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Abstract

Dissolved gas analysis has been used as a diagnostic method to determine the conditions of transformers for a long
time. The criteria used in dissolved gas analysis are based on crisp value norms. Due to the dichotomous nature of crisp
criteria, transformers with similar gas-in-oil conditions may lead to very di�erent conclusions of diagnosis especially when
the gas concentrations are around the crisp norms. To deal with this problem, gas-in-oil data of failed transformers were
collected and treated in order to obtain the membership functions of fault patterns using a fuzzy clustering method. All
crisp norms are fuzzi�ed to linguistic variables and diagnostic rules are transformed into fuzzy rules. A fuzzy system
originally proposed by Takagi and Sugeno is used to combine the rules and the fuzzy conditions of transformers to
obtain the �nal diagnostic results. It is shown that the diagnosing results from the combination of several simple fuzzy
approaches are much better than traditional methods especially for transformers which have gas-in-oil conditions around
the crisp norms. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Traditional methods

Dissolved gas analysis (DGA) [3,4,11] is the most popular method for detecting incipient faults of transform-
ers presently. When there are abnormal phenomena such as overheating or arcing in transformer, degradation
of transformer insulating oil result in the formation of many by-products. The ratios of combustible gases, H2,
CO, CH4, C2H6, C2H4, and C2H2, of these by-products are closely related to the type of abnormality. The
pattern and degree of abnormality can be determined by monitoring the concentrations and growth of these
combustible gases, and the fault can be prevented from deterioration consequently.
The diagnosing procedure provided by Taiwan Power Company is shown in Fig. 1 and as a typical example

to show how a transformer can be diagnosed.
Generally, the condition of a transformer can be determined from the concentration of combustible gases

dissolved in the insulating oil, the concentration of total combustible gas (TCG), and the increasing rate of
TCG. However, normal transformers can generate combustible gases while running. A means of verifying if

∗ Corresponding author.

0165-0114/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(99)00115 -3



140 A.-P. Chen, C.-C. Lin / Fuzzy Sets and Systems 118 (2001) 139–151

Fig. 1. Diagnostic procedure for transformers.

Table 1
Norms of combustible gases for 69 kV transformers

Status of transformers Concentration of gases (PPM) TCG increasing rate

H2 CH4 C2H6 C2H4 C2H2 CO TCG

Notable 250 550 450 500 20 300 1500 500 PPM=yr
Abnormal 500 1100 900 1000 40 600 3000 125 PPM=month

a transformer is behaving normally is to compare it with the majority of similar transformers by the gassing
characteristics. The judging norms of combustible gases established by Taiwan Power Company for 69 kV
transformers are given in Table 1 as an example.
When the concentrations of all the combustible gases, TCG, and TCG increasing rate are below the norms

in Table 1, transformers can be considered as “normal” and the period of examination remains unchanged.
While if any of these concentrations is beyond its norm of “notable”, it means that there might be some
incipient fault in the transformer. When any one of the concentrations exceeds its norm of “abnormal”, it
can be concluded that there must be some fault in the transformer. The examination period of this abnormal
transformer must be shortened, or the transformer must be shutdown for repairing at once.
The period of examination depends not only on the status of transformer but also on the pattern of fault.

The most commonly used method for identifying fault pattern is the Rogers’ method [7]. Four ratios of
combustible gases, CH4=H2, C2H4=CH4, C2H4=C2H6, and C2H2=C2H4, are translated into four independent
codes according to their values. Di�erent combinations of these four codes represent di�erent fault patterns,
overheating, arcing, and corona.
The �nal step of diagnosis is to obtain the examination period of suspicious transformers for continuous

observation. The current rules developed by Taiwan Power Company for determining examination period of
69 kV transformers are summarized in Table 2.
Basically, both the norms for status identi�cation and the rules for determining examination period are

based on crisp value criteria. The boundaries between status of transformer, normal, notable, and abnormal,
are fuzzy, and so are the boundaries between fault patterns, overheating, corona, and arcing, due to the
possible transition from one fault pattern to another. Even the gas concentrations can also be considered as
fuzzy owing to their inevitable measuring error. However, the relationship between fuzzy gas concentrations
and the fuzzy conclusion of diagnosis, status and fault pattern, are inferred through crisp criteria. Thus, for gas
concentrations that are around one crisp norm misjudging could happen. Through the procedure of diagnosis,
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Table 2
Rules for determining examination period of 69 kV transformers

Status of transformers TCG increasing rate Examination period
(PPM=month)

Notable 45–125 Corona, arcing: 1 month
Overheating: 6 months

645 1 yr

Abnormal ¿125 Half a month
45–125 Corona, arcing: 1 month

Overheating: 3 months
645 6 months

Table 3
Gas concentrations of transformers A and B

Transformer H2 CH4 C2H4 C2H6 C2H2 CO TCG TCG increasing rate
(PPM=month)

A 100 38 80 25 38 0 281 43
B 90 40 78 24 42 0 274 46

Table 4
Diagnostic conclusion of transformers A and B

Transformer A B

Status Notable Abnormal
Fault pattern
(by Rogers’ method) Overheating Arcing

TCG increasing rate
(PPM=month) 645 ¿45

Examination period 1 yr One month

accumulating judging error may cause totally di�erent conclusions for transformers that are in similar gas-in-oil
conditions.
Suppose that there are two 69 kV transformers A and B with similar gas-in-oil conditions as shown in

Table 3. The conclusions of diagnosis by using crisp norms is shown in Table 4.
As can be seen in Table 4, the two transformers with similar gas-in-oil conditions have very di�erent

conclusions of diagnosis – examination period of 1 yr for transformer A and one month for transformer B.
This is resulted from the inherent dichotomous nature of crisp criteria. Instead of traditional diagnostic method,
a new method based on fuzzy cluster analysis and fuzzy inference was proposed for diagnosing transformers.
First of all, gas-in-oil data of failed transformers were collected and analyzed with fuzzy cluster analysis

to obtain the membership functions of fault patterns. Then the crisp criteria for status identi�cation and
examination period determination were replaced by linguistic variables and transformed into fuzzy rules.
Finally, a fuzzy inference method was introduced to combine the status and fault pattern of transformers, which
are represented by memberships, together to obtain the examination periods of transformers. The transformer
A and B, which have similar gas-in-oil conditions, were reexamined, and the examination periods of these
two transformers by using fuzzy approaches are 7.8 months for transformer A and 7.6 months for transformer
B, respectively.
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Table 5
Principal component analysis of gas-in-oil data

Principal component Eigenvalues of the covariance matrix

Eigenvalue Di�erence Proportion Cumulative

P1 933·202 780·690 0·796 0·796
P2 152·512 99·530 0·130 0·926
P3 52·982 26·829 0·045 0·971
P4 26·153 18·111 0·022 0·993
P5 8·043 8·041 0·007 1·000
P6 0·002 0 0 1·000

Eigenvectors
Gas P1 P2 P3 P4 P5 P6
H2 0·584 0·533 0·048 0·442 − 0·105 0·407
CH4 − 0·498 0·164 − 0·688 0·091 − 0·277 0·409
C2H6 − 0·120 − 0·055 − 0·038 0·067 0·900 0·408
C2H4 − 0·494 − 0·020 − 0·711 0·169 − 0·234 0·408
C2H2 0·180 0·186 0·075 − 0·868 − 0·082 0·408
CO 0·347 − 0·806 0·107 0·101 − 0·200 0·409

2. Membership functions of fault patterns

The membership functions of fault patterns of transformers were obtained with fuzzy cluster analysis from
gas-in-oil data of failed transformers. The data of combustible gases were collected from 16 failed transformers
which had been proven to have incipient fault from 1983 to 1994. The data collection of every transformer
was started when the transformer was found to have symptom of fault and ended when the transformer had
been repaired.
According to the key gases method for identifying fault pattern [3], it is the percentages of combustible

gases in TCG rather than the magnitude of concentrations that are related to the fault patterns of transformers.
Thus, the original data of combustible gas concentrations were transformed in terms of percentages in TCG
before further analyzing.
The data were then treated with Ward’s method [10] to reject outliers. According to Punj and Stewart [6],

all hierarchical methods of clustering are sensitively in
uenced by outliers, and Ward’s method is better than
others in the existence of outliers. They also found that k-means method [5] is less in
uenced by outliers. The
data of combustible gas concentrations after removing outliers are shown in Appendix A. The fuzzy clustering
method adapted for analyzing gas-in-oil data, the fuzzy c-means algorithm [1], resembles the k-means method.
This is the reason why the algorithm was selected to obtain the membership functions of fault patterns.
From the concept of key gases and the observation of data in Appendix A, it can be found that there are

strong correlation among combustible gases of the same fault pattern. It means that fewer variables will be
enough in identifying the fault pattern of transformers. The results of principal component analysis (Table 5)
reveal that two principal components will be enough to account for 93% of the total variance. Fewer variables
not only favor the subsequent task of computation but also the representation and realization of diagnostic
results.
As shown in Fig. 2, it is obvious that the data approximately belong to two clusters which can be clearly

divided by the x-axis. Above the x-axis, the arcing cluster is found, and below the overheating one. It is
important for the fuzzy c-means algorithm to prede�ne the number of clusters before the iteration of the
algorithm. According to Fig. 2, one can easily de�ne the number of clusters as 2.



A.-P. Chen, C.-C. Lin / Fuzzy Sets and Systems 118 (2001) 139–151 143

Fig. 2. Results of principal component analysis: P1 vs. P2.

For a fuzzy clustering problem of n objects and c clusters, let the data set X = {x1; : : : ; xn}, and the vector
of all cluster centers V = {v1; : : : ; vc}: Ũ = [�ik ] is the membership matrix where �ik denote the degree of
membership of object xk to cluster s̃i, that is, �ik = �s̃t (xk). According to [1],

vi=
∑n

k=1(�ik)
mxk∑n

k=1(�ik)
m
; i=1; : : : ; c;

�ik =
(1=‖xk − vi‖2G)1=(m−1)∑c
j=1(1=‖xk − vj‖2G)1=(m−1)

; i=1; : : : ; c; k =1; : : : ; n:

For the gas-in-oil data, let c=2 according to the observation from Fig. 2 and the exponential weight m=2. A
simpli�ed version of fuzzy c means algorithm with Euclidean distance, G= I , comprises the following steps:
Step 1: Initialized Ũ

(0)
with all �ik =0:5 and set l=0.

Step 2: Calculate the c fuzzy cluster centers {V (l)i } by using Ũ (l)
from

vi=
∑n

k=1(�ik)
2xk∑n

k=1(�ik)
2
; i=1; : : : ; c:

Step 3: Calculate the new membership matrix Ũ
(l+1)

by using {v(l)i } from

�ik =
1=(‖xk − vi‖2)∑c
j=1 1=(‖xk − vj‖2)

; i=1; : : : ; c; k =1; : : : ; n;

where ‖xk − vj‖2 = (xk − vj)T(xk − vj).
Step 4: Calculate �= ‖Ũ (l+1) − Ũ (l)‖. If �¿�=0:01 set l= l+ 1 and go to step 2.
If �6� then stop.
After iterating, the �s̃i(xk) for s̃1 = overheating and s̃2 = arcing are as in Appendix B. The centers of clusters

vi=(p1i ; p2i) are

voverheating = (−23:75;−0:15); varcing = (34:97;−2:05);
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and the corresponding membership functions of fault patterns are

�overheating(xk)=
(p1 − 34:97)2 + (p2 + 2:05)2

(p1 + 23:75)2 + (p2 + 0:15)2 + (p1 − 34:97)2 + (p2 + 2:05)2 ;

� arcing(xk)=
(p1 + 23:75)2 + (p2 + 0:15)2

(p1 + 23:75)2 + (p2 + 0:15)2 + (p1 − 34:97)2 + (p2 + 2:05)2 :

Before calculating the membership to each fault pattern, the data of combustible gases must be transformed
into principal components using eigenvectors 1 and 2 in Table 5.

3. Linguistic variables and fuzzy rules

By taking C2H2 for example, the rules for identifying the status of transformers which use crisp norms of
Table 1 are as below

IF concentration of C2H2¡20 THEN status is normal.

IF concentration of C2H2¿20 AND concentration of C2H2¡40 THEN status is notable.

IF concentration of C2H2¿40 THEN status is abnormal.

After replacing the crisp norms with linguistic variables, the rules will become:

IF concentration of C2H2 is low THEN status is normal.

IF concentration of C2H2 is medium THEN status is notable.

IF concentration of C2H2 is high THEN status is abnormal.

The terms “low”, “medium”, and “high” are linguistic variables of combustible gas concentration. Every
linguistic variable corresponds to a fuzzy set. For di�erent gases the domain of discourse and fuzzy sets
are di�erent according to the types of gases and the value of crisp norms. However, the linguistic variables
of status, “normal”, “notable”, and “abnormal”, are not fuzzy sets at all because there does not exist any
corresponding domain of discourse for status of transformers. The inferential results of fuzzy rules are not
memberships to any fuzzy set but only represent degrees of notable or abnormal. The rules can still work
well considering that the linguistic variables of transformer status are fuzzy sets belonging to some pseudo
domain of discourse.
Unlike the crisp value rules which will be �red individually, more than one fuzzy rules may be �red

simultaneously. The results of inference by fuzzy rules for a transformer will be fuzzy status such as 0.3
notable and 0.7 abnormal. To avoid generating triple conclusion like 0.1 normal, 0.9 notable, and 0.1 abnormal,
the de�nition of linguistic variables had better followed the requirement of fuzzy partition. Triple conclusion
would not do anything good but only to complicate the problem.
According to the de�nition of Butnariu [2], if the union and intersection operations of two fuzzy sets in a

same discourse of domain are

�Ã∩B̃ =max(�Ã (x) + �B̃(x)− 1; 0); (1)

�Ã∪B̃ =min(�Ã (x) + �B̃(x); 1): (2)
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Fig. 3. Linguistic variables of gas concentration.

If fuzzy sets Ãi; i=1; : : : ; n; n¿2 in domain U have

Ãi ∩ Ãj = ∅; i; j=1; : : : ; n; i 6= j; (3)

and
n⋃
i=1

Ãi=U; (4)

then Ãi; i=1; : : : ; n is a fuzzy partition of U . Thus, for every x∈U there must be

�∪ai=1 Ãi(x)=min

(
n∑
i=1

�Ãi(x); 1

)
=1;

that is,

n∑
i=1

�Ãi =1: (5)

By following the requirements of (1)–(4), the linguistic variables of every combustible gas with notable
norm a and abnormal norm b can be de�ned as in Fig. 3.
The membership functions are as (6)–(8).

�low(x)=




1 for x¡
3a− b
2

;

1− x − (3a− b)=2
b− a for

3a− b
2

6x¡
a+ b
2
;

0 for x¿
a+ b
2
;

(6)

�medium(x)=




0 for x¡
3a− b
2

;

x − (3a− b)=2
b− a for

3a− b
2

6x¡
a+ b
2
;

0− x − (a+ b)=2
b− a for

a+ b
2
6x¡

3b− a
2

;

1 for x¿
3b− a
2

;

(7)
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�high(x)=




0 for x¡
a+ b
2
;

x − (a+ b)=2
b− a for

a+ b
2
6x¡

3b− a
2

;

1 for x¿
3b− a
2

:

(8)

Di�erent gases will have the same structure of fuzzy rules but di�erent norms in rules. Di�erent rules and
di�erent gas concentrations may cause di�erent conclusions of status such as 0.5 abnormal by CH4 and 0.7
abnormal by C2H2. Under this situation, the stronger evidence C2H2 should be taken into account, and the
weaker ones should be neglected.
The fuzzy rules for examination period determination also have linguistic variables. But, it should be

noted that the linguistic variables of TCG increasing rate for identifying fault pattern are di�erent to that for
examination period determination in spite of having the same name. However, the de�nition of membership
functions are still by the same way as (6)–(8). The rules for examination period determination (Table 2)
after introducing linguistic variables will be of the following form:

IF status is notable and TCG increasing rate is low
AND fault pattern is overheating THEN examination period is 6 months:

The above rule is not a pure fuzzy rule because the right-hand side of the rule is a crisp value. The inference
method of these “semifuzzy rules” are di�erent with the pure fuzzy logic systems and will be discussed
hereafter.

4. Inference of fuzzy rules

The con�guration of a pure fuzzy logic system [9] is shown in Fig. 4 where the fuzzy rule base consists
of a collection of fuzzy rules of the following form:

R(l): IF x1 is Fl1 and · · · and xn is Fln THEN y is Gl: (9)

For using the pure fuzzy logic system in engineering systems where inputs and outputs are real-valued
variables, the most straightforward way is to add a fuzzi�er to the input and a defuzzi�er to the output of the
pure fuzzy system. The con�guration of fuzzy logic system with fuzzi�er and defuzzi�er is shown in Fig. 5.
Instead of considering the fuzzy rules in the form of (9), Takagi and Sugeno [8] proposed the following

fuzzy rules:

L(l): IF x1 is Fl1 and · · · and xn is Fln THEN yl= cl0 + c
l
1x1 + · · ·+ clnxn;

where Fli are fuzzy sets, ci are real-valued parameters, y
l is the system output due to rule L(l), and l=

1; 2; : : : ; M . The left-hand side of the rules are fuzzy but the right-hand sides are crisp. The output is a linear
combination of input variables. For a real-valued input vector x=(x1; : : : ; xn)T, the output y(x) is a weighted
average of the yl’s:

y(x)=
∑M

l=1 !
lyl∑M

l=1 !
l
;

where the weight !l is calculated as

!l=
n∏
i=1

�Fli (xi):
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Fig. 4. Con�guration of pure fuzzy logic system. Fig. 5. Con�guration of pure fuzzy logic system with fuzzi�er
and defuzzi�er.

The most attractive feature of fuzzy logic systems is that they provide a framework to incorporate fuzzy
IF–THEN rules from human experts of which both the IF part and the THEN part are usually fuzzy.
However, this is not the case for transformer diagnosis since the THEN part of fuzzy rules derived from
Table 2 are already crisp. The defuzzi�er will be unnecessary only if a weight representing the overall truth
value of the premise can be obtained. This can be done by Takagi and Sugeno’s fuzzy logic system. It
means that this fuzzy logic system is more suitable for transformer diagnosis than that with a fuzzi�er and a
defuzzi�er.
For the problem here, yl is not necessary to be a linear combination of input variables, so that the fuzzy

rules become

L(l): IF x1 is Fl1 and · · · and xn is Fln THEN yl= cl:

Besides, the linguistic of status, TCG increasing rate, and fault pattern are all fuzzy partition of each domain.
For every domain the property of (5) will be sustained, and it can be easily proved that

M∑
l=1

!l=1:

The output y(x) will then be calculated as

y(x)=
M∑
l=1

!lcl:

The transformer A and B mentioned before are diagnosed again with fuzzy approaches. The results are
shown in Table 6. It can be seen that the summation of !l from every rule is equal to 1, and that the
examination period of transformers A and B are 7.80 and 7.64, respectively. For the two transformers, the
examination periods are closer to each other and are more reasonable than that of traditional diagnostic method.

5. Conclusions

It is obvious from the results of Table 6 that the combination of several simple fuzzy approaches is better
than traditional methods for diagnosing transformers especially for those that have gas-in-oil conditions around
the crisp norms. By the fuzzy approaches, transformers of similar gas-in-oil condition will have diagnostic
results that are close to each other.
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Table 6
Diagnosis of transformers A and B by fuzzy approaches

Transformer Status TCG Membership !l Contribution Examination
increasing rate to fault of rule period
(PPM/month) patterns (month) (month)

A Notable Normal 0·25 3·00 7·80
0·48 0·52

Low Arcing 0·13 0·13
0·48 0·55

Overheating 0·10 0·62
0·45

Abnormal Normal 0·27 3·24
0·52 0·52

Low Arcing
0·48 0·55 0·14 0·14

Overheating
0·45 0·11 0·67

B Notable Normal 0·20 2·35 7·64
0·4 0·49

Low Arcing 0·10 0·10
0·51 0·51

Overheating 0·10 0·60
0·49

Abnormal Normal 0·29 3·53
0·6 0·49

Low Arcing
0·51 0·51 0·16 0·16

Overheating
0·49 0·15 0·90

The validity of diagnostic results still depends on the fundamental diagnostic knowledge, that is, norms
for transformer status, rules for examination period, and membership functions of fault patterns. Basically,
the former two are derived from diagnostic experience or with statistical methods and have been used for a
long period of time. Yet the identi�cation of fault patterns by using membership functions is a new approach,
and the representativeness of membership functions is directly related to the gas-in-oil data that have been
collected. The amount of data is crucial to the representativeness of membership functions. Since that the
occurrence of failed transformer is rare, the membership functions must be updated whenever new data are
available. Besides, for transformers of di�erent voltages the membership functions of the same fault pattern
may be di�erent.
It should also be noted that the membership functions of fault patterns have no validity on singular points not

only because that singular points had been expelled from the data in the beginning of analysis but also because
of the limitation of fuzzy c-means algorithm. By fuzzy c-means algorithm, the summation of memberships of
every gas-in-oil data to all fault patterns equals to 1 even the point is far from any center of cluster. Thus,
more researches are needed to obtain knowledge for pretesting singularity.
Another factor that in
uences the validity of diagnosis is the design of linguistic variables representing

diagnostic norms. The design and de�nition of these linguistic variables are usually subjective. Trial and error
will be unavoidable if there is not any objective approach.
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Appendix A. Gas-in-oil data of failed transformers (% of TCG)

No. Pattern CO H2 CH4 C2H6 C2H4 C2H2

1 HH 0.3 2.17 45.59 7.97 43.94 0.04
2 HH 0 2.78 41.03 7.82 48.36 0
3 HH 9.3 14.08 30.14 7.32 39.15 0
4 HH 2.16 12.51 31.68 8.19 45.18 0.27
5 HH 2.87 14.23 32.05 8.16 42.62 0.07
6 HH 0.67 15.64 35.35 9.74 38.48 0.12
7 HH 1.22 22.06 37.58 10.36 28.78 0
8 HH 0.92 25.56 34.44 9.19 29.9 0
9 HH 25.21 6.78 21.82 11.44 33.47 1.27
10 HH 0 4.02 55.39 11.2 29.39 0
11 HH 0 2.21 52.71 10.54 34.54 0
12 HH 0 4.89 52.06 9.69 33.53 0
13 HH 0 3.69 48.44 11.13 36.73 0
14 HH 0 4.16 49.74 11.2 34.9 0
15 HH 0 4.63 49.77 11.2 34.41 0
16 HH 0 2.31 38.24 14.91 44.54 0
17 HH 0 2.76 39.84 14.43 42.97 0
18 HH 0 1.22 46.16 12.98 39.64 0
19 HH 0 1.35 46.38 12.9 39.38 0
20 MH 0 0 31.33 17.59 51.08 0
21 MH 0 0 33.88 15.57 50.55 0
22 AR 0 24.79 27.22 3.15 25.85 18.86
23 AR 0 21.29 27.99 3.56 27.32 19.85
24 AR 0 34.72 31.75 7.7 17.06 8.77
25 AR 0 39.42 30.37 7.92 14.54 7.75
26 AR 0 33.55 30.5 11.11 16.12 8.71
27 AR 0 29.96 31.43 12.03 13.71 12.87
28 SD 35.44 35.02 8.86 8.4 2.53 9.7
29 SD 34.4 36.22 7.52 6.38 2.51 12.98
30 AR 46.58 25.23 9.93 7.11 5.1 6.04
31 AR 45.95 35.14 5.41 2.7 1.35 9.46
32 SD 35.29 41.18 4.41 1.47 1.47 16.18
33 AR 25.88 39.05 11.47 3.16 11.93 8.51
34 AR 26.18 45.08 10.86 2.55 9.58 5.75
35 AR 25.89 46.03 10.47 2.07 8.86 6.67
36 AR 25.6 48.38 10.03 1.88 8.05 6.06
37 AR 2.33 56.82 9.86 2.16 11.59 17.97
38 SD 10.36 46.63 6.22 1.55 7.25 27.98
39 AR 20.18 35.88 9.3 1.59 15.4 17.66
40 SD 3.57 75 2.98 0.6 3.57 14.29

HH: High overheating; MH: Medium overheating; SD: Small discharging; AR: Arcing.
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Appendix B. Results of fuzzy clustering

No. Pattern P1 P2 � overheating(xk) � arcing(xk)

1 HH −33.62 −2.04 0.98 0.02
2 HH −33.27 −2.31 0.98 0.02
3 HH −12.42 −5.35 0.95 0.05
4 HH −20.61 −0.30 1.00 0.00
5 HH −18.31 0.12 0.99 0.01
6 HH −18.03 3.20 0.98 0.02
7 HH −10.51 6.68 0.91 0.09
8 HH − 7.42 8.32 0.85 0.15
9 HH − 5.47 −23.32 0.71 0.29
10 HH −30.73 0.91 0.99 0.01
11 HH −32.92 −0.56 0.98 0.02
12 HH −30.34 0.83 0.99 0.01
13 HH −31.08 −0.55 0.99 0.01
14 HH −30.56 −0.05 0.99 0.01
15 HH −30.06 0.21 0.99 0.01
16 HH −31.12 −3.33 0.99 0.01
17 HH −30.82 −2.77 0.99 0.01
18 HH −33.05 −2.41 0.98 0.02
19 HH −32.94 −2.29 0.98 0.02
20 MH −32.58 −5.98 0.98 0.02
21 MH −33.35 −5.44 0.98 0.02
22 AR 1.53 11.39 0.71 0.29
23 AR −1.49 9.79 0.71 0.29

24 AR 7.05 15.48 0.48 0.52
25 AR 11.52 17.61 0.38 0.62
26 AR 7.04 14.47 0.48 0.52
27 AR 6.31 13.48 0.49 0.51
28 SD 38.18 −16.27 0.05 0.95
29 SD 40.03 −14.29 0.04 0.96
30 AR 34.03 −30.96 0.16 0.84
31 SD 44.84 −24.95 0.10 0.90
32 SD 46.47 −11.98 0.04 0.96
33 AR 31.69 −6.10 0.01 0.99
34 AR 36.35 −3.66 0.00 1.00
35 AR 37.58 −2.77 0.00 1.00
36 AR 39.38 −1.45 0.00 1.00
37 AR 36.65 24.01 0.14 0.86
38 SD 39.36 13.41 0.06 0.94
39 AR 29.06 −1.83 0.01 0.99
40 SD 54.64 31.06 0.17 0.83
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