cation of the crisp threshold curve.
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may be equal to 1 (Wang, 1993), which means the

diagnostic result is completely opposite to the truth,

the diagnosis ability will be doubtful. Therefore, we

develop another approach, namely a maximal simi-

larity method, to construct the cause-symptom

relation matrix.

3.2.1. Maximal similarity method (MSM)

The maximal similarity method (denoted as MSM)

essentially desires to ®nd an ideal matrix R̂ such that

the composite matrix A � R̂ is as similar to matrix B as

possible. Here, two matrices with the same size is said

to be similar, meaning that all the corresponding

elements located in the same position of these two

matrices are close. Therefore, MSM attempts to make

each element b̂i; j�� maxk min�aik; r̂kj�� of the com-

posite matrix as possibly approaching the

corresponding element bi; j of matrix B. Since each

element bi; j of matrix B is either 0 or 1, we would like

b̂i; j to approach 1 as possible when bi; j � 1, that is,

preferring the term fmaxk min�aik; r̂kj�g larger.

Similarly, we would like b̂i; j to approach 0 as possible

when bi; j � 0, that is, preferring the term

f1ÿmaxk min�aik; r̂kj�g larger. Integrating the

above analysis, the general term can be shown

below. Then we can make b̂i; j possibly approach bi; j

regardless whether bi; j � 1 or 0.

Maximize

�
max

k
min�aik; r̂kj�

�bij

?

�
1ÿmax

k
min�aik; r̂kj�

�1ÿ bij

�4�
Simultaneously consider overall elements of matrix

B and composite matrix BÃ , the aggregated equation is

shown in Equation 5. The reason for using the

multiplier to aggregate the general terms is to avoid

the contrast between bi; j and b̂i; j for any i and j.

Problem A:

Max S�R̂� �
Yn

i� 1

Yc

j� 1

�
max

k
min�aik; r̂kj�

�bij

?

�
1ÿmax

k
min�aik; r̂kj�

�1ÿ bij

s:t: 0 � aik; r̂kj � 1; bij � 0 or 1;

i � 1; . . . ; n; j � 1; . . . ; c; k � 1; . . . ;m

�5�
where the function S�R̂�, named similarity function, is

used to measure the similarity between the evaluated

matrix A � R̂ and matrix B. According to this method

we can completely avoid the contrast condition. When

the contrast condition occurs, the value of function

S�R̂� is equal to zero. In solving the process, the

contrast condition can be avoided.

Since the optimization of problem A is very

cumbersome, we solve the optimal solutions using

genetic algorithms instead of the conventional search

method and brie¯y introduce genetic algorithms in the

next section.

3.2.2. Genetic algorithms applied to MSM

Genetic algorithms (referred to as GAs hereafter)

(Davis, 1991; Goldberg, 1989) are global search and

optimization techniques motivated by the process of

natural selection in biological system. GAs are

different from other search procedures in the

following ways (Karr, 1993): (1) GAs consider

many points in the search space simultaneously,

rather than a single point; (2) GAs work directly

with strings of characters representing the parameter

set, not the parameters themselves; (3) GAs use

probabilistic rules to guide their search, not determi-

nistic rules. Because GAs consider many points in the

search space simultaneously there is a reduced chance

of converging to local optima. In a conventional

search, based on a decision rule, a single point is

considered and that is unreliable in multimodal space.

The primary distinguishing features of GAs are an

encoding, a ®tness function, a selection mechanism, a

crossover mechanism, a mutation mechanism, and a

culling mechanism.

GAs can be formulated as the following steps:

(1) Randomly generate an initial solution set

( population) of N strings and evaluate each solution

by ®tness function.

(2) If the termination condition was not met, do

Repeat {Select parents for crossover.

Generate offspring.

Mutate some of the numbers.

Merge mutants and offspring into population.

Cull some members of the population.}

(3) Stop and return the best ®tted solution.

In order to apply GAs to problem A, we de®ne the

similarity function S�R̂� as the ®tness function and the

search space of size L. Each point on the space with

size L represents a solution (a set of parameters) of

Problem A. The length L is determined by the product

of the number of parameters and the bits required
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representing each parameter. For example, we assume

the size of matrix R̂ is m*c, and each element of

matrix R̂ is represented by r bits. Therefore, the length

L of a string is equal to �m*c�r.

In GAs work, the binary strings �skj�2 of r bits

within each search point are used to describe the value

of the elements r̂kj of R̂ as shown as follows. These

binary strings can be transferred to decimal integers

�s0kj�10, which range from 0 to 2r ÿ 1. In order to

evaluate each search point, we must decode these

strings to elements of R̂. Since each element r̂kj in R̂

belongs to �0, 1�, we decode the strings to r̂kj by

r̂kj � �s0kj�10=�2r ÿ 1�. After decoding we will put

these parameters to the ®tness function and evaluate

it.

The termination condition is achieved when the

number of generations is large enough or a satis®ed

®tness value is obtained. In the next subsection, we

will illustrate the diagnosis system with a numerical

example.

4. Numerical example

Suppose only three of Nelson's rules are taken into

account as symptoms s1, s2, and s3 on �X control chart,

and six underlying causes c1, c2, c3, c4, c5, and c6 are

considered in a manufacturing process. We simulate

100 records of historical data (A, B) via the true cause-

symptom relation matrix R;

R �
0:7 0:6 0 0 0 0

0 0 0:7 0:8 0 0

0 0 0 0 0:5 0:5

24 35
3*6

where rkj represents the grade of fuzzy relation

between the kth symptom and the jth cause for

i� 1, 2, 3; j� 1, 2, . . . , 6. Matrix A in historical data

(A, B) is a fuzzy matrix of size 100*3, and the

maximal elements of each row are set greater than or

equal to 0.5 to represent each data having some

unnatural pattern. Matrix B in historical data (A, B) is

a crisp matrix of size 100*6, where the element

bij � 1 represents cj is one of the causes to make the

ith record having unnatural symptom.

In the real world, the true cause-symptom relation

matrix R is unknown. Hence, we can only ®nd the

matrix R̂ according to the simulated historical data

(A, B). As mentioned above, MSM applied to the

example can be illustrated as

Max S�R̂�

S�R̂� �
Y100

i� 1

Y6

j� 1

�
max

k
min�aik; rkj�

�bij

?

�
1ÿmax

n
min�aik; rkj�

�1ÿ bij

0 � aik; rkj � 1; bij � 0 or 1: i � 1; . . . ; 100;

j � 1; . . . ; 6; k � 1; 2; 3

Applying GAs to this problem, we can obtain the

evaluated matrix R̂ as follows.

R̂ �
0:73 0:68 0:03 0:08 0:05 0

0 0:02 0:71 0:89 0:05 0

0:02 0:03 0:02 0:05 0:54 0:67

24 35
In order to measure the similarity between matrix R

and R̂, we select two distance indices, which are

de®ned as follows:

d1�R; R̂� �
1

mc

Xm;c
j;k

jrjk ÿ r̂jkj
 !

and d?�R; R̂� � sup
j;k
jrjk ÿ r̂jkj

�6�
The ®rst index is used to measure the mean

deviation of all corresponding elements in R and R̂,

and the second index is used to measure the maximal

deviation of that. In the above example, d1 � 0:043

and d? � 0:17.

For a new input observed on �X control chart, using

the method explained in Section 3.1, we can transfer

the observation into the degrees of satisfying the three

symptoms with membership grades 0.1, 0.1, and 0.9

respectively. The output of approximate reasoning

will be obtained as follows.

0:1 0:1 0:9� � �
0:73 0:68 0:03 0:08 0:05 0

0 0:02 0:71 0:89 0:05 0

0:02 0:03 0:02 0:05 0:54 0:67

264
375

� 0:1 0:1 0:1 0:1 0:54 0:67� �

According to the output, an action controlled by the

adopted decision rule may be taken or not. The

following two decision rules based on a threshold

level a are considered in a discrete case. For the ®rst

rule, if the greatest membership grades in the output

exceed a, the diagnosis system will give an alarm, and

suggest engineers to check the cause with the greatest

membership grade. Otherwise, no action is taken. For

the second rule, if any membership grade exceeds a,

the diagnosis system will give an alarm, and suggest
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engineers to check all the causes with the membership

grades exceeding a. In the above example, if a is set as

0.5, then the diagnosis system will give an alarm, in

addition, c6 will be considered by the ®rst decision rule

while c5 and c6 will be considered by the second one.

5. Conclusions

A new on-line diagnosis system based on fuzzy

reasoning to monitor and diagnose the process has

been described. This diagnosis system will support the

operators to quickly identify the possible causes when

a process is going unstable.

In this research we apply the concept of fuzzy sets

and membership functions for softening Nelson's

rules to detect unnatural patterns of symptoms. With

these improvements on Nelson's rules, we can

represent the status of a process accurately.

Moreover, in knowledge acquisition aspects, we also

present a new methodology, named MSM, to acquire

the knowledge about the relationship between causes

and symptoms from data. MSM method has good

performances to justify the possible causes. In a future

study, we plan to add Range control charts to monitor

and diagnosis the process in our diagnosis system.
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Appendix
Membership grade for rule set

Rule 2. Nine points in a row in zone c or beyond

X(Points) Probability Membership grade

9 0.001 1

8 0.002 0.9320

7 0.0039 0.7959

6 0.0078 0.5306

5 0.0156(4 0.01) 0

Rule 3. Six points in a row steadily increasing or decreasing

X(Points) Probability Membership grade

6 0.0050 1

5 0.0208(4 0.01) 0

Rule 4. Fourteen points in a row altering up and down

X(Points) Probability Membership grade

14 0.0018 1

13 0.0029 0.8947

12 0.0045 0.7251

11 0.0079 0.4620

10 0.011(4 0.01) 0

Rule 5. Two out of three points in a row in zone a or beyond

X(Points) Probability Membership grade

3 0.00001 1

2 0.0015 1

1 0.0653(4 0.01) 0

Rule 6. Four out of ®ve points in zone b or beyond

X(Points) Probability Membership grade

4 0.0027 1

3 0.0283(4 0.01) 0

Rule 7. Fifteen points in a row in zones c, above and below

the centerline

X(Points) Probability Membership grade

15 0.001 1

14 0.015 0.949

13 0.0022 0.8731

12 0.0032 0.7614

11 0.0048 0.5990

10 0.0070 0.3553

9 0.0102(4 0.01) 0
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