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Abstract

In designing the bicycle derailleur system, designers can use the results from the “stability region test” to determine
many parameters. Experimentation is the most accurate way to �nd a stability region because it is very di�cult to derive
a mathematical expression for the stability region. In this paper, a fuzzy set is used to determine the stability region of the
bicycle derailleur system. The database of the fuzzy set model is created from the experimental results. The relationship
between the experimental data and fuzzy set model will be described. Many properties of the stability region can be derived
from this model. The existence of the stability region, the reduction of experimental noise, the determination of indexed
points, and other techniques in designing an indexed derailleur system will also be introduced. This approach can simplify
the previous representations of the stability region and the mechanical characteristics. Finally, a case study of the market
product is presented. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the fuzzy concept has been given
much attention because of its wide applicability in en-
gineering and industry. It provides better and more
reasonable solutions for many problems that can or
cannot be solved by using a conventional approach.
For the most popular human-powered vehicles, bicy-
cles, the fuzzy concept can be used in designing the de-
railleur system. The derailleur system, which is shown
in Fig. 1, is similar to the gear box in a motor vehicle.
It consists of four main components: chainwheel and
freewheel, front and rear derailleurs, shift levers and
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cables, and a chain [9]. For di�erent riding conditions,
cyclists can choose between speed and labor-saving
by moving shift-levers which causes the derailleurs
to guide the chain to the desired sprocket. In recent
years, “indexed derailleur system” has come to repre-
sent the market mainstream. It means that cyclists do
not change gears by “feel”, they move shift levers to
exact “indexed points” on the levers.
In order to control such systems, many para-

meters have to be determined, such as indexed points,
and values for over-shifting and under-shifting. These
mechanical characteristics a�ect the shifting perfor-
mance of the derailleur systems and therefore, are
very important for the indexed derailleur system. It is
believed that many companies have developed their
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Fig. 1. A bicycle derailleur system.

testing procedures and standards. For business security
reasons, few published works can be found by compet-
ing companies. In reference papers [3,6,7], a system-
atic procedure has been proposed to design and test the
bicycle derailleur system, and the concept of the
“stability region” has also been introduced. Not only
many parameters have to be determined from stabil-
ity region, but also the stability region represents a
performance index [7]. In former times, the stability
region tests could be accomplished by using three
methods: the continuous stepping method, the itera-
tive stepping method [7,8], and the combined method
[5].
In this paper, a fuzzy set is used to obtain the sta-

bility region of the bicycle derailleur system. The �rst
method obtains a crisp stability region but the exper-
imental results are not very accurate. The other two
methods obtain a fuzzy stability region, and the com-
bined method saves much experimental time and ef-
fort over the other two methods because a fuzzy logic
controller (FLC) is used. Many de�nitions in fuzzy
set theory and bicycle science will be introduced �rst.
The relationship between the experimental data and
the mathematical model will be described. Many prop-
erties of the stability region can be derived from this
model. This approach can simplify the previous rep-
resentations of the stability region and the mechani-
cal characteristics. Finally, a case study of the market
product is presented.

2. Preliminaries

In this section, some concepts related to the fuzzy
set theory [1,4] and the bicycle derailleur system will
be presented.

2.1. Fuzzy set theory

Let U be a space of objects and x be a generic
element of U:

De�nition 2.1 (Fuzzy set). A fuzzy set A in the uni-
verse of discourse U is de�ned as a set of ordered
pairs,

A= {(x; �A(x) | x∈U )}; (1)

where �A(·) is called the membership function of A
and �A(x) is the membership value of x between 0
and 1. A can also be written as

A= �1=x1 + �2=x2 + · · ·+ �i=xi + · · ·+ �n=xn

=
n∑
i=1

�i=xi: (2)

De�nition 2.2 (Normality). A fuzzy set is normal if a
point x∈U such that �A(x)= 1 can always be found.

De�nition 2.3 (�-cut). The �-cut of a fuzzy set A is a
crisp set de�ned by

A(�) = {x | �A(x)¿�}: (3)

De�nition 2.4 (Convexity). A fuzzy set A is convex
if and only if for any �¿0 and any �∈ [0; 1],

�A(�xmax + (1− �)xmin)¿�A(xmax)
or

�A(�xmax + (1− �)xmin)¿�A(xmin);
(4)

where xmax and xmin are the maximum and minimum
values in A(�).
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De�nition 2.5 (Length). If a fuzzy set A is convex,
the length of the �-cut A(�) is

LEN(A(�))= xmax − xmin ; (5)

where xmax and xmin is the maximum and minimum
values of A(�).

De�nition 2.6 (Intersection). The intersection of two
fuzzy sets A and B is a fuzzy set C represented as
C =A∩B where
�C(x)= min(�A(x); �B(x)): (6)

De�nition 2.7 (Union). The union of two fuzzy sets A
and B is a fuzzy set C represented as C =A∪B where
�C(x)= max(�A(x); �B(x)): (7)

De�nition 2.8 (Intensi�cation). The intensi�cation of
a fuzzy set A is INT(A) where

�INT (A)

=

{
2(�A(x))2 for 06�A(x)60:5;

1− 2(1− �A(x))2 for 0:56�A(x)61:
(8)

2.2. Terminology in bicycle science

From reference paper [2], speci�c terminology used
in bicycle science is introduced in the following:

De�nition 2.9 (Down-shifting). The chain is shifted
from a smaller sprocket to a larger sprocket.

De�nition 2.10 (Up-shifting). The chain is shifted
from a larger sprocket to a smaller sprocket.

De�nition 2.11 (Stability region). The region or in-
terval that is located on the derailleur, in which the
chain will not engage a larger sprocket or drop to a
smaller sprocket. The chain will remain in the same
sprocket and it will be stable while the cable moves
around this region.

De�nition 2.12 (Indexed point). A point in the sta-
bility region determines the derailleur position for the
current sprocket only and exactly. For example, there

are seven indexed points in a seven-speed rear de-
railleur system. Such a system is called an indexed
derailleur system.

3. Stability region

The stability region is a kind of mechanical char-
acteristic from experimental results. Fig. 2 shows the
importance of the stability region. In designing the
derailleur system, the control factors: indexed points,
over-shifting and under-shifting values, are deter-
mined by using the stability region test. The technique
of under-shifting elimination is also derived from it.
In performance test, many indexes such as stability
ratio, width and existence of the stability region are
also determined from it. These characteristics will be
introduced and simulated in the following sections.
The stability region may be a�ected by di�erent

combinations of derailleur system components and
many other factors, such as shown in Fig. 3. There-
fore, it is very di�cult to get an analytic expression
of the stability region. In present studies [8], the sta-
bility region can be derived from three experimental
methods: the continuous stepping method, the itera-
tive stepping method, and the combined method. In
this section, the relationship among the three methods,
the crisp set and fuzzy set for the stability region will
be described in detail.

Fig. 2. The importance of the stability region test.
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Fig. 3. Parameters a�ecting the stability region.

3.1. Continuous stepping method: a crisp set of the
stability region

Fig. 4a is the rear derailleur system and Fig. 4b
is the right-hand-side view of Fig. 4a. When shift-
ing from a smaller sprocket to a larger sprocket, i.e.,
down-shifting to the nth sprocket, the guide-pulley
gradually moves right according to the cable pulled.
The chain begins to engage the larger sprocket as the
guide-pulley reaches point A. It is said that the points
p to p+a do not “belong” to the current sprocket and
the points after p+a “belong” to the current sprocket.
The crisp set Sdn of down-shifting can be de�ned as

Sdn = {�d(i)i | i=p to q}; (9)

where

�d(i)i

=



1 if “i” belongs to the current

sprocket;
0 if “i” does not belong to the current

sprocket;

Fig. 4. (a) Rear derailleur system; (b) construction of the crisp
set.

and n denotes the nth sprocket. In this example,

Sdn = {0p; 0p+1; 0p+2; : : : ; 1a; 1a+1; : : : ; 1q}: (10)
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Fig. 5. The stability region of a seven-speed freewheel sprocket.

On the other hand, during up-shifting, the chain begins
to leave the larger sprocket as the guide-pulley moves
toward point B. In the same way, the crisp set Sun of
up-shifting is

Sun = {1p; : : : ; 1b−1; 1b; : : : ; 0q−2; 0q−1; 0q}: (11)

Therefore, in region AB, the chain does not engage
the larger sprocket and drop onto the smaller sprocket;
it is thus stable in that region, hence called “stability
region”. It can be represented as

Sn= Sdn ∩ Sun
= {0p; 0p+1; : : : ; 1a; 1a+1; : : : ; 1b−1; 1b; : : : ; 0q−1; 0q}:

(12)

If the cable is pulled from a smaller sprocket to the
largest sprocket and pushed in the reverse direction
for a seven-speed freewheel, seven stability regions
can be formed as shown in Fig. 5 and the expression

S = S1 ∪ S2 ∪ · · · ∪ SN ; (13)

and N denotes the number of the sprocket.
It seems reasonable to determine the stability re-

gion by using this method. But some special cases
will in
uence the results. In indexed derailleur sys-
tems, there are often auxiliary shifting designs on the
sprocket tooth [9]. They guide the chain to engage the
sprocket at these points quickly and smoothly. For ex-
ample, there are four auxiliary shifting designs in a
28T sprocket. If a manufacturing defect or assembly
clearance occurs at one point, it will cause the chain
to engage at this point more easily than at the other
three points. Thus, the chain always shifts at that point

Fig. 6. Construction of the fuzzy set.

with a small cable displacement, but more cable dis-
placement is needed to shift at other designated points.
Similarly, if external disturbances occur during the ex-
periment, it will cause the chain to engage or leave
the sprocket suddenly. These can be treated as noise
factors which a�ect the results of the stability region
experiment.

3.2. Iterative stepping method: a fuzzy set of the
stability region

In this method, the statistical concepts are applied to
reduce the noise e�ects. In Fig. 6, pointp is the starting
point of the experiment. In the �rst iteration, the cable
is pulled from p to p+1 and returned to p several
times. For example, if in 10 attempts, no shifting action
occurs, the percentage is 0%. In the ith iteration, the
cable is pulled fromp top+i and returned top several
times. If the percentage of shifting action is 30%, “0.3”
is assigned to the membership value of this position.
The process will be continued until the percentage
reaches 100%. This point is de�ned as point A in the
down-shifting period. The fuzzy set Sdn can be written
as

Sdn = 0=p+ 0=(p+ 1) + · · ·+ �d(p+ i)=(p+ i)
+ · · ·+ 1=a+ 1=(a+ 1) + · · ·+ 1=q; (14)
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Fig. 7. Curves of the stability region: (a) strict convex, (b) convex and (c) concave.

where �d(p+ i) is the membership value of the posi-
tion (p+ i). Similarly, during the up-shifting period,
the fuzzy set Sun can be written as

Sun = 1=p+ · · ·+ 1=(b− 1) + 1=b
+ · · · + �u(q− j)=(q− j) + · · ·+ 0=q: (15)

Therefore, the stability region can be summarized as

Sn = Sdn ∩ Sun = 0=p+ 0(p+ 1)
+ · · ·+ �d(p+ i)=(p+ i) + · · ·+ 1=a
+ · · ·+ 1=b+ · · ·+ �u(q− j)=(q− j)
+ · · · +0=(q− 1) + 0=q: (16)

In a N -speed sprocket, the entire stability region can
be represented as

S = S1 ∪ S2 ∪ · · · ∪ SN : (17)

The fuzzy set of the stability region is also shown in
Fig. 5.

3.3. Combined method

It is obvious that the results of the continuous
stepping method are not very accurate and the iter-
ative stepping method may use a lot of time for the
experiment. In reference paper [5], a FLC is used to
accelerate the experiment speed. In this method, the
continuous stepping method is �rst applied to pull
the cable. The FLC can help to judge whether the
guide-pulley is close to the boundary of the stability
region or not. If the boundary is reached, the iterative
stepping method is then applied to get an accurate
stability. Therefore, a fuzzy set of the stability re-
gion is obtained and it is the same as that shown in
Section 3.2.

4. Properties of the fuzzy stability region

After the stability region is modeled by a fuzzy set,
many mechanical characteristics can be derived from
the fuzzy theories. In the following, the symbol Sn
denotes the fuzzy set of the nth sprocket.

4.1. Existence of a stability region

In previous studies [7], the “linear variation curve”
is used to represent and check the existence of the
stability region. It is not very convenient because an
additional sensor has to be used. In this paper, basic
fuzzy concepts can help to avoid this.

Property 4.1. Sn is convex if and only if the stability
region exists.

Property 4.2. If Sn is convex and normal, then it is
called a “strict stability region”.

Fig. 7 shows some representative types of the sta-
bility region. In Fig. 7a and b, Sn is convex. Therefore,
the stability region exists. Fig. 7a is a strict stability
region because the maximum value in the set is 1. The
stability region in Fig. 7c does not exist because it is a
concave curve. The treatment of this case is described
in reference paper [7].

4.2. Noise reduction

Although the iterative stepping method has reduced
experimental noise successfully, an intensi�cation op-
erator can emphasize the main e�ect.
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Fig. 8. Original fuzzy set and the set after intensi�cation.

Property 4.3. If the stability region of Sn exists,
INT (Sn) emphasizes the boundaries of the stability
and reduces the experimental noise.

For example, S2, which is shown in Fig. 8 is the
fuzzy set of the second sprocket in a seven-speed free-
wheel.

S2 = 0=13:2 + 0:1=13:5 + 0:4=13:8 + 0:8=14:1

+1=14:4 + 1=14:7 + · · ·+ 1=15:3 + 1=15:6
+0:9=15:9 + 0:6=16:2 + 0:3=16:5 + 0=16:8;

(18)

the unit of the cable displacement ismm. INT (S2) can
be accomplished from Eq. (7) and shown in Fig. 8,

INT (S2)

= 0=13:2 + 0=13:5 + 0:3=13:8 + 0:9=14:1 + 1=14:4

+1=14:7 + · · ·+ 1=15:3 + 1=15:6
+0:8=16:2 + 0:2=16:5 + 0=16:8: (19)

4.3. Determination of indexed points

Asmentioned before, there are seven indexed points
in a seven-speed derailleur. These points are assigned
on the shift-levers and they have to be determined pre-
cisely when designing the shift-levers. From reference
paper [7], the indexed point of the current sprocket
is the middle point of the stability region. There-

fore, it can be easily determined by using the fuzzy
set.

Property 4.4. The �-cut of Sn, Sn(�), denotes the stabil-
ity region and the choice of � determines the accuracy
of the product.

Property 4.5. The length of Sn(�);LEN(Sn(�)), is the
width of the stability region.

Property 4.6. The indexed point of the nth sprocket
is the middle point of the �-cut set.

For example, in the fuzzy set in Eq. (18), if �=0:9
is chosen, a strict stability region is obtained:

INT (S2)(0:9) = {14:4; 14:7; : : : ; 15:6; 15:9}: (20)

The length of the stability region is 15:9 − 14:4=
1:5mm and the indexed point is located at the middle
point (14:4+15:9)=2=15:15mm. If �=0:2 is cho-
sen, the region becomes

INT (S2)(0:2) = {13:8; 14:1; : : : ; 15:9; 16:2}; (21)

the length of the stability region is 2.4mm and the
indexed point is 15.0mm. A larger stability region is
assigned in designing a lower quality product because
the design tolerance of the components is larger. But
in a higher quality product, the accuracy of the com-
ponents is very good. Therefore, they can be compat-
ible with lower quality products.

4.4. Stability ratio

As mentioned before, a larger stability region is
desired in designing the derailleur system. For the sake
of convenient comparison between di�erent products,
the index called the “stability ratio (SR)” is de�ned:

Property 4.7. The stability ratio

SR=
∑m

n=1 LEN(Sn(�))
xend

× 100; (22)

where m is the number of sprocket and xend is the
length of total cable displacement.

The physical meaning of the SR value is the ratio
of the total range of stability region to total cable dis-
placement. A larger SR value indicates the derailleur
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system has a larger stability region, and the allowable
tolerances in manufacturing and assembly of the com-
ponents can be larger.

4.5. Case study

To demonstrate the above properties, the com-
binbed method is used to test a seven-speed rear de-
railleur system. The fuzzy set of the seven sprockets
is shown in the following:

S1 = 0=16:8 + 0:8=17:1 + 1=17:4 + · · ·+ 1=18:0;
S2 = 0=13:2 + 0:1=13:5 + 0:4=13:8 + 0:8=14:1

+1=14:4 + · · ·+ 1=15:6 + 0:9=15:9 + 0:6=16:2
+0:3=16:5 + 0=16:8;

S3 = 0=10:2 + 0:1=10:5 + 0:9=10:8 + 1=11:3

+ · · ·+ 1=12:3 + 0:2=12:6 + 0=12:9;

S4 = 0=7:5 + 1=7:8 + · · ·+ 1=9:6 + 0:8=9:9 + 0=10:2;
S5 = 0=4:8 + 0:6=5:1 + 1=5:4 + · · ·+ 1=6:6 + 0=6:9;
S6 = 0=1:9 + 0:8=2:1 + 1=2:4 + · · ·+ 1=4:2

+0:8=4:5 + 0=4:8;

S7 = 1=0:0 + · · ·+ 1=1:2 + 0:8=1:5 + 0=1:8: (23)

Use the intensi�cation operator to obtain INT (Sn),
and then choose �=0:8 for the �-cut operation,

INT (S1)(0:8) = {17:1; 17:4; : : : ; 18:0};
INT (S2)(0:8) = {14:1; 14:4; : : : ; 15:9};
INT (S3)(0:8) = {10:8; 11:1; : : : ; 12:3};
INT (S4)(0:8) = {7:8; 8:1; : : : ; 9:9};
INT (S5)(0:8) = {5:4; 5:7; : : : ; 6:6};
INT (S6)(0:8) = {2:1; 2:4; : : : ; 4:5};
INT (S7)(0:8) = {0:0; 0:3; : : : ; 1:5}:

(24)

The set of calculated indexed points is {17:6; 15:0;11:6;
8:9; 6:0; 3:3; 0:8}. And SR=63:33. From the prod-
uct itself, the measured indexed points from the
shift-lever are {17:5; 14:4; 11:4; 8:4; 5:9; 3:3; 0:8}. For
business security reasons, design strategy of the com-
pany cannot be �gured out. But, the set of indexed
points calculated in Eq. (24) is very close to the set
measured on an actual product.

Fig. 9. (a) Stability region exist, and (b) stability region does not
exist.

4.6. Other mechanical characteristics

Until present, the discussions are valid when the
stability region exists. In Fig. 9a, the block means the
position of current sprocket, and �=0:8 is de�ned.
During down-shifting, the chain engages current
sprocket at point D. On the other hand, the chain drop
on current sprocket at point U during down-shifting.
Therefore, the region DU is the stability region. If
there are no stability regions in any sprocket, over-
shifting and under-shifting values have to be taken
into consideration such as shown in Fig. 9b. In oper-
ation, the chain will not engage the larger sprocket
until the cable is pulled to point D and it will not
drop on the sprocket until point U. Therefore, dur-
ing down-shifting, the cable must �rst be pulled to
point D and then pushed back to the middle point of
the sprocket. This is called “over-shifting”. “Under-
shifting” can be determined in a similar way. From
Eqs. (14) and (15),

Property 4.8 (Over-shifting). If the stability of the
nth sprocket does not exist, the over-shifting value of
the nth sprocket O ′

n= i − m, where m is the middle
point of the sprocket.

Property 4.9 (Under-shifting). If the stability of the
nth sprocket does not exist, the under-shifting value
of the nth sprocket U ′

n=m− j.

Property 4.10 (Under-shifting elimination). To
reduce the under-shifting value, the over-shifting
value of the nth sprocket On= i−m+ max(U ′

n), and
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Un=0. Therefore, new indexed points are equal to
old indexed points minus max(U ′

n).

In situations in which only over-shifting is present
in shift-lever designs, they can be used for applica-
tions by under-shifting elimination and shifting in-
dexed points. Therefore, shift-levers can be designed
for only over-shifting with an easier mechanism and
lower cost. The detail descriptions can be found in
reference paper [7].

5. Conclusions

This paper presents a method to implement the
stability region from the experimental data. In addi-
tion, the use of the fuzzy concept helps to correct the
disadvantages and inconveniences of the traditional
modeling in the stability region test. The relationship
between the experiment and the fuzzy set model is es-
tablished. The stability region represented can be de-
termined more reasonably and accurately. From such
a fuzzy set, the existence of the stability region can
be known easily and e�ectively. After using the in-
tensi�cation operator, the noise in the experimental
process can be reduced and the main e�ect of the sta-
bility region can be emphasized. The indexed points in
an indexed derailleur system can also be determined
easily. Finally, a case study is used to demonstrate the
application of these approaches.
Although bicycle science has developed over a

hundred years, some di�culties have been su�ered
in these years, especially in designing the derailleur
system. The problem most recently is to improve the
performance of the derailleur system, which directly
a�ects the feelings of the rider. The stability region
test and its applications are the most important and
the �rst stage in the performance tests. It is believed

that many companies have developed their own pro-
cedures and standards. For business security reasons,
few published works or research reports can be found.
This paper successfully applies the fuzzy concept in
the stability region. It is desired that some progress
can be made in subsequent designs by using this
approach.
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