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Abstract

Considering the time-series ARIMA(p,d, q) model and fuzzy regression model, this paper develops a fuzzy ARIMA
(FARIMA) model and applies it to forecasting the exchange rate of NT dollars to US dollars. This model includes
interval models with interval parameters and the possibility distribution of future values is provided by FARIMA. This
model makes it possible for decision makers to forecast the best- and worst-possible situations based on fewer observations
than the ARIMA model. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since it has been suggested by Box–Jenkins [1] that the time-series ARIMA model has enjoyed fruitful
applications in forecasting social, economic, engineering, foreign exchange, and stock problems. It assumes
that the future values of a time series have a clear and de�nite functional relationship with current, past values
and white noise. This model has the advantage of accurate forecasting in a short time period; it also has the
limitation that at least 50 and preferably 100 observations or more should be used. In addition, this model
uses the concept of measurement error to deal with the di�erences between estimators and observations, but
these data are precise values that do not include measurement errors.
Tanaka et al. [9–11] have suggested fuzzy regression to solve the fuzzy environment and to avoid a

modeling error. This model is basically an interval prediction model with the disadvantage that the prediction
interval can be very wide if some extreme values are present.
Song and Chissom [6–8] presented the de�nition of fuzzy time series and outlined its modeling by means

of fuzzy relational equations and approximate reasoning. Chen [2] presented a fuzzy time-series method based
on the concept of Song and Chissom. An application of fuzzy regression to fuzzy time-series analysis was
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found by Watada [12], but this model did not include the concept of the Box–Jenkins model. In this paper,
based upon the works of time-series ARIMA(p,d, q) model and fuzzy regression model, we combine the
advantages of two methods to develop the fuzzy ARIMA model.
In order to show the applicability and e�ectiveness of our proposed method in practical application, we

conduct an illustration for forecasting the foreign exchange market. In the results, we found that the proposed
method makes good forecasts in several situations for which FARIMA appears to be the most appropriate
tool. The situations are listed as follows:
(i) To provide the decision makers the best- and worst-possible situations.
(ii) The required number of observations is less than the ARIMA model requires, which is at least 50 and

preferably more than 100 observations.
The structure of this paper is organized as follows: Concepts of time-series ARIMA and fuzzy regression

are reviewed in Section 2. In Section 3, the FARIMA model is formulated and proposed. The FARIMA model
is applied to forecasting the foreign exchange rate of NT dollars to US dollars in Section 4 and �nally the
conclusions are discussed.

2. ARIMA model and fuzzy regression model review

A time-series {Zt} is generated by an ARIMA(p,d, q) process with mean � of the Box–Jenkins model [1]
if ’(B)(1− B)d(Zt − �)= �(B)at; (1)

where ’(B)= 1−’1B−’2B2−· · ·−’pBp, �(B)= 1−�1B−�2B2−· · ·−�qBq are polynomials in B of degree
p and q, B is the backward shift operator, p,d, q are integers, Zt denotes the observed value of time-series
data, t=1; 2; : : : ; k, and time-series data are the observations.
The ARIMA model formulation includes four steps:

1. Identi�cation of the ARIMA(p,d, q) structure. Use autocorrelation function (ACF) and partial autocorre-
lation function (PACF) to develop the rough function.

2. Estimation of the unknown model parameter.
3. Diagnostic checks are applied with the object of uncovering possible lack of �t and diagnosing the cause.
4. Forecasting from the selection model.
It is assumed that at are independent and identically distributed as normal random variables with mean 0

and variance �2, and the roots of ’(Z)= 0 and �(Z)= 0 all lie outside the unit circle. If possible, at least
50 and preferably 100 observations or more should be used. In the real world, however, the environment is
uncertain and changes rapidly, we usually must forecast future situations using little data in a short span of
time, and it is hard to verify that the data is a normal distribution. So this assumption has limitations. This
model uses the concept of measurement error to deal with the di�erence between estimators and observations,
but these data are precise values and do not include measurement errors. It is the same as the basic concept
of the fuzzy regression model as suggested by Tanaka et al. [11].
The basic concept of the fuzzy theory of fuzzy regression is that the residuals between estimators and

observations are not produced by measurement errors, but rather by the parameter uncertainty in the model,
and the possibility distribution is used to deal with real observations.
The following is a generalized model of fuzzy linear regression:

Y = �0 + �1x1 + · · ·+ �nxn=
n∑
i=1

�ixi= x′�; (2)

where x is the vector of independent variables, superscript ′ denotes the transposition operation, n is the
number of variables and �i represents fuzzy sets representing the ith parameter of the model.
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Instead of using crisp, fuzzy parameter �i in the form of L-type fuzzy numbers of Dubois and Prade [3],
(�i; ci)L, possibility distribution is

��i(�i)=L{(�i − �i)=c}; (3)

where L is a function type. Fuzzy parameters in the form of triangular fuzzy numbers are used:

��i(�i)=



1− |�i − �i|

ci
; �i − ci6�i6�i + ci;

0 otherwise;
(4)

where ��i(�i) is the membership function of the fuzzy set represented by parameter �i, �i is the center of the
fuzzy number and ci is the width or spread around the center of the fuzzy number.
Through the extension principle, the membership function of the fuzzy number yt = x′t� can be de�ned by

using pyramidal fuzzy parameter � as follows:

�y(yt)=




1− |yt − xt�|
c′|xt | for xt 6= 0;

1 for xt = 0; yt =0;
0 for xt = 0; yt 6=0;

(5)

where � and c denote vectors of model values and spreads for all model parameters, respectively, t is the
number of observations, t=1; 2; : : : ; k.
Finally, the method uses the criterion of minimizing the total vagueness, S, de�ned as the sum of individual

spreads of the fuzzy parameters of the model.

Minimize S =
k∑
t=1

c′|xt |: (6)

At the same time, this approach takes into account the condition that the membership value of each
observation yt is greater than an imposed threshold, h level, h∈ [0; 1]. This criterion data simply expresses the
fact that the fuzzy output of the model should be over all the data points y1; y2; : : : ; yk to a certain h-level.
A choice of the h-level value in
uences the widths c of the fuzzy parameters:

�y(yt)¿ h for t=1; 2; : : : ; k: (7)

The index t refers to the number of nonfuzzy data used in constructing the model. Then the problem
of �nding the fuzzy regression parameters was formulated by Tanaka et al. [10] as a linear programming
problem:

Minimize S =
k∑
t=1

c′|xt |

subject to x′t�+ (1− h)c′|xt |¿yt; t=1; 2; : : : ; k;

x′t�− (1− h)c′|xt |6yt; t=1; 2; : : : ; k;
c¿ 0;

(8)

where �′=(�1; �2; : : : ; �n) and c′=(c1; c2; : : : ; cn) are vectors of unknown variables and S is the total vagueness
as previously de�ned.
Watada [12] suggested a fuzzy time-series analysis, which is formulated by the possibility regression model

but does not include the concept of the Box–Jenkins [1] model; also in this model, the weight of the objective
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function does not contain criteria which maybe somewhat subjective. Those limitations are derived to formulate
the fuzzy ARIMA model by using the criterion of the fuzzy regression model and to improve the limitations
in the Watada model.

3. Model formulation

The ARIMA model is a precise forecasting model for short time periods, but the limitation of a large
amount of historical data (at least 50 and preferably 100 or more) is required. However, in our society today,
due to factors of uncertainty from the integral environment and rapid development of new technology, we
usually have to forecast future situations using little data in a short span of time. The historical data must
be less than what the ARIMA model requires which limits its application. The fuzzy regression model is
an interval forecasting model suitable for the condition of little attainable historical data. In order to make
the model include all possible conditions, the spread is wide when data includes a signi�cant di�erence or
bias. The purpose of this paper is to combine the advantages of the fuzzy regression and ARIMA models to
formulate the fuzzy ARIMA model and to ful�ll the limitations of fuzzy regression and the ARIMA model.
The parameter of ARIMA(p,d, q), ’1; : : : ; ’p and �1; : : : ; �q are crisp. Instead of using crisp, fuzzy parameters,
’̃1; : : : ; ’̃p and �̃1; : : : ; �̃q, in the form of triangular fuzzy numbers are used. By using the fuzzy parameters, the
requirement of historical data would be reduced (at should be obtained from observation value, with the result
that at will be crisp). In addition, this study adapts the methodology formulated by Ishibuchi and Tanaka [4]
for the condition which includes a wide spread of the forecasted interval.
A fuzzy ARIMA(p,d, q) model is described by a fuzzy function with a fuzzy parameter:

�̃p(B)Wt = �̃q(B)at ; (9)

Wt =(1− B)d(Zt − �); (10)

W̃t = ’̃1Wt−1 + ’̃2Wt−2 + · · ·+ ’̃pWt−p+ at − �̃1at−1 − �̃2at−2 − · · · − �̃qat−q; (11)

where Zt are observations, ’̃1; : : : ; ’̃p and �̃1; : : : ; �̃q, are fuzzy numbers. Eq. (11) is modi�ed as

W̃t = �̃1Wt−1 + �̃2Wt−2 + · · ·+ �̃pWt−p + at − �̃p+1at−1− �̃p+2at−2 − · · · − �̃p+qat−q: (12)

Fuzzy parameters in the form of triangular fuzzy numbers are used:

�B̃i(�i)=



1− |�i − �i|

ci
if �i − ci6�i6�i + ci;

0 otherwise;
(13)

where �B̃(�i) is the membership function of the fuzzy set that represents parameter �i; �i is the center of the
fuzzy number, and ci is the width or spread around the center of the fuzzy number.
Using fuzzy parameters �i in the form of triangular fuzzy numbers and applying the extension principle, it

becomes clear [10] that the membership of W in Eq. (12) is given as

�w̃(Wt)=



1− |Wt −

∑p
i=1 �iWt−i− at+

∑p+q
i=p+1 �iat+p−i|∑p

i=1 ci|Wt−i|+
∑p+q

i=p+1 ci|at+p−i|
for Wt 6=0; at 6=0;

0 otherwise:

(14)

Simultaneously, Zt represents the tth observation, and h-level is the threshold value representing the degree
to which the model should be satis�ed by all the data points Z1; Z2; : : : ; Zk . A choice of the h value in
uences
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the widths c of the fuzzy parameters:

ZZ(Zt)¿ h for t=1; 2; : : : ; k: (15)

The index t refers to the number of nonfuzzy data used for constructing the model. On the other hand, the
fuzziness S included in the model is de�ned by

S =
p∑
i=1

k∑
t=1

ci|’ii ||Wt−i|+
p+q∑
i=p+1

k∑
t=1

ci|�i−p||at+p−i|; (16)

where �i−p is the autocorrelation coe�cient of time lag i− p, ’ii is the partial autocorrelation coe�cient of
time lag i.
The weight of ci depends on the relation of time lag i and the present observation, where the p of AR(p)

is derived by PACF and the q of MA(q) is derived by ACF. Next, the problem of �nding the fuzzy ARIMA
parameters was formulated as a linear programming problem:

Minimize S =
p∑
i=1

k∑
t=1

ci|’ii||Wt−i|+
p+ q∑
i=p+1

k∑
t=1

ci|�i−p||at+p−i|

subject to
p∑
i=1

�iWt−i + at −
p+ q∑
i=p+1

�iat+p−i + (1− h)



p∑
i=1

ci|Wt−i|+
p+ q∑
i=p+1

ci|at+p−i|

¿Wt;

t=1; 2; : : : ; k; (17)

p∑
i=1

�iWt−i + at −
p+ q∑
i=p+1

�iat+p−i − (1− h)



p∑
i=1

ci|Wt−i|+
p+ q∑
i=p+1

ci|at+p−i|

6Wt;

t=1; 2; : : : ; k;

ci¿ 0 for all i=1; 2; : : : ; p+ q:

The procedure of fuzzy ARIMA is as follows:
Phase I: Fitting the ARIMA(p,d, q) by using the available information of observations, i.e., input data is

considered nonfuzzy. The result of phase I that the optimum solution of the parameter, �∗=(�∗1 ; �
∗
2 ; : : : ; �

∗
p+q)

and the residuals at (is white noise), is used as one of the input data sets in phase II (the concept is derived
by Savic and Pedrycz [5]).
Phase II: Determining the minimal fuzziness by using the same criterion as in Eq. (17) and �∗=(�∗1 ; �

∗
2 ; : : : ;

�∗p+q). The number of constraint functions are the same as the number of observations (the concept derived
by Savic and Pedrycz [4]). The fuzzy ARIMA model is

W̃t = 〈�1; c1〉Wt−1 + · · ·+ 〈�p; cp〉Wt−p + at −〈�p+1; cp+1〉at−1 − · · · − 〈�p+q; cp+q〉at−q; (18)

where Wt =(1− B)d(Zt − �), �i is the center of the fuzzy number, and ci is the width or spread around the
center of the fuzzy number.
Phase III. We delete the data around the model’s upper bound and lower bound when the fuzzy ARIMA

model has outliers with wide spread.
In order to make the model include all possible conditions, fuzzy ARIMA cj has a wide spread when the

data set includes a signi�cant di�erence or outlying case. Ishibuchi and Tanaka [4] suggest deleting the data
around the model’s upper and lower boundaries, and then reformulating the fuzzy regression model. The fuzzy
ARIMA model uses the same method.
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4. Application to forecast exchange rate of NT dollars to US dollars

In order to demonstrate the appropriateness and e�ectiveness of the proposed method, consider the following
application of forecasting the exchange rate of NT dollars (NTD, Taiwan dollars) to US dollars (USD).
The characteristics of the domestic foreign exchange market in Taiwan are as follows:

1. Currently, the exchange rate policy made by the government does not encourage the NTD to be inter-
national, and some restrictions still exist for foreign commercial banks to have their NTD accounts here
mainly for national economic concerns.

2. USD is typically used when foreign currency exchange occurs between banks and their customers.
3. Di�erent kinds of exchanges include the following:
(a) Spot transaction: including USD to NTD and to the others.
(b) Forward transaction: only USD to NTD is permitted.
(c) Swap transaction: only USD to NTD is permitted.
Because the US is the largest country of international trade for Taiwan, and NTD is not an international

currency, forecasting the exchange rate between USD and NTD is very important for international trade in
Taiwan. The resource data shown in Fig. 1 is the asking price of NTD=USD spot exchange rate between the
bank and customers provided by The First Commercial Bank in Taiwan. It consists of 40 observations from
1 August 1996 to 16 September 1996.

4.1. The forecasts

Applying the fuzzy ARIMA method, we use the �rst 30 observations to formulate the model and the next
10 observations to evaluate the performance of the model.
Phase I: �tting ARIMA(p,d, q) model: Using the Scienti�c Computing Associates (SCA) package software,

the best-�tted model is ARIMA(2, 0, 0) and the values of residuals are white noise. The results are plotted in
Fig. 2 and the model is

Zt =28:093 + 0:499Zt−1 − 0:519Zt−2 + at : (19)

Fig. 1. Exchange rate of NTD and USD (1 August–16 September 1996).



F.-M. Tseng et al. / Fuzzy Sets and Systems 118 (2001) 9–19 15

Fig. 2. Results of ARIMA.

Fig. 3. Results of fuzzy ARIMA (30 historical data).

Phase II: determining the minimal fuzziness: Setting (�0; �1; �2)= (21:4952; 0:2195; 0:2297), the fuzzy pa-
rameters obtained by using Eq. (17) (with h=0) are shown in Eq. (20). These results are plotted in Fig. 3.

Z̃ t = 28:0932 + 〈 0:499; 0:0015 〉Zt−1 + 〈− 0:519; 0 〉Zt−2 + at : (20)

The fuzzy ARIMA method provides possible intervals. From Fig. 3, we know the actual values located
in the fuzzy intervals but the thread of fuzzy intervals are too wide, especially when the macro-economic
environment is smooth. We use the method of Ishibuchi and Tanaka [4] to resolve this problem and provide
a narrower interval for the decision maker.
Phase III: It is known from the above results that the observation of 17 August is located at the upper

bound (outlier), so the LP constrained equation that is produced by this observation is deleted and renews
phase II, let h=0 then we get the model that is in Eq. (21). The results are plotted in Fig. 4 and shown in
Table 1.

Z̃ t = 28:093 + 〈 0:499; 0:0004 〉Zt−1 + 〈−0:519; 0 〉Zt−2 + at : (21)
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Fig. 4. Result of fuzzy ARIMA (delete August 17).

Table 1
Results of fuzzy ARIMA model (delete 17 August)

Data Actual ARIMA Fuzzy Fuzzy Data Actual ARIMA Fuzzy Fuzzy
value predicted ARIMA ARIMA value predicted ARIMA ARIMA

value lower upper value lower upper
bound bound bound bound

1-Aug 27.55 — — — 20-Aug 27.55 27.54 27.54 27.56
2-Aug 27.56 — — — 21-Aug 27.55 27.55 27.54 27.56
3-Aug 27.55 27.54 27.54 27.56 22-Aug 27.55 27.54 27.54 27.56
5-Aug 27.53 27.53 27.52 27.54 23-Aug 27.55 27.54 27.54 27.56
6-Aug 27.52 27.53 27.51 27.53 24-Aug 27.54 27.54 27.53 27.55
7-Aug 27.54 27.53 27.53 27.55 26-Aug 27.53 27.53 27.53 27.55
8-Aug 27.55 27.55 27.54 27.56 27-Aug 27.51 27.53 27.5 27.52
9-Aug 27.56 27.54 27.55 27.57 28-Aug 27.54 27.53 27.53 27.55
10-Aug 27.54 27.54 27.53 27.55 29-Aug 27.55 27.55 27.54 27.56
12-Aug 27.53 27.53 27.52 27.54 30-Aug 27.53 27.54 27.52 27.54
13-Aug 27.56 27.53 27.55 27.57 31-Aug 27.52 27.53 27.51 27.53
14-Aug 27.54 27.55 27.53 27.55 2-Sep 27.53 27.53 27.52 27.54
15-Aug 27.53 27.53 27.52 27.54 3-Sep 27.56 27.54 27.55 27.57
16-Aug 27.53 27.53 27.52 27.54 4-Sep 27.56 27.55 27.55 27.57
19-Aug 27.52 27.53 27.51 27.53

Using the revised fuzzy ARIMA model, we forecast the future value of the exchange rate of the next 10
transaction days whose results are shown in Table 2. The results of the prediction are very good, and the fuzzy
intervals are narrower than the results before the model was revised and 95% of the con�dence interval of
ARIMA. In short, it will help the customers of the bank to understand that the possible interval of exchange
rate in the macro-economic environment is stable.
We use the same data to formulate Chen’s fuzzy time series [2] and Watada’s fuzzy time series [12], too.

The results are plotted in Figs. 5 and 6.
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Table 2
Results of predictions of exchange rate from 5–16 September 1996

Date Actual value Fuzzy ARIMA Fuzzy ARIMA
lower bound upper bound

5-Sep 27.54 27.53 27.55
6-Sep 27.55 27.52 27.55
7-Sep 27.54 27.53 27.55
9-Sep 27.55 27.53 27.56
10-Sep 27.54 27.53 27.56
11-Sep 27.55 27.53 27.55
12-Sep 27.54 27.53 27.55
13-Sep 27.54 27.53 27.55
14-Sep 27.54 27.53 27.55
16-Sep 27.55 27.53 27.55

Fig. 5. Results of Chen’s fuzzy time series.

Fig. 6. Results of Watada’s fuzzy time series.
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Table 3
Comparison of four kinds of time-series methods

ARIMA Fuzzy ARIMA Chen fuzzy time series Watada fuzzy time series

The relationship of input The relationship of input The relationship of input The relationship of input
and output is a previous and output is a fuzzy and output is a fuzzy and output is a fuzzy
function. function. relation. function.

Provide con�dence interval. Provide possibility interval. Point esimation. Provide possibility interval.

At least 50 and preferably Less than ARIMA. Less than ARIMA. Less than ARIMA.
100 observations or more.

4.2. Discussions and analysis

Based on the empirical results of this example, we �nd that the predictive capability of the fuzzy ARIMA is
rather encouraging and the possible interval of fuzzy ARIMA is narrower than 95% of the con�dence interval
of ARIMA. ARIMA has the tendency to increase in the con�dence interval. However, fuzzy ARIMA does
not have the situation of ARIMA. This evidence shows that the performance of fuzzy ARIMA is better than
ARIMA.
Chen’s fuzzy time series [2] is the method of point estimation, and fuzzi�ed historical data must lose some

information. However, the fuzzy ARIMA and Watada’s time series [12] are interval forecasting model and
more information would be obtained.
Fig. 6 shows that Watada’s time series has the tendency to increase in the forecasting interval. However,

it has not happened in the fuzzy ARIMA model.
Though the basic concept of ARIMA is used to formulate FARIMA, the output of fuzzy ARIMA is

fuzziness to release the assumption of white noise (at). This makes fuzzy ARIMA require fewer observations
than ARIMA. There are several situations for which fuzzy ARIMA appears to be the most appropriate tool.
The situations are as follows:
(i) Fuzzy ARIMA can provide the decision makers the best- and worst-possible situations and can detect

the outliers of the historical data.
(ii) The required observations are less than that required by the ARIMA model which is preferably more

than 100.
A comparison of four kinds of time-series methods is shown in Table 3.

5. Conclusions

In this paper, based on the basic concepts of the ARIMA model and Tanaka fuzzy regression, we propose
a new method (i.e. fuzzy ARIMA) and apply it to forecasting the foreign exchange rate of NTD to USD for
showing the appropriateness and e�ectiveness of our proposed method. From the example, we can see that
the proposed method not only can make good forecasts but also provides the decision makers with the best-
and worst-possible situations. The performance of fuzzy ARIMA is better than ARIMA, Chen’s fuzzy time
series and Watada’s fuzzy time series.
Though the basic concept of ARIMA is used to formulate the model, the output of fuzzy ARIMA is

fuzziness to release the assumption of white noise (at). This makes fuzzy ARIMA require fewer observations
than ARIMA. The result of the example shows that the fuzzy ARIMA is more satisfactory than ARIMA.
There are several situations for which fuzzy ARIMA appears to be the most appropriate tool. The situations
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are as follows:
(i) To provide the decision makers the best- and worst-possible situations.
(ii) The required number of observations is less than the ARIMA model required (prefer more than 100).
Fuzzy ARIMA is established by the concept of ARIMA, which assumes that the present value is the linear

combination of past value and white noise. White noise is an estimated value, so we must use a two-step
method to formulate the fuzzy ARIMA model which can be discussed as another issue.
While the result of ARIMA(p; d; q) shows lack of �t with the data from step 1, we are still encouraged

by the fuzzy ARIMA model. Because the result of fuzzy ARIMA is a possibility distribution which can be
discussed as another issue.
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