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Variable structure control scheme for landing on a celestial object

Der-Cherng Liaw{ and Chiz-Chung Cheng{

This paper considers the landing of a space vehicle on a celestial object. By assuming

the air drag in two speciWc forms and the uncertainty in matching type, their eVects are

studied. Through the construction of a time-varying boundary layer, a new guidance

control law for landing on a celestial object is proposed via the variable structure

control (VSC) technique to guarantee that tracking performance is achieved at an
exponential convergence rate. The proposed guidance law is continuous and alleviates

chattering drawback by classic VSC design. Finally, simulation results are presented to

illustrate the use of the main design.

1. Introduction

In recent years, the study of the rendezvous of a space

vehicle with a space station or a celestial object has

attracted considerable attention (see for example,

SteŒan (1961), Niemi (1963), Jensen (1984), Guelman

(1991), Yuan and Hsu (1993), Guelman and Harel

(1994)). The interest and importance of the rendezvous

problem arise from both its theoretical considerations

and the variety of possible applications. Among the

studies, for instance, Guelman and Harel (1994) studied

a power-limited soft landing on an asteroid under the

gravitational eŒect while neglecting the drag. Jensen

(1984) dealt with the kinematics of rendezvous man-

oeuvres based on proportional navigation techniques.

Yuan and Hsu (1993) investigated the problem of space-

craft rendezvous in the exo-atmospheric ¯ ight via a

modi® ed proportional navigation scheme. However,

the existing studies tend to neglect the combinatorial

impact of atmosphere and gravity. For this reason, the

main goal of this work is to extend the study of

Guelman and Harel (1994) to derive a new rendezvous

guidance law for two-dimensional landing with the

eŒects of the drag and gravity. Guelman (1991) pointed

out that the rendezvous with a celestial object has three

phases: ® rstly, the cruise or transfer to the vicinity of the

celestial body, secondly, the approach, and thirdly, the

manoeuvres near the celestial body. This paper will

focus on the study of the manoeuvres near the celestial

body. Wertz and Larson (1991) quanti® ed the environ-

mental disturbance of spacecraft control such as the

gravity gradient, solar radiation, non-spherical asteroid

and aerodynamics. Using a by Monte Carlo simulation

analysis, Lafontaine (1992) studied autonomous space-

craft navigation and control for comet landing with

environmental disturbances.

The main goals of this paper is to employ the variable

structural control (VSC) scheme to study the landing

problem. In the study, solar radiation and non-spherical

asteroids are unmodelled and treated as system pertur-

bation. It is known that VSC possesses the advantages

of fast response and less sensitivity to uncertainties or

disturbances (see for example DeCarlo et al. (1988)).

However, traditional VSC techniques often result in a
chattering behaviour because of a discontinuous

switching control law. The chattering behaviour has
some drawbacks including damage to the mechanisms

and excitation of unmodelled dynamics. Moreover,

although the traditional boundary layer method with

® xed boundary layer in VSC can attenuate the degree

of high-frequency behaviour, its stability is guaranteed

only outside the boundary layer and asymptotic

tracking usually cannot be achieved if the boundary

layer is not su� ciently small (see for example Slotine

and Li (1991)). Furthermore, a ® xed switching control

gain for reaching the sliding surface often costs too

much energy for the purpose of trajectory tracking.

Owing to these disadvantages of traditional VSC (i.e.

with ® xed switching gain and ® xed boundary layer), in

this paper we synthesize a continuous-type control law
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with time-varying boundary layer and varying switching

control gain to reduce the control eŒorts in both magni-

tude and frequency while ensuring asymptotically

vanishing tracking error. Related research using VSC

was found only in the paper by Brierley and
Longchamp (1990) for an air± air interception problem

but not a landing problem. The objective of the

interception problem is to match the position vector

only, while for the landing problem the objective is to

match both the position and the velocity vectors simul-

taneously.
The organization of the paper is as follows. In } 2, we

describe the landing problem together with two kinds of

air drag. In } 3 the design of a discontinuous control law

that ful® ls the desired performance requirements is pre-

sented. To alleviate the classic chattering behaviour
drawback, in } 4 the control law is modi® ed to be con-

tinuous by the construction of a time-varying boundary

layer. It is followed by numerical simulations for two

kinds of drag to illustrate the use of the primary

result. Finally, } 6 gives the conclusions.

2. Problem Formulation

It is known that, when a space vehicle docks on a celes-

tial body, the relative velocity must be driven to zero.

This means that the commanded acceleration of the

active vehicle in both the direction normal to the line
of sight (LOS) and the direction along the LOS must

reduce to zero as the space vehicle lands on a celestial

object. The two-dimensional system equations under air

drag, gravitational eŒects and disturbances can be

derived by the construction of system Lagrangian as

given by

�r ¡ r _³2 ˆ aCr ¡ ·

r2
‡ F ‡ d1; …1†

r �³ ‡ 2 _r _³ ˆ aC³ ‡ G ‡ d2; …2†

where the landing geometry is given in ® gure 1 while the

parameters in (1) and (2) are described as follows: r is
the spacecraft position, ³ is the LOS angle with respect

to the celestial object, · is the gravitational constant

multiplied by the mass of the celestial object, aCr and

aC³ are the commanded accelerations in the er and e³

directions respectively, F and G are the components of
the air drag in the er and e³ direction, respectively and d1

and d2 are unmodelled perturbation forces due to the

environment. Here, similar to the work of Guelman and

Harel (1994), for simplicity, the spacecraft is assumed to

be of unit mass. Myint-U (1968) pointed out that a close

Earth satellite is subjected to various perturbation forces
such as asteroid oblateness and solar radiation pressure,

which are small and have diŒerent orders of magnitude.

In addition, Wertz and Larson (1991) pointed out the

perturbation forces from non-spherical asteroids and

solar radiation might cause periodic variations. Thus,

these eŒects can be formulated as periodic functions

for analysis. We then impose the following assumption

on the perturbation forces.

Assumption 1: For uncertainty d ˆ …d1; d2†T, there

exists a continuous function w…x† such that

kdk 4 w…x† …3†

for all x ˆ …r; ³; _r; _³† and t > 0. Here, jj ¢ jj denotes the

Euclidean norm and will be in eVect throughout the paper.

It is, at present, not easy to construct a reliable expres-

sion for the air drag resulting from the motion of
landing. However, if we suppose that the drag is

caused by some sort of gas, it is reasonable to assume

that the drag is proportional to some power of the space

vehicle’s velocity as well as the increase in the density of

the gas as the vehicle approaches the celestial body. Two
types of frictional force are adopted from Myint-U

(1968) and Persen (1958) in the study as given below.

Type 1 is given by

F ˆ ¡
‰ _r2 ‡ …r _³†2Š1=2

ekr
_r; …4†

G ˆ ¡
‰ _r2 ‡ …r _³†2Š

ekr
r _³; …5†

where  denotes the air drag coe� cient. Note that this

type of air drag assumes that the frictional force is pro-

portional to the second power of space vehicle velocity
relative to the celestial body.

Type 2 is given by

F ˆ ¡
_r

r2
; …6†

G ˆ ¡
r _³

r2
: …7†

This case assumes that the motion of the vehicle occurs

in a space with a very low gas density. Note that, in this
case, the frictional force is directly proportional to the

space vehicle’s velocity. Moreover, the variation in den-

sity is also taken into account by assuming that F and G

are decreasing with respect to the second power of r.
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Figure 1. The geometry for the landing problem.
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Assuming the air drag to be in either of the above

forms, we proceed to develop a guidance law that

ensures that the vehicle land on the celestial body and

satis® es the landing constraint. That is, the relative velo-

city must decrease to zero as the space vehicle meets the
celestial object (i.e. the distance between the vehicle and

celestial object r ˆ ra, where ra is the radius of a celestial

body).

3. Design of the guidance control law

The VSC design, in general, consists of three steps. The

® rst step is to select sliding surface vector, which is a
function of system states. It is followed by the design of

the so-called `equivalent control’ to govern the motion

on the sliding surface. Indeed, for any initial state lying

on the sliding surface, the equivalent control is equiva-

lent to forcing the system state to remain on the slide
surface thereafter and sliding toward the origin. The

® nal step is to design an extra control eŒort to guarantee

the reaching condition. That is, the second control guar-

antees that the system state will reach the sliding surface

in a ® nite time. The VSC technique is now applied to the
landing problem of the system

To achieve the main goals of the paper, we denote

x ˆ …xT
1 xT

2 †T; …8†

where

x1 ˆ …x1 x2†T ˆ …r ³†T; …9†

x2 ˆ …x3 x4†T ˆ … _r _³†T: …10†

Equations (1) and (2) can then be rewritten as

_x1 ˆ x2; …11†

_x2 ˆ A…x† ‡ B…x†u ‡ B…x†d : …12†

Here,

A…x† ˆ

x1x2
4 ¡ ·

x2
1

‡ F

¡ 2x3x4

x1

‡ G

x1

0

BBB@

1

CCCA; …13†

B…x† ˆ
1 0

0
1

x1

0

@

1

A; …14†

d ˆ …d1 d2†T; …15†

u ˆ …aCr aC³†T: …16†

Note that the dynamical system (11) and (12) is in a
regular form (for de® nition, see for example DeCarlo et

al. (1988)). In addition, since x1 ! ra, the matrix B…x† is

never singular during the landing process. After rearran-

ging the system equations into the form of (11) and (12)

above, the design procedure proceeds via the variable

structure control technique.

Let xd…t† ˆ …xd1…t† xd2…t††T be the desired trajectory

of x1, where xd1…t† and xd2…t† are both twice diŒerenti-

able functions of t. It is noted that xd1…t† must be chosen
so that xd1…t† ! ra, the radius of the celestial body.

However, to guarantee that the landing process can be

accomplished in a ® nite time, instead, we choose

xd1…t† ! ra ¡ ¯ for some ¯ > 0. Indeed, the landing pro-

cess for x1 ! ra can be realized within a ® nite time if the

system state x1 approaches xd1 at an exponential con-
vergence rate.

De® ne e ˆ …eT
1 ; eT

2 †T as the error function, where

e1 ˆ x1 ¡ xd…t† and e2 ˆ _e1. Let yd…t† ˆ ‰xT
d …t†; _xT

d …t†ŠT.

The system equations (11) and (12) can be rewritten as

the following error model:

_e1 ˆ e2; …17†

_e2 ˆ ¡ �xd…t† ‡ A…e; t† ‡ B…e; t†…u ‡ d†; …18†

where A…e; t† ˆ A…e ‡ yd…t†† and B…e; t† ˆ B…e ‡ yd…t††.
The landing process is then transformed into a tracking

problem such that the closed-loop system having an

error vector e approaches zero. Follow the VSC design

process, we choose a time-varying sliding surface vector
as

S…e; t† ˆ e2 ‡ Me1 ˆ 0; …19†

where M 2 2£2 is a positive de® nite matrix. It is known

(see for example DeCarlo et al. (1988)) that the VSC

control for the system (17) and (18) is in the form of

u ˆ ueq ‡ uN; …20†

where ueq is the equivalent control for the nominal

system (i.e. (17) and (18) with d ˆ 0) and uN is to be

designated to compensate non-zero uncertainties. Now,

we proceed the design of the equivalent control ueq for
the nominal system.

It is noted that the input-related matrix B…e; t† ˆ B…x†
as given in (14) is non-singular and, for (19),

_S ˆ _e2 ‡ M _e1

ˆ ¡ �xd ‡ A…e; t† ‡ B…e; t†u ‡ Me2: …21†

To provide _S ˆ 0 for any e such that S…e; t† ˆ 0, the

equivalent control can then be chosen as

ueq ˆ ¡B¡1…e; t†‰¡ �xd ‡ A…e; t† ‡ Me2Š: …22†

From (17) and (19), the reduced model for the system

(17) and (18) with S ˆ 0 becomes

_e1 ˆ ¡Me1: …23†

Since M is a positive de® nite matrix, we then have

e1…t† ! 0 as t ! 1 (i.e. x1 ! xd…t†). That is, for any

initial e such that S…e; t† ˆ 0, the tracking error vector

e approaches zero as the time t increases.

VSC scheme for landing on a celestial object 297
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Next, we design uN to compensate disturbances.

Suppose that the disturbance d satis® es assumption 1.

Let

uN ˆ ¡‰w…e† ‡ ²ŠB¡1…e; t† sgn …S†; …24†

where ² > 0, sgn …S† ˆ ‰sgn …s1†; sgn …s2†ŠT with

sgn …s† ˆ
1 if s > 0;

0 if s ˆ 0;

¡1 if s < 0:

8
><

>:
…25†

For any e such that S…e; t† 6ˆ 0, from (17), (18) and (22)

we have

1

2

djjSjj2

dt
ˆ ST _S ˆ ST‰¡ �xd ‡ A…e; t† ‡ B…e; t†u ‡ Me2Š

ˆ STB…e; t†…uN ‡ d†

4 ¡ ‰w…e† ‡ ²Š
X2

iˆ1

jsij ‡ jjSjj jjB…e; t†jj jjd jj

4 ¡ ‰w…e† ‡ ²ŠjjSjj ‡ w…e†jjSjj

4 ¡ ²jjSjj: …26†

Here, we use the fact that jjB…e; t†jj ˆ jjB…x†jj ˆ
jjdiag …1; 1=x1†jj ˆ 1 since, in general, x1 > 1 throughout
the landing. Moreover, we have djjSjj2=dt ˆ
2jjSjj djjSjj=dt ˆ 2ST _S. From (26), we then have

djjSjj=dt 4 ¡ ²=2. This implies that the state will

reach the sliding surface in a ® nite time. Indeed, the

® rst time treach required for the state to contact the
sliding surface satis® es treach ¡ t0 4 2…jjS…e0; t0†jj=²†,
where e0 and t0 denote the initial state of the system

(17) and (18) and the initial time respectively.

It is clear that _S 6ˆ 0 when the state is driven by uN to

touch the sliding surface. This will induce the so-called

`chattering’ problem. Slotine and Li (1991) pointed out
that the chattering must be eliminated by a proper con-

trol action. In fact, it can be achieved by smoothing out

the discontinuity of control law with a thin boundary

layer near the switching surface. In the next section, a

continuous type of control law is proposed to alleviate
chattering behaviour.

4. Smoothing the control law

It is known that the sign function as given in (24) and

(25) results in discontinuity of the control law and

induce chattering of system dynamics. However, in prac-

tical applications, chattering is generally undesirable

since it involves extremely high control activity and

further may excite high-frequency dynamics neglected
in the course of modelling. In the following, a contin-

uous type of control law is proposed to alleviate the

chattering behaviour while retaining exponential

tracking performance.

Let the function

g…S† ˆ 2S

jjSjj ‡ ° e¡®t
; …27†

replace the sign function in (24), where ° > 0 and ® > 0

can be selected by the designer to satisfy the condition
which will become clear later. The control law uN as in

(24) can be modi® ed as follows:

uN ˆ ¡‰¬w…e† ‡ ²ŠB¡1…e; t†g…S†; …28†

where ¬ > 1 is a constant. It is noted that the modi® ed

control law uN is well de® ned and continuous every-
where with uN ˆ 0 on the sliding surface. The concept

behind the modi® ed control law is to construct a time-

varying boundary layer G…e; t† as given in (30) below.

First, consider the case in which the tracking error e

lies outside G…e; t†. That is, jjS…e; t†jj 5 ° e¡t. By taking
the control input u ˆ ueq ‡ uN, from jjdjj 4 w…e† and

jjB…e; t†jj ˆ 1, we have

ST _S ˆ STB…e; t†…uN ‡ d†

4 ¡ 2‰¬w…e† ‡ ²Š jjSjj2

jjSjj ‡ ° e¡®t
‡ jjSjj jjB…e; t†jj jjdjj

4 ¡ ‰¬w…e† ‡ ²ŠjjSjj ‡ w…e†jjSjj

4 ¡ ²jjSjj: …29†

Similarly, from the discussions in } 3 and (23) above, for

any e such that jjS…e; t†jj 5 ° e¡®t, the error vector e will

reach the time-varying boundary layer G…e; t† in a ® nite

time with the reaching time less than 2jjS…e0; t0†jj=²,

where

G…e; t† ˆ fej jjS…e; t†jj 4 ° e¡®tg: …30†

In addition to reaching the boundary layer in a ® nite

time, we claim here that, once the state e enters the
boundary layer, it will stay within the boundary layer

hereafter. To see this, we note that

jjSjj d

dt
jjSjj ˆ ST _S

ˆ STB…e; t†…uN ‡ d†

4 ¡ 2‰¬w…e† ‡ ²Š jjSjj2

jjSjj ‡ ° e¡®t

‡ jjSjj jjB…e; t†jj jjd jj

4 ¡ 2‰¬w…e† ‡ ²Š
jjSjj2

jjSjj ‡ ° e¡®t
‡ w…e†jjSjj

4
jjSjj

jjSjj ‡ ° e¡®t
f¡2‰¬w…e† ‡ ²ŠjjSjj

298 D.-C. Liaw and C.-C. Cheng
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‡ w…e†…jjSjj ‡ ° e¡®t†g

4
jjSjj

jjSjj ‡ ° e¡®t
‰¡2²jjSjj ‡ w…e†

£ …jjSjj ‡ ° e¡®t ¡ 2¬jjSjj†Š: …31†

From (31), we have

d

dt
jjSjj 4

¡2²jjSjj
jjSjj ‡ ° e¡®t

‡ w…e†
jjSjj ‡ ° e¡®t

£ ‰…1 ¡ 2¬†jjSjj ‡ ° e¡®tŠ: …32†

Since w…e† 5 0, we then have djjS…e; t†jj=dt < 0 for any

e 2 G…e; t† with jjS…e; t†jj 5 ‰1=…2¬ ¡ 1†Š° e¡®t. This

implies that the error vector e will never go outside the

boundary layer once it enters the boundary layer G…e; t†.
From the discussions above, we know that the error

state e will reach the boundary layer in a ® nite time and

remains inside there. Moreover, the state x1 will track

the desired trajectory xd exponentially as given in the

next theorem.

Theorem 1: Suppose that the disturbance d satisWes

assumption 1. Then, the landing performance of the

system (11) and (12) can be achieved at an exponential

convergence rate, by the control law u ˆ ueq ‡ uN, where

ueq and uN are given in (22) and (28), if M is a

positive deWnite matrix and ® > 0 satisWes

¶max…M† ¡ ¶min…M† < ®. Here, ¶min…¢† and ¶max…¢†
denote the smallest and the largest eigenvalues respect-

ively. Moreover, the control law is continuous and alle-

viates the chattering behaviour.

Proof: From the discussions above, we know that the

system state e will enter the boundary layer G…e; t† in a

® nite time and remain inside there hereafter. To com-

plete the proof of the theorem, we shall only show that

e1…t† ! 0 exponentially as t ! 1 for any e 2 G…e; t†. Let

z…t† ˆ _e1 ‡ Me1 for any e 2 G…e; t†. It follows that

e1…t† ˆ e¡Mte1…0† ‡
… t

0

e¡M…t¡½†z…½† d½: …33†

Since M is a positive de® nite matrix, we have

e¡Mte1…0† ! 0 exponentially as t ! 1. Moreover, for

the integral part of (33), we have

… t

0

e¡M…t¡½†z…½† d½

®®®®

®®®®

4 jje¡Mtjj
…t

0

jjeM½ jj jjz…½†jj d½

4 e¡¶min…M†t
…t

0

e¶max…M†½° e¡®½ d½

4

e¡¶min…M†t °t

if ® ˆ ¶max…M†;

e¡¶min…M†t °

¶max…M† ¡ ®
…e‰¶max…M†¡®Št ¡ 1†

³ ´

if ® 6ˆ ¶max…M†:

8
>>>>>>><

>>>>>>>:

By L’HoÃ pital’s rule (see for example Buck (1978)), it
follows that

„ t

0
e¡M…t¡½†z…½† d½ ! 0 exponentially as

t ! 1 when ® > ¶max…M† ¡ ¶min…M†: Thus, from (33),

we can claim that e1…t† ! 0 exponentially as t ! 1 for

any e 2 G…e; t†. This implies that x1 ! xd…t† as t ! 1.

Since the tracking error e goes to zero, the conclusion of
the theorem is hence provided. &

5. Simulation results

In this section, we present two examples to illustrate the

use of the main result. Let the desired trajectory xd…t† be
given by

xd…t† ˆ ra ‡ …r0 ¡ ra† e¡t ¡ ¯

³f

³ ´
;

where ³f denotes the desired ® nal angle ³. The initial

conditions for the numerical study are adopted from

Guelman and Harel (1994) while the coe� cients for

the drag are from Persen (1958). Other system

parameters are chosen to satisfy the landing require-

ments. The parameters and initial states are then given
as follows: ra ˆ 10 km, r0 ˆ 200 km, ³0 ˆ 0:2 rad,

_r0 ˆ ¡5 km h¡1, _³0 ˆ 0:2 rad hour¡1, ° ˆ 5, ® ˆ 0:01,

³f ˆ 0:5 rad, k ˆ ¡0:1, ² ˆ 2, ¯ ˆ 0:1 km,  ˆ 0:02 and

M is given by 2:414I2, where I2 denotes the identity

matrix of dimension two. The disturbances are assumed
to be d1 ˆ 0:1 sin…x2† and d2 ˆ 0:5 sin…x2†. The matrix

w…x† and scalar ¬ can then be selected as w…x† ˆ 0:5 for

all x and ¬ ˆ 1:1. The following two examples are pre-

sented with respect to two types of air drag to demon-

strate the use of the proposed control scheme as listed in
theorem 1.

Example 1: This example considers the frictional force

in the form of (4) and (5) with  ˆ 0:02 from Person

(1958). Numerical results are given in ® gures 2± 5. Figure

2 shows the norm of the error function e while ® gure 3
exhibits the norm of the control force u with respect to

diŒerent gravitational constants. In addition, ® gure 4

gives the eŒects of air drag and gravity and ® gure 5

displays the timing responses for the four state variables

r, ³, _r and _³. It is observed from ® gure 2 that the tracking

performance is achieved at an exponential rate, which
agrees with the main conclusion of this study. From

® gure 3, we observe that a larger energy consumption

is required for landing as the gravitational eŒect

becomes heavier. The reason is that the commanded
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acceleration is required to resist the gravity so that the

vehicle’s velocity approaches zero at the end of landing.

From ® gure 4, it should be noted that the eŒect of

gravity is more signi® cant than that of air drag through

the landing process. Finally, it is observed from ® gure 5

that the four state variables r, _r, ³ and _³ are all conver-

gent. Moreover, the facts that _r and _³ approach zero

implies that the relative velocity decreases to zero as

the space vehicle docks on the celestial object.

However, from ® gure 5(c), j�rj at around 1 s is very

large. This would produce large a g force for touching

the boundary layer. &

Example 2: We consider the frictional force in the form

of (6) and (7) with  ˆ 0:02 from Person (1958). It is

observed from ® gure 6 that the eŒect of air drag is very

small in this case. Numerical results for the control

signal and system states resemble those of example 1.

Details are not given. &

6. Conclusions

In this paper, we have considered the rendezvous of a

space vehicle with a celestial object. The study included

the eŒects of air drag and disturbance. By use of the
VSC scheme, a continuous type of guidance control

law was proposed to guarantee the tracking perform-

ance and to alleviate the classic chattering drawback

of discontinuous controls. The tracking performance
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Figure 2. Norm of the error e.

Figure 3. Norm of the control u with diVerent kinds of

gravitational constant.
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Figure 4. (a) Norm of the air drag; (b) the gravitational eVect
l=r2.
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Figure 5. Timing responses of (a) r, (b) h , (c) _r and (d) _h .
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features an exponential convergence rate, which can be

assigned by the designer. Two numerical examples were
also presented to demonstrate the use of the main result

under diŒerent kinds of air drag.
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