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Stability of Current-Sensorless Control of
Permanent Magnet Synchronous Motors®

Jiunn-Jiang CHEN** and Kan-Ping CHIN**

This study applies Lyapunov’s direct method to verify the stability of permanent
magnet synchronous motors under singular perturbation control designs. The position
and velocity controller designed herein does not require the current information of the
motor for feedback purposes (current-sensorless), but the steady-state d-axis current
can still be controlled to zero to minimize power dissipation. Combining Lyapunov’s
linearization stability analysis, the relation between overall closed-loop stability and
control gains of this controller is also revealed. Experimental results demonstrate the
effectiveness of this current-sensorless controller. In addition, the performance of this
current-sensorless controller is compared with that of a full-state feedback controller.
Clearly, the proposed current-sensorless controller can achieve zero positioning error
within the resolution of an optical encoder. However, the same result is less easy to
achieve using a full-state feedback controller due to the noise effect on the current
measurements.
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1. Introduction

Numerous studies have attempted to simplify the
implementation of AC drives. One method reduces
the use of measurement sensors, because sensors
increase complexity and cost, while reducing the
maintainability of a system. Additionally, measure-
ment noises become a problem with an increasing
number of sensors. Consequently, reducing the num-
ber of sensors in a control system is highly desired.
Most sensorless investigations involving permanent
magnet synchronous motors (PMSM) have focused on
the so-called shaft sensorless control”’~®. Because
the shaft-mounted motion sensors are either fragile or
bulky, and always expensive, replacing these hard-
ware sensors with software “observers” would be a
viable alternative. The shaft-sensorless control
methods of PMSMs can be classified into two groups:

1) those based on the back EMF produced in the
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stator windings;
2) those based on the magnetic saliency of the
motor geometry.
Conventional position estimation based on the detec-
tion of back EMF is suitable for middle- and high-
speed applications. However, at low speed and stand-
still, the EMF is too small to estimate position
accurately®. On the other hand, magnetic saliency-
based position estimation®~® can be potentially em-
ployed at any speed, including zero speed. However,
Mizutani et al.”” mentioned that the magnetic saliency-
based position estimation does not work well in the
high-speed range, due to the effect of back EMF.
Unlike shaft-sensorless controls, current-sensor-
less controls do not have the problem of limited
operation speed. Chang and Yeh® studied current-
sensorless field-oriented control of induction motors,
and used a partial state observer to estimate torque
current. Matsuo and Lipo“® proposed a field-oriented
control method without current sensors for synchro-
nous reluctance motors. In that study, torque com-
mand replaces current variables, then a voltage refer-
ence calculator is introduced to generate the required
voltage references from the torque command and the
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motor speed. Chin et al.*" developed a reduced-order
tracking controller, which generates maximum torque
in PMSMs. Meanwhile, Chang et al.®® developed a
reduced-order time delay control that is applied to the
position control of brushless DC motors. In their
works (2 controller designs were based on reduced-
order models which are derived from the singular
perturbation analysis by exploiting the two-time-
scale property of small electrical machines. Control-
ler designs based on these reduced models do not need
to measure the current signals for feedback purposes
because the model applies a set of second-order non-
linear dynamic equations that contain only mechani-
cal variables. Although the two studies“™'? apply
singular perturbation analysis!®% to the same math-
ematical model of PMSM, different reduced-models
are derived. This is because different parasitic terms
are neglected in their singular perturbation analyses.
Computational simplicity is the main feature of the
control designs based on reduced-order models ; how-
ever, the overall closed-loop stabilities with these
controllers are hard to be proved. In their works!12,
the proofs of the overall closed-loop stability are
qualitative only and are based on the assumption that
the perturbation scale, €, which originates in the
singular perturbation method, is sufficiently small.
The concept of sufficiently small € is qualitative;
therefore, the proofs of stability in their studies!!¢?
are incomplete.

This study first derives a reduced-order model by
taking singular perturbation analysis of the mathe-
matical model of a PMSM. A simple and effective
position and velocity controller is then developed
based on this reduced model. In contrast to a full-
state feedback controller, such as the two-loop con-
troller Fig. 1 depicts, this controller does not measure
the current signals for feedback purposes. Figures 1
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Fig. 1 Block diagram of a two-loop control
for the PMSM
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Fig. 2 Block diagram of a current sensorless control
for the PMSM
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and 2 illustrate the block diagrams of the two-loop
controller and the current-sensorless controller respec-
tively. However, this current-sensorless controller
can still indirectly control the steady-state d-axis
current to zero to minimize power dissipation®®.
Furthermore, to extend the operating speed range
when voltage saturation occurs, this controller can
generate flux-weakening control with minimum
power dissipation automatically®®. This study inves-
tigates the overall closed-loop stability under this
controller. The analyses are based on Lyapunov’s
direct and indirect methods. Experimental results
demonstrate the effectiveness of this current-sensor-
less controller. In addition, the performance of this
current-sensorless controller is compared with that of
a full-state feedback controller. The proposed cur-
rent-sensorless controller can clearly achieve zero
positioning error within the resolution of an optical
encoder. However, the same result is not as easy to
achieve with a full-state feedback controller due to
noise effect on the current measurements.

The rest of this paper is organized as follows.
Section 2 presents the mathematical model of a
PMSM. Section 3 derives a reduced model using the
singular perturbation method. This section also
describes the proposed controller based on this
reduced model. The stability analyses are presented
in Section 4, while experimental results are presented
in Section 5. Conclusions are finally made in Section
6. In the Appendix, a full-state feedback controller
based on the feedback linearization method is present-
ed as a comparison to the reduced-order controller
developed herein.

2. Mathematical Model of the PMSM

The mathematical model of a smooth air-gap,
permanent magnet synchronous motor (SPMSM) in a
synchronous frame, or the so-called d-¢ frame, can
be described as follows:

w
fv:%{f)}: |3 KNy~ Bu—C sen(w) | / 1
(1)
i Z%{ Z} - [ __lzg —];/77}] { Z}
+%{Z:—KNw} 2

where x={6 w}” represents the mechanical state
vector whose components are the rotor position and
rotor velocity, respectively; i={is is}" denotes the
electrical state vector in the d-¢g frame, and the
components of i are the direct-axis and the qua-
drature-axis stator currents respectively ; v={va vq}”
represents the input vector whose components
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are input voltages in the d-¢ frame; L is the phase
inductance ; R denotes the phase resistance; Te=
L/R denotes the electrical time constant ; N denotes
the number of pole pairs; K represents the torque
(permanent magnet) constant ; J is the rotor inertia;
B denotes the viscous damping coefficient ; and C
represents the Coulomb friction coefficient. With a
full-state feedback controller, the input vector is a
function of time, electrical states, and mechanical
states, i.e.,, v=wv(t, i, x). Since this study aims to
achieve position or velocity controls without using the
current information, the input vector is constrained to
a function of time and the mechanical states, i.e., v=
v(¢, x). Moreover, because the term C sign(w) in Eq.
(1) is discontinuous at w=0, the following discus-
sions will ignore the operation region, =0, to sim-
plify the analysis.

3. Control Strategies

3.1 Reduced order modeling
The two-time-scale phenomenon of small electri-
cal machines is manifested by the fact that the
time constant of the electrical subsystem, Te, is
significantly smaller than that of the mechanical sub-
system, J/B. Hence, by assigning a small positive
constant e= T. and assuming @=0, the motor model
(1), (2) can be re-expressed as a standard singular
perturbation form®»44 by multiplying € to both sides

of the electrical subsystem (2) :

@

6
{a.)}: 3KN,; B, C .0 (w) (3)
A A A

L e N )
1q —T.No —1 Wiy Rly;—KNw
(4)
Notably, in Eq.(4), although 7. is a small number,
the term 7.Nw may not be a small number when Nw
is large. Therefore, TeNw cannot be considered a
negligible parasitic term.
The singular perturbation analysis of system (3 ),

(4) was studied by Chen and Chin®. Suppose electri-
cal subsystem (4) reaches its quasi-steady-state
instantaneously. The quasi-steady-state of the elec-
trical variables can be determined by substituting
e=0in Eq.(4) :
{l_.d}_L{(’Uq_KN(Z))NCU‘*‘Ud/Te }

ie) DL\ —(va+K/T.)No+ve/Te
where, D=N?w*+1/TZ, and ia and iq are the quasi-
steady-state values of iz and g, respectively. Replac-
ing 7, in Eq.(3) with its quasi-steady-state i, allows
us to obtain a reduced model of the full system (3),

(4):

(5)
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The reduced model (6) is described by a set of
nonlinear second-order differential equations in which
the states are the same as the states of the mechanical
subsystem in the full model (3), (4).
3.2 Control law design

Because the d-axis current, s, does not generate
torque in a SPMSM system, it is commanded to
become zero under normal operating conditions to
reduce the power dissipation from the winding resis-
tance. However, because s is not a state in the
reduced model, to achieve near minimum power dissi-
pation, we will command i« to zero instead. By
substituting 7«=0 into Eq.(5), the relationship
between v« and v, that produces this steady-state d-
axis current can be solved as

va= T-Now(KNw—vq) (7)
Furthermore, by substituting Eq.(7) into (5), Zq,
which produces the desired steady-state g-axis cur-
rent, can also be computed. Consequently, the reduced
model (6) can be rewritten as the following form by
substituting 7¢ into Eq.(6) :

_2JR . n <ZBR

Vo= 4+KN>Q)+

2CR
SKN (@)

3KN °8"
(8)
Based on Eq.( 8), a feedback linearization control law
can be chosen as follows:
Vg :%( @Da— AwCw—AsCo— Avey)

9BR 9CR
+(3KN+KN)(”+3KN

sgn (w) (9)

where, ew=w0— w4, o= 80— a4, ewzfeadt, 64 and wa

are the desired position and desired velocity respec-
tively, and, Aw, A and A, are constant control gains.
By substituting the control law (9) into the reduced
model (8), the closed-loop error dynamics of the
reduced-order system becomes

éqa:eo

{ €s=¢Cuw (10)

Ew=—Awew— AeCs— AvEy
The eigenvalues of Eq.(10), — da,— 05 and — dc, can be
designated by selecting the control gains as follows:

Aw=0q+ 0b+ 0,

{Ae—aaob+obac+ OO, (11)

Ae= 040s0c.
The eigenvalues can be either all real numbers, or one
real number plus a pair of complex conjugate num-
bers. Consequently, the equilibrium point of the
reduced model (6) is globally exponentially stable
under the control law (7) and (9 ), as long as the real
parts of, da, 0» and oc are all positive ; or equivalently,
the control gains, A, s and Aw, are all positive.
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4. Stability Analyses

Although the above-mentioned controller is
designed to stabilize the reduced model, it remains
uncertain whether or not the controller will be able to
stabilize the original full model in the presence of the
fast (electrical) dynamics, which have been assumed
to be instantaneous. Numerous investigations have
addressed the stability problem of singularly perturb-
ed systems 29070-@D - Joannou and Kokotovic!?,
and Taylor et al.*® studied qualitative analyses of the
robustness with respect to singularly perturbed sys-
tems. Corless and Glielmo ¢, and theorem 9.3 both
established robustness of systems that contain
exponentially stable unmodeled fast dynamics. Mean-
while, Saberi and Khalil?? developed scalar quadratic-
type Lyapunov functions to perform the stability
analysis of nonlinear singularly perturbed systems.
Using this method, a stable operation region is defined
and the upper bound of sufficiently small € is found.
However, the stable operation region developed there-
in is local and dependent on the choice of the
Lyapunov function, which cannot be found systemat-
ically. Retchkiman and Silva®®" proposed a method
that used vector Lyapunov functions and comparison
principles for stability analysis of nonlinear singularly
perturbed systems. However, with this method,
finding suitable Lyapunov functions remains a major
obstacle.

This section first presents a Lyapunov function
that can prove the global asymptotic stability of the
proposed control method when the control gains are
limited to a given range. Moreover, supplemented
with Lyapunov’s linearization analysis, we can show
that the proposed control possesses high-gain instabil-
ity. Accordingly, the set of control gains, (e, s, Aw),
must be carefully chosen to avoid instability.

4.1 Lyapunov’s direct method

This subsection employs Lyapunov’s direct
method to prove the stability of the overall system.
By substituting Egs.(7) and (9) into the original
model (1) and (2) while assuming @« be a constant,
the closed-loop error dynamics of the full system
becomes
Co=¢p
Go=eo (12)

éw:%;q_/lwewf/laeﬂ“/igpega

;d:_ 71—\9 le+N(€w+Cz)d) qu

;q: —N(ew+ wa) le_”Yl«‘“qu

(2B 2] N\, 2
( 3KN SKNA“J) ot 3KN(A6€0)+/1¢€§)
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(13)
where a=ia—1a and 1q=is—is. The system de-
scribed by Egs.(12) and (13) is an autonomous non-
linear system, and its origin is a unique equilibrium
point. To prove the stability, a quadratic-type
Lyapunov function candidate is chosen as the follow-

ing:

“l 1,1
V=_leo e eulPlest+Ltia+iz ()
2 g tdt g
Cw
where
Pl]. PlZ P13
P: PIZ PZZ PZS
P13 P23 PSS

is a constant symmetric matrix. The necessary and
sufficient conditions that make the Lyapunov function
candidate (14) positive definite are

P, >0, (15)
Py P12:|
>0, 16
det[Plz P 16
Py P. Ps
det| P2 Pz Pas|>0 17)
Ps Ps P

Obviously, this Lyapunov function candidate is radi-
cally unbounded. Taking the time derivative of the
Lyapunov function candidate (14) along the dynamics
(12), (13) produces

V=(— PisAs)e2+(Pr— Puls) e} +(Ps— Prdw)e

()i (-7 a)

+ (Pn — Pisde— Pza/iqz) €9Co
+ (PIZ - P13/1w - Paa/'l¢)e¢ew
+ (P22+ Pis— Pysdo— PZS/Iw)eﬂew

+<§%P13+A/1¢)6¢Z7q
+<'3§-{]NP23+A/15+§‘2[?/N/1¢>6317q

+<’3§]N P23+A/1m +§’2K—]]\_/v/10>ew ;q
:cle§+cZe§+C3ezm+(-— } >f§+c4z7§

+ csepeet Coeolw T Creocw t Csey P

+ Coeoiqt Clo€wia (18)

2B 2]

where AZ(SK—N— KN
then the equilibrium point of (12), (13) is globally
asymptotically stable. To make V negative definite,
the coefficients, ci, ***, ¢4 are chosen to be negative,
and the coefficients, ¢s, **+, cio, are chosen to be equal
to zero. By setting the coefficients, ¢s, ***, ¢, to zero,
the elements of the matrix P can be obtained as
follows :

P13 =

). If Vis negative definite,

__2]
SKN Ao
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P23:_ 2] (Aﬂa‘F 2] /1¢>,

3KN 3KN
2] 2]
Py= 3KN<A/M+3KN13), (19)

P11:P13/19+P23/1¢,

Pi2=Pildo+ Paaﬁw,

Pro=— P35+ Pls+ Polo.
Additionally, letting the coefficients, c1, ***, ¢4, be nega-
tive numbers produces the following constraints:

a<0 = —Pii<0 (20)

Cz<0 = Plz‘P23/19<0 (21)

;<0 =  Pu— Puie<0 (22)
1 _3KN

<l = T 2] A<0 (23)

The range of control gains, Aw, As and Ay, that globally
stabilize (12), (13) can be computed from the con-
straint equations (15)-(17) and (20)-(23). Because
the set of eigenvalues, (da, 05, 0c), represents the band-
width of error convergence of the reduced closed-loop
system (10), it seems more helpful to understand the
stability property of the suggested control by replac-
ing the set of control gains (4, As, Aw) in the above
conditions with (0, 0s, 06c) according to Eq.(11).
Furthermore, by letting 0.=0,=0c=0, the analysis
can be simplified and a range of ¢ that satisfies each
condition can be derived. Finally, a range of o that
can globally stabilize the error dynamics of the full-
order system (12), (13) can be obtained by intersect-
ing the ranges of o derived individually from condi-
tions(15)-(17) and (20)-(23). By substituting the
identified motor parameters, listed in Table 1, into the
constraint equations, the stable range of ¢ is derived
as

0.7442< 6<200.301 (24)
Notably, the stable range of ¢ is derived using
Lyapunov’s direct method; as a result, it is only
a sufficient condition to guarantee the globally
asymptotic stability of the unique equilibrium point at
the origin of the system described by Egs.(12) and
(13). The global asymptotic stability of the origin
also indicates that the control goals, ¢s=0, €,=0, and
ia=1is— 14=0, are attainable.

Besides its globally asymptotic stability, the
proposed controller is also robust. The robustness
comes from using the integration of position error, e,
in the control law. Therefore, small parameter uncer-
tainties will not affect the achievement of the control
goals of ¢,=0 and ex=0.

4.2 Lyapunov’s linearization method

The local stability of system (12) and (13) can be
further analyzed by linearizing (12) and (13) around
its equilibrium point. Figures 3(a), (b), (¢) illus-
trate the loci of eigenvalues of (12) and (13) by
varying wa from 10 rpm to 3 000 rpm. As in the above
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Fig. 3 Loci of eigenvalues when ws=10~-3 000 rpm and
(a) 0=5Hz; (b) 0=30Hz; (¢) 0=60Hz

stability analysis, de, 05 and oc are given equal values,
0, at 5 Hz, 30 Hz, and 60 Hz for Figs.3(a), 3(b) and
3(c) respectively. One set of two loci on the left-
hand side of Fig.3(a) are eigenvalues of the linear-
ized electrical subsystem, while the other set of three
loci on the right-hand side of Fig.3(a) are
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eigenvalues of the linearized mechanical subsystem.
In Figs. 3(b) and 3(c), where 0 is increased to 30 Hz
and 60 Hz, respectively, the set of loci representing
eigenvalues of the linearized electrical subsystem
move toward the imaginary axis and to the right of
the set of loci representing eigenvalues of the linear-
ized mechanical subsystem. Furthermore, when o
increases beyond a certain value, the set of loci re-
presenting eigenvalues of the linearized electrical
subsystem will move into the right half-plane and the
linearized system will become unstable. According to
Lyapunov’s linearization method, if the linearized
system is unstable, then the equilibrium point of the
original nonlinear system will be unstable. Therefore,
combining the results of Lyapunov’s linearization
analysis with the results of Lyapunov’s direct analy-
sis, it can be concluded that the value of stabilizing ¢
evidently has an upper bound. Restated, the proposed
current sensorless control possesses high-gain insta-
bility and the control gains must be both lower- and
upper-bounded. Consequently, the set of control
gains, (Ap, As, Aw), must be carefully and conservatively
chosen to comply with the bounds on the eigenvalues.

5. Experimental Results

The experimental setup includes a Sinano
#7CB30-2SE6F permanent magnet synchronous motor,
the power stage of a Micro Trend UT90 driver, a
proprietary control card made in-house, and a PC.
The control card converts the analog phase current
measurements into digital signals, decodes the en-
coder signals and the Hall effect sensor signals, and
generates space vector pulse width modulation
(SVPWM) switching signals to control the power
stage. The PC is used to compute the control algo-
rithms and the coordinate transformations among the
vector space, stator reference frame, and rotor refer-
ence frame. The experiments compare the control
performances of the proposed current-sensorless con-
troller with those of a full-state feedback controller.
The design and stability analysis of this full-state
feedback controller are presented in the Appendix for
comparison. Similar to the current-sensorless con-
troller, the d-axis current command in the full-state
feedback controller is also set to zero. The control
gains corresponding to the eigenvalues of the mechani-
cal subsystem at 0¢=0»=0.=30 Hz, which are in the
stable range of Eq.(24), are selected for both control-
lers. Additionally, the full-state feedback controller
is implemented in a two-loop control structure, as Fig.
1 illustrates, in which the bandwidth of the current
controller is ten times that of the velocity-position
controller. Besides, multi-sampling rates of 1 kHz
and 10 kHz are employed in the full-state feedback

JSME International Journal

139

controller, in contrast to the unitary sampling rate of
5kHz used in the current-sensorless controller.
Furthermore, the identified motor parameters, as
shown in Table 1, are used in the two controllers in
the experiments. To show the positioning capability
of the current-sensorless controller, a velocity trajec-
tory command that contains a zero-speed region is
implemented, as Fig. 4 illustrates. The position com-
mand is the integration of this velocity command.
Nevertheless, the position command must be quan-
tized according to the resolution of the optical encoder
to avoid the meaningless integration of position error
in the zero-speed command region. The resolution of
the optical encoder mounted on the applied motor is
8 000 counts per revolution. In addition, because the
Coulomb friction term, C sgn(w), in the feedback
linearization control laws will induce output oscilla-
tion when the velocity fluctuates around zero, it is
removed from the control laws when the velocity
command is zero.

Figures 5 and 6 present the experimental results
of the current-sensorless control and the full-state
feedback control, respectively. The current-sensor-
less control has greater control errors, s, €w and Za,
than the full-state feedback control in the accelera-
tion and the deceleration regions, as revealed by
comparing Figs.5(a), (b), (¢) with Figs.6(a), (b),
(¢). However, as observed in Fig. 5(a ), the position
error converges to zero in the zero-speed region when
the current-sensorless controller is implemented.
This phenomenon implies that the current-sensorless
controller can achieve positioning precision to the

Table 1 Identified parameters of the Sinano
# 7CB30-2SE6F motor
Pole pair N=4
Resistance R=3.55(Q)
Inductance L=5.92x10"" (H)

Magnet constant K =5.795x107% (V - sec/rad)

Rotor inertia J=6.45%x10"° (kg-m?)
Viscous damping coefficient B =8x10~° (N-m - sec/rad)

Column friction coefficient € =1.738x107 (N-m)

2000 . . ;
E 1000/ oo AR oo
3 g ‘. ;
0
0 1 2 3 4

Fig. 4 Trajectory of the velocity command in
experimentation
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Fig. 5 Results of the tracking experiment with the cur-
rent sensorless controller. (a) position error,
(b) velocity error, (c) d-axis current
- 10
o
g 0
® 10

0 1 2 3 4
g
E
N
(b) (sec)
1 T T T
:?; O fobtbloumtnpinutimiiton ;
-1 . .
0 1 2 3 4
(¢) (sec)
Fig. 6 Results of the tracking experiment with the full-

state feedback controller. (a) position error,
(b) velocity error, (¢) d-axis current

minimum measuring unit of a position measurement
device, such as an optical encoder. In contrast, the
position error of the full-state feedback controller in
the zero-speed region, as shown in Fig. 6(a), is oscil-
lating within a small range. The oscillation is largely
attributed to the effect of noises that enter the current
controller via current measurement feedback.
Because phase currents should be small when the
motor is running at low speed and not under load, the
noises will dominate the measured current in the near-
zero-speed regions. Consequently, at low speed the
current controller will track the noises and simultane-
ously generate small velocity oscillation. However,
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the problem of noise corruption in the current mea-
surements can be avoided entirely by using a current-
sensorless controller because the current signals are
unnecessary for feedback purposes.

6. Conclusions

This study analyzes the stability of a simple and
effective current-sensorless controller for a PMSM
control system. By using Lyapunov’s direct method, it
shows that this controller is globally asymptotically
stable when the control gains are limited to a certain
range. By combining this result with the result from
Lyapunov’s linearization analysis, we conclude that
this controller possesses high-gain instability and the
control gains must be both upper- and lower bounded.
Although this controller does not need the current
information of the motor for feedback, the steady-
state d-axis current can still be controlled to zero to
minimize power dissipation. Experimental results
confirm that the proposed current-sensorless controller
can indeed achieve position and velocity control with
zero steady-state d-axis current. Moreover, experi-
mental results also indicate that the current-sensor-
less controller can achieve zero positioning error
within the resolution of an optical encoder. However,
the same result is harder to achieve by using a full-
state feedback controller due to noise effect on the
current measurements.

Appendix : Full-State Feedback Control Design

A. Control Law Design
Consider the mechanical subsystem (1) of the
motor model. If Eq.(1) is treated as an independent
system, the g-axis current i in Eq.( 1) can be consid-
ered as a virtual control. A feedback linearization

control law for Eq.(1) can be chosen as follows:

iq;%[?w—}—% sgn (w) + da— Awew

‘Asea_;\wegp] (25)

Consequently, the responses ew, e and e, can be
adjusted by tuning the control gains, Aw, As, and Ae
according to the relations of the closed-loop
eigenvalues and the control gains in Eq.(11). How-
ever, because i is just a state variable of the full
model (1), (2) and not the control input, 7, can be
replaced with its desired value 7§ in Eq.(25). Taking
i¥ as a command input for the electrical subsystem
(2), feedback linearization current control laws for
Eq.(2) can be chosen as

Ud=L<%Z'd—Na)iq+ 1% —Adped"ﬂdied-i> (26)
Vg= L(N(l)ld +_];_l.q + lz);'< - /L]peq - Aqiquz’) + KNw

Te
27
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where 73 denotes the d-axis current command ; es=i«— a4 and eq=iq— 14 are d- and ¢-axis current errors,
respectively ; eaq..= / eqdt and eqi= f eqdt ; and Aap, Aai, Aep, and Aq: are control gains. Because control laws

(26) and (27) decouple the dynamics of the d-axis and the g-axis, i/« and 7 can have independent error
dynamics. These two error dynamics can be designated by tuning the control gains as follows:

Adp=Caa+ Oap
2
{/ldi:o'dao‘db (28)
{ququa'f'O'qb (29)
Aqi= 0ga0qs

where — 042 and — oa» are the designated eigenvalues of the closed-loop d-axis current error dynamics, and — 0
and — 04 are the designated eigenvalues of the closed-loop g-axis current error dynamics. Generally, dus and
Oa» are chosen to equal 0q. and oqs, respectively, during implementation, such that s and 7; will have the same
closed loop error dynamics.
B. Overall Stability Analysis
By substituting control laws (26) and (27) into system (1), (2), the overall closed-loop error dynamics
becomes a linear system :

es ] [0 1 0 0 0 0 0 T(es
e 0 0 1 0 0 0 0 |les

Slee | |7 —de — 0 0 % Cu

dt eas[ | 0O 0 0 0 1 0 0 |lea (30)
Cdq 0 0 0 _Adi _Adp 0 0 €4
Cas 0 0 0 0 0 0 1 ||eq:
€q L 0 0 0 O O _Aqi _/L]p_ €q

The eigenvalues of Eq.(30) are, —ds, —0s, — 0q, both loops are stable and the inner (current) loop is
— Gaa, — Oap, — Oqa, and — Gqo. Provided the  much faster than the outer (mechanical) loop.
eigenvalues of Eq.(30) are all placed on the left half-
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