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Noisy Speech Processing by Recurrently Adaptive
Fuzzy Filters
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Abstract—Two noisy speech processing problems—speech en- About the noisy speech recognition problem, it has been
hancement and noisy speech recognition—are dealt with in this shown in literature that a speech recognizer designed to per-
paper. The technique we focus on is by using the filtering approach; ¢4m well under noise-free conditions usually shows marked

a novel filter, the recurrently adaptive fuzzy filter (RAFF), is pro- d dati . f h the back d . .
posed and applied to these two problems. The speech enhance- egradaton In performance when the background noise IS

mentis based on adaptive noise cancellation with two microphones, Present [5]. Many techniques, like the noise-robust acoustic
where the RAFF is used to eliminate the noise corrupting the de- representations, noise-robust spectral distortion measures,

sired speech signal in the primary channel. As to the noisy speech and parameter mapping methods, etc. have been proposed to
recognition, the RAFF is used to filter the noise in the feature do- solve this problem [6]. Among them, the parameter mapping

main of speech signals. The RAFF is inherently a recurrent mul- thod aims to filter th ise in the feat d S .
tilayered connectionist network for realizing the basic elements method aims fo filter the noise In the teature domain via a noise

and functions of dynamicfuzzy inference, and may be considered reduction networ and is the focus of this paper.
to be constructed from a series of dynamic fuzzy rules. As com-  Adaptive filtering has achieved widespread applications [1].
pared to other existing nonlinear filters, three major advantages Among the various adaptive filters, linear filtering is the most

of the RAFF are observed: 1)a priori knowledge can be incorpo- |, S ot :
rated into the RAFF, which makes the fusion of numerical data and widely used method in this area. However, for applications in the

linguistic information possible; 2) owing to the dynamic property realworld suchasthe ANC and noisy speechrecognition by linear
of the RAFF, the exact lagged order of the input variables need filtering, poor performanceis usually observed. The development
not be known in advance; 3) no predetermination, like the number of nonlinear filters is thus necessary. In fact, some kinds of non-
of hidden nodes, must be given since the RAFF can find its op- |inearadaptive filters have been proposed. Adaptive volterrafilter
timal structure and parameters automatically. Several examples on 21 s 4 Jinear combination of order stochastics and the combi-
adaptive noise cancellation and noisy speech recognition problems® - . . . . o
using the RAFF are illustrated to demonstrate the performance of nation coefficients are tunable when the signal or noise statistics
the RAFF. change. The drawbacks of this filter are thatitis constrained to be
Index Terms—Adaptive noise cancellation, noisy speech recog- applied to the Clas_s of nonlingar systems that can be reprgsented
nition, real-time recurrent learning, structure identification. by the Volterra series expansion and, as the order of the filter in-
creases, much greater complexity in design and filter size occurs.
This higher order problem also occurs in another type of filter,
the adaptive stack filter [8], which is constrained to be applied to
IGNALS are usually corrupted by noise in the real worldthe situations when the threshold levels are small.

o reduce the influence of noise, two research topics—theAnother kind of filter, the neural filter [9], is proposed to take
speech enhancement and speech recognition in noisy enviradvantage of the universal approximation and powerful learning
ments—have arose. For the speech enhancement, the extracthility of the neural networks. Applications of this type of fil-
of a signal buried in noise, adaptive noise cancellation (AN@rs include channel equalization [12], [13], restoration of im-
[1] provides a good solution. In contrast to other enhancemeages corrupted by impulse noise [9], speech enhancement [3],
techniques, its great strength lies in the fact thatanpriori  [10], [11], and noisy speech recognition [14]-[20], etc. In [10],
knowledge of signal or noise is required in advance. The advanmultilayer perceptron neural network is used as an adaptive
tage is gained with the auxiliary of a secondary input to meastfiéer for noise canceling, where two microphone beamformers
the noise source. The cancellation operation is based on the &k used for suppressing directional background noise. In [11],
lowing principle. Since the desired signal is corrupted by therecurrent radial basis function network, whose output is fed
noise, if the noise can be estimated from the noise source, th&ck as the input variables, is used as an adaptive filter for noise
estimated noise can then be subtracted from the primary charcaicellation. As for the noisy speech recognition problem, in
resulting in the desired signal. Traditionally, this task is done §¥4] and [15], a hoise reduction neural network is used to realize
linear filtering. In real situations, the corrupting noise is a nora mapping from the set of noisy signals to the set of noise-free
linear distortion version of the source noise, so a nonlinear filteignals in the time domain. The results showed even for noisy

I. INTRODUCTION

should be a better choice [2]-[4]. speech signals that had not been part of the training data, the
network successfully produced noise-suppressed output signals.
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cients are used as features. The results showed that the usetadre

feature vectors as input signals resulted in significantly smallerzx; input;
networks and, hence, in reduction of computation time. 7 output;
Since the speech signals are temporal signals, in [18] the in-4;;, A;,, G; andB;; fuzzy sets;
formation about the characteristics of the noise and speech comp, internal variable;
ponents of the input signals including context information in 4, ; andw,,,; fuzzy singletons;
feature domain is taken into account. The context features to-, andm, numbers of input and hidden vari-
gether with the current ones are fed to the noise reduction net- ables, respectively.

work, a feedforward multilayer perceptron network and a highghe dynamic reasoning implies that the inference ougp(ft+
recognition rate is achieved with the cost of increasing the ngtr s affected by the internal variablg (¢) and the current in-
work input dimension. In [19], a recurrent neural network igernal outputh;(t + 1) is a function of previous output value
used as a noise reduction network to capture the temporal fett), i.e., the internal variablg; itself forms the dynamic rea-
lationship of the speech signals without increasing the input dioning.
mension and determining the context frame number. In [20], ajn contrast to other filters, where the filter structure is fixed
structure different from those above is proposed; a number£{d should be assigned in advance there are no rules initially in
multilayer perceptron-based estimators are placed in every filige RAFF; all of them are constructed during on-line learning.
bank in the feature domain to estimate each filter bank channgjg learning phases, the structure as well as parameter learning
output in [20]. Local statistical information of the speech anghases, are used to accomplish this task. The structure learning
the noise are estimated and used as inputs to the networks. phase is responsible for the generation of fuzzy IF-THEN rules
In general, the aforementioned neural filters can be trained §¥ well as the judgement of feedback configuration and the pa-
numerical data only. When we are constructing information prgameter learning phase for the tuning of free parameters of each
CeSSing Systems, like the ﬁlters, the available information prgynamic rule (||ke the Shapes and positions of membership func-
cessing systems usually comes in two forms: numerical fofffians and the singleton values). The RAFF is applied to the ANC
and linguistic form. The inconvenience of incorporating lingng noisy speech recognition problems.
guistic information expressed by fuzzy IF-THEN rules in design This paper is organized as follows. Section Il describes the
is a Shortcoming of the neural filter. OWning to this reason, aﬂoisy Speech processing techniqueS, the ANC and the noisy
other type of filter—the adaptive neural fuzzy filter [4] or fuzzyspeech recognition, based on filtering approach. The structure of
adaptive filter [22]—which makes the combination of numericghe RAFF and its on-line construction scheme, including struc-
information as well as |ingUiStiC information pOSSible, are prqyre and parameter |earning, under a mean square error (MSE)
posed. Besides this combination ability, the learning speed@fterion, is proposed in Section IIl. In Section IV, the RAFF
this type of filter is Usua”y faster than the neural filters. HOWrS app“ed to the adaptive noise cancellation and noisy Speech

ever, all these filters belong to the feedforward filters. To dQecognition problems. Finally, conclusions are summarized in
sign a feedforward filter, the lagged order of the input variablege |ast section.

which determines the number of filter inputs, must be known
in advance. In real situations, the order is usually unknown. For
higher order problems, the input number is large, resulting in se-
rious increment in filter size, whereas, if a recurrent fuzzy filter The noisy speech processing problem discussed in this sec-
is used, these problems can be solved. If a recurrent filter tfi@n can be divided into two areas, the speech enhancement
can memorize the past history of the input, is used, we only ne&id noisy speech recognition. The speech enhancement tech-
to feed the current state to the filter and the size of the filter caifiue, the method based upon adaptive noise cancellation with
be reduced considerably. This concept of recurrent fuzzy néto microphones, is discussed in Section IIA. Section 1I-B dis-
work is also stated in [23]-[26]. In [23], a quasi-linear fuzzygusses the other technique—noisy speech recognition by param-
model (QLFM), a dynamic fuzzy model, is proposed and, i&ter mapping in the feature space of speech signals.
[24]-[26], concepts of dynamic fuzzy reasoning are proposed.

A recurrent filter, the recurrently adaptive fuzzy filterA. Adaptive Noise Cancellation

(RAFF), is proposed in this paper. The RAFF expands the basicagaptive noise cancellation is concerned with the enhance-

ability of a neural-fuzzy-type filter to cope with delayed probment of noise-corrupted signals and is based upon the avail-

lems via the inclusion of some internal memories in thg for%ibility of a primary input source and an auxiliary (reference)
of context elementsn contrast to other recurrent neural filter§y ¢ source located at the noise field, which contains no or little
whose structures are always opaque to the user, the welghgi@ﬁm as shown in Fig. 1. In Fig. 1, the primary input source
well as the node in the RAFF has its own meaning and playggntains the desired signaj which is corrupted by noiseq
special element in a fuzzy rule. More clearly, with the Comeﬁenerated from the noise sourceThe received signal is thus
elements, the filter performs the following reasoning:

Rulei: IF z1(t) is A;; and - - - andz,,(t) is A;, and z(k) = s(k) +n(k). )
hi(t) is G The secondary or auxiliary (reference) input source receives

THEN y1(t + 1) is B;: andhq (¢ + 1) iswy; the noisen,, which is correlated with the corrupting noise
and --- andh,,(t + 1) iS wpm; The principle of the adaptive noise cancellation techniques is

Il. NoISY SPEECHPROCESSINGPROBLEM
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Fig. 1. Adaptive noise cancellation system.

to adaptively process (by adjusting the filter’'s weights) the reperformance when background noise is present. To solve the
erence noiseé; to generate a replica of and then subtract problem, many approaches have been proposed [6]. The noise
the replica ofn from the primary inputz to recover the de- removal by noise reduction network is one method trying to
sired signak. We denote the replica af, i.e., the adaptive filter remove the noise via a mapping from the noisy input to the
output, as process To show how the system works, we shaltlean output in the feature domain. The architecture of the
follow what is derived in [1]. The assumptions that. andn; enhancement recognition system is shown in Fig. 2. The system
are stationary zero-mean processés uncorrelated witih and  works as follows. In time domain, speech sigegtl) and noise
n1, andn andn, are correlated are made. Also, the referencignal n(k) are added and a noise corrupted speech signal
input source is situated in such a position that it detects only thg(k) = s(k) + n(k) is measured. After receiving the noisy
noise not the signal. Here, another constraint that procgds speech signal, the next step is to extract the noisy features from
uncorrelated with processis added owning to the use of non-the noisy speech. The function of the noise reduction filter is
linear adaptive filters. From Fig. 1, we have to map the noisy features to clean features and then feed these
filtered features to the recognizer. The general design method
e(k) = s(k) +n(k) — y(k). () of the noise reduction filter is as follows. At first, we generate
By squaring and taking expectation on both sides, we can obti§ Noisy speech signal by artificially adding noise to the
clean speech. Using the noisy features extracted from the noisy
E[e*(k)] = E[s*(k)] + E[(n(k) — y(k))?]. (3) speech as inputs to the filter and the corresponding clean feature
Our objective is to minimizeE[(n(k) — y(k))2]. Observing as the desired output, the noise reduction filter is trained under
(3), we can see that this objective is equivalent to minimizi

SE criterion. After training, the noise reduction filter maps
E[2(k)] and wherE[(n(k) —y(k))?] = E[(n(k)—F(na (k))?] e noisy feature extracted from the real noisy speech signal to
approaches zero, the remaining ex©k) is, in fact, the desired

the filtered feature for recognition to obtain a higher recognition
signals(k), where['(-) represents the function of the nonlineaf® The mapping perform_ed by the f||ter Is quite complex;
adaptive filter. deS|gn§ by liner transformatlon are o.bV|oust poorer than those
Traditionally, the design of the adaptive filters for th V”OF‘!"?ear transformation [19], which are ugually performed
aforementioned noise canceling problem is based upon a lin ?Arﬁrtl'f'ic'al r;eumral PeitwiorrI](sl [1:11](5 [ii?],rr[rfsgi. ?ri\ce thnei sigescif;
filter adapted by the least mean square (LMS) or recursive Ieésq alIs a temporal sighal a ormation Is containe

square (RLS) algoritm. In real stuatons, the envronme 0T e SRR UEIE T 8 USRS B e

betweenr andn is S0 complex that is in fact a nonlinear to Jachieve better performance than thtja mapping without usin

function ofr [2], [3]. Better performance of noise cancellation . i P mapping L using
acent information. However, the adjacent information is

by using a nonlinear filter can thus be expected. Some nonlin&

filters, the polynominal-type filters (e.g., the Volterra filter)0 tained at the expense of expanding the input dimension.

[2] and the neural filter [3] have been proposed for adapti\;ro contain longer temporal information, the input dimension

filtering. To use these filters, the order of the input variabl%%lﬂg Ire]lcrrliﬁiﬁ;a(ia?urzg?r?e:ﬁiﬁtlgTv?tﬂtiﬁig:rl:;rljnaé?neorr?eestvi\{so;k
needs to be known in advance. Moreover, if the input order i '

large, increment in network size is serious. If the past history B?tter choice. Although we can use existing recurrent neural

the input variable can be memorized, however, then the exgggworks o do this task [19), the structures of these recurrent

order of the input can be unknown and the size of the filter C(,Qr?ural networks [21], are opaque 1o the user and the network

be reduced. The RAFF proposed in the next section is thu?%e has to _be decided in ?‘dvance- As shown below, the RAFF
good choice. introduced in the next section solves these problems.

B. Noisy Speech Recognition lll. STRUCTURE OF THERAFF

A well-performed speech recognition system under In this section, the structure of the RAFF shown in Fig. 3 is
noise-free conditions usually show marked degradation imroduced. The RAFF consists of nodes, each has some finite
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Fig. 2. Structure of the noisy speech recognition system with noise reduction filter.
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Fig. 3. Structure of the proposed recurrently adaptive fuzzy filter (RAFF).

fan-in of connections represented by weight values from otherLayer 2 Nodes in this layer are called input term nodes,
nodes and some fan-out of connections to other nodes. Basicabgch of which corresponds to one linguistic label (small, large,
it is a five-layered neural fuzzy filter embedded with dynamietc.) of an input variable. Each node in this layer calculates
feedback connections (the feedback layer in Fig. 3) that brintie membership value specifying the degree to which an input
the temporal processing ability into a feedforward neural fuzzsalue belongs to a fuzzy set. A local membership function, the
filter. To give a clear understanding of the filter, the functiomvhite Gaussian membership function, is used in this layer be-
of the node in each layer is described below. In the followingause a multidimensional white Gaussian membership function
descriptions, the symb@dz(k) denotes theth input of a node in can be easily decomposed into the product of one-dimensional
thekth layer; correspondingly, the symbgl) denotes the node (1-D) membership functions. With this choice, the operation

output in layerk. performed in this layer is
Layer 2 No computation is done in this layer. Each node in )
this layer is called an input linguistic node and corresponds to (u@) — mij)
one input variable. The node only transmits input values to the a? = exp —272 (5)
next layer directly; that is Tij

al) :u§1>. (4) wherem;; ands;; are, respectively, the center (or mean) and
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the width (or standard deviation) of the Gaussian memberslhie rule nodes whose consequent is the output term node corre-

function of thejth term of theith input variablez;. sponded to this context node. The context node functions as a
Layer 3 Nodes in this layer are called rule nodes. A ruléefuzzifier

node represents one fuzzy logic rule and performs precondi-

tion matching of a rule. The fan-in of a node comes from two hi =" aPwy; C)

sources: one from layer 2 and the other from the feedback layer. i

The former represents the_ _rule’s spatial firing degree and t\b\'/‘fﬁere the internal variablg; is interpreted as the inference

latter the rule’s temporal firing degree (denoted d3%). We /

use the following AND operation on each rule node to integr

these fan-in values

result of the hidden (internal) rule and;; is the link weight
a}fom theith node in layer 4 to thgth internal variable. The link
weight,w;;, represents a fuzzy singleton in the consequent part
a® = 400 HUZ(?O = oM . o= [PiGe—m)]T[Di(x—m)] () ofarule, and also an input term of the internal variabjeDue
i to the hidden and intermediate property of an internal variable,
fuzzy singleton instead of fuzzy membership function is used
(mir, M, - . .,mi)T. Obviously, the outpua® of a rule as its input term; a fuzzy term on an internal variable does not

node represents the firing strength of its corresponding rule. M2ke much sense. In (9), the simple weighted sumiis calculated

Layer 4 This layer is called the consequent layer and tr{g?]. In_stead of using the weighted sum of each ruIe_’s outputs
nodes in this layer are called output term nodes. Each out&?tthe |nfe(r4e)nce result(,4§he conventional average weighted sum
term node represents a multidimensional fuzzy set (descrifsd= 2-i @ Wi/ 22;a; * can also be used [27].
by a multidimensional Gaussian membership function) obtained”S t0 the feedback term node, unlike the case in the space
during the clustering operation in the structure learning phagl9main, where a local membership function is used, a global
Only the center of each Gaussian membership function is delff€mbership function is adopted on the universe of discourse
ered to the next layer for the local mean of maximum (LMOM f the internal variable to simplify network structure and meet
defuzzification operation [21], so the width is used for outpdf€ global property of the temporal history. Here, the global
clustering only. Different nodes in layer 3 may be connected B5OPerty means that for a cluster in the space domain its his-
a same node in this layer, meaning that the same conseqU@pt Path (memorized by the internal variables) can be any-

fuzzy set is specified for different rules. The function of eacyn€re in the space at different time, so a global membership
function, which covers the universe of discourse of the internal

output term node performs the following fuzzy OR operation:'“"" ) ) ) !
variable, is used to rank the influence degree each internal vari-
a® = Z ug4) (7) able contributes to arule. In this paper, the membership function
i f(u) =1/(14+¢*) is used for each internal variable. With this
to integrate the fired rules, which have the same consequent peltpice, the feedback term node evaluates the output by
Layer 5 Each node in this layer is called an output linguistic 1
node and corresponds to one output linguistic variable. This a™ =
layer performs the defuzzification operation. The nodes in this
layer together with the links attached to them accomplish thidhis output is connected to the rule nodes in layer 3, which con-

where D, = diag(l/ail,l/aig,...,l/am) and m; =

Tt 4o

task. The function performed in this layer is nect to the same output term node in layer 4. The outputs of
(5) feedback term nodes memorize the firing history of the fuzzy

y; =a® = 20 Ui mji 8) rules. The feedback module provides the RAFF with the ability

! ) to deal with temporal mappings. Without the feedback module,

G) (@) . ) ) ) the RAFF functions as afeedforvyard network Which_can process
wherew,” = a;" andri;;, the link weight, is the center of the static mapping only. To deal with temporal mappings by the
membership function of thah term of the;th output linguistic  feedforward structure, we should increase the input dimension
variabley;. Here, the membership function is the fuzzy B8f g include context information. This will considerably increase
that will be described at the end of this section, where the whq|gs network size. In addition, it is a problem in deciding how
dynamic fuzzy rule is presented. much past input or output information (i.e., the order of the

Feedback LayefThis layer calculates the value of the interna apping problem) should be fed into the network as the inputs.
variablen; and the firing strength of the internal variable to itgy including the feedback module in the RAFF, the context in-
corresponding membership function, where the firing strengigmation is learned and stored automatically and the temporal
contributes to the matching degree of a rule node in layer 3. fgyplem is solved implicitly.
shown in Fig. 3, two types of nodes are used in this layer, theyjjth the aforementioned node functions in each layer, the
square node named asentext nod@nd the circle node namedgAFF realizes the following dynamic fuzzy reasoning:
asfeedback term nodavhere each context node is associated
with a feedback term node. The number of context nodes (and,Rulei: IF z1(t) is A;; and - - - andx,,(t) is 4;, and
thus, the number of feedback term nodes) is the same as that of hi(t) is Gy
output term nodes in layer 4. Each context node and its associ- : ,
ateg feedback term noge corresponds to one output term node. THEN 3 (¢ + 1)is Bix andy,(t + 1) is Bi» and
The inputs to a context node are from all the output term nodes, hi(t+1)iswy; and-- - and
and the output of its associated feedback term node is fed to R (t 4+ 1) 1S Wi
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where membership function for the output variable based upon
x; input; clustering. As to the feedback structure identification, the
Yi output; main task is to decide the number of internal variables with
A1, Apn, Gy, B;p andB;e  fuzzy sets; its corresponding feedback fuzzy terms and the connection of
h; internal variable; these terms to each rule. For the parameter learning based upon
wy; andw,,; fuzzy singletons; supervised learning, an ordered derivative learning algorithm is
n andm numbers of input and internal derived to update the free parameters in the RAFF. There are
variables, respectively. no rules (i.e., no nodes in the network except the input/output

From the above fuzzy rule, we can see the spacial mapping lieguistic nodes) in the RAFF initially. They are created
lationship between the input variahiék) and output variable dynamically as learning proceeds upon receiving incoming
y(k), the influence ofh;(¢) on this spacial mapping, and thetraining data by performing the following learning processes
influence degree of each rule on other ones as explained as $ifaultaneously:

lows. Owning to the monotonic increasing property of the mem- a) input/output space partitioning;
bership functior7;, a higher value of; means a higher firing b) construction of fuzzy rules;
strength (or influence). From the value/of(t + 1) in the con- c) feedback structure identification:;

sequent part of each rule, we may see the influence degree of d) parameter identification.

the rule on other ones, or the influence of a spacial cluster on, the above, processes a), b), and c) belong to the structure
other clusters in the input space. For the cases wagmori  |earning phase and process d) belongs to the parameter learning

knowledge of the spacial mapping is clear and known, we M8)ase. The details of these learning processes are described in
put thea priori knowledge in the dynamic rule witly in each the rest of this section.

rule being setas zero, meaning thattheianL_Jence degrla,etof 1) Input/Output Space PartitioningThe way the input
every rule is of the same value, and there is no temporal inflghace is partitioned determines the number of rules. Even

ence in the beginning. Furthertempqral relationship, the_tumﬂgough the precondition part of a rule in the RAFF includes
of w may be learned by the succeeding parameter learning. the external inputs, which represent the spatial information

and the internal variable values which represent the temporal

IV. LEARNING ALGORITHMS FOR THERAFF information, only the spatial information is used for clustering
In this section, we develop an on-line learning algorithm tdue to its |0_03| mapping property. _ _
find the optimal RAFF under the MSE criterion. Geometrically, a rule corresponds to a cluster in the input
space withm; and D; representing the center and variance of
A. Problem Formulation that cluster. For each incoming pattetnthe strength a rule is

The problem of the design or adaptation of an optimal fuz{ged can be interpreted as the degree the incoming pattern be-

filter can be phrased as follows. Given a proceés) specified ngs to the correqundipg cluster. For computatiopal eﬁiqiency,
in a finite interval lengthyn, < m < m., we are to design a we can use the spatial firing strength component in (6) directly
nonlinear filter in such a way that the estimated vail{(ie) based as this degree measure

upqnx(m) is as clos.e as possible to the desired procéks Fi(x) = Hug?’) = ¢~ [DiGe—m)]"[DiGe—mi)]  (13)
Written in mathematical form, we have P

3(k) = F(x(m)) (11) whereF" e [0,1]. In the above equation, the terff;(x —
o ) m)]7 [D;(x — m,)] is, in fact, the distance betweanand the
wheref is in the interva(m, , m.] and () represents the func- center of cluster. Using this measure, we can obtain the fol-

tion of the desired nonlinear filter. The procegsn) is usually lowing criterion for the generation of a new fuzzy rule. kxgt)
anonlinear version of(k) corrupted with nois@(m). The ob-  pe the newly incoming pattern. Find

jective is to find the optimal filtetF'(-) so as to minimize the ,
MSE J=arg max IY(x) (24)

1<j<e(t)
El(s(k) - 5(k))*] = E[(s(k) = F(x(m)))’]. ~ (12) wherec(t) is the number of existing rules at tintelf F7 <

Two steps, the structure learning step and the parameter learrfifig?): then a new rule is generated, whéfg(z) € (0, 1) is a
step are used concurrently to achieve this goal and are intRsespecified threshold that decays during the learning process.
duced in the following subsection Once a new rule is generated, the next step is to assign initial

centers and widths of the corresponding membership functions.

B. Learning Algorithms for the RAFF Since our goal is to minimize an objectiye function and the cen-
Two types of leaming—structure and paramet ters anc_i yvldth_s are all adjustable later in t_he parameter I_earnmg
hase, it is of little sense to spend much time on the assignment

learning—are used. copcurrently for constrqqtlng the RAFof the centers and widths for finding a perfect cluster. Hence,
The structure learning includes the precondition, conseque\% can simply set

and feedback structure identification of a dynamic fuzzy
IF-THEN rule. Here, the precondition structure identification M (1)41) = X, (15)
corresponds to the input space partitioning. The consequent -

_ 1 oo J J
structure identification is to decide when to generate a new )+ = 3 ~diag(1/In(£) -~ 1/In(F7))  (16)
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Fig. 4. (a) The original speech signglk). (b) The corrupted signal(k). (c) The recovered signalk) by the RAFF. (d) The recovered signal by Elman’s
recurrent neural network.

according to the first-nearest-neighbor heuristic [28], whelE x is the first incoming pattern THEN do
2 > 0 decides the overlap degree between two clusters. SImiRART 1 { Generate a new rule

methods are used in [29], [30] for the allocation of a new radial with center m; = x, width
basis unit. However, in [29], the degree measure does not tdke = diag(1/oinit, - - -, 1/Tinit ),
the width D into consideration. In [30], the width of each unit whereoy,;; is a prespecified constant.

is kept at a prespecified constant value, so the allocation result After decomposition, we have 1-D membership func-
is, in fact, the same as that in [29]. In the RAFF, the widthions,
is taken into account in the degree measure, so a cluster with ~ with my; = z; andoy; = o, t =1...1.
larger width (meaning a larger region is covered), will generate  }
fewer rules in its vicinity than a cluster with smaller widthELSE for each newly incoming pattexy do
This is a more reasonable result. Another disadvantage of [BRT 2 { find J = argmax; < <) F7 (x),
is that another degree measure, the Euclid distance, is required, IF FV > F,(¢)
which increases the computation load. do nothing
After a rule is generated, the next step is to decompose the  ELSE
multidimensional membership function formed in (15) and (16)  { ¢(¢ + 1) = ¢(¢) + 1,
to the corresponding 1-D membership functions for each input  generate a new fuzzy rule, with

variable. For the Gaussian membership function used in the M(s41) = X, D (t41) =
RAFF, the task can be easily done as —(1/8) - diag(1/In(F7)--- 1/ In(F7)).
(rj—mi)? After decomposition, we have
C_[Di (x_miﬂT[Di (x—m;)] — H C_ 07'2_7' (17) Mpew—i = Li, Tnew—i — _[3 ) hl(FJ)vi =1...n

J
wherem,;; ando;; are, respectively, the projected center and 2) Construction of Fuzzy RulesAs mentioned in learning
width of the membership function in each dimension. process A, the generation of a new input cluster corresponds
Let (m;, o;) represent the Gaussian membership functido the generation of a new fuzzy rule, with its precondition
with centerm; and widtho,;. The whole algorithm for the gen- part constructed by the learning algorithm in learning process A
eration of new fuzzy rules as well as fuzzy sets for each inpaihd the feedback structure identification scheme to be described
variable is as follows. Suppose no rules are existent initially. below in learning process C. At the same time, we have to de-
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cide the consequent part of the generated rule. One simple vilaig way, we can effectively reduce the parameter number in the
is to assign a singleton value to each rule [22]. The drawbafdedback layer.

of this way is that the number of output singletons will increase 4) Parameter Identification:After the filter structure is ad-

in parallel with the number of fuzzy rules. In fact, we may findusted according to the current training pattern, the filter then en-
that some singletons are very close and can be assigned withtére the parameter identification phase to adjust the parameters
same value. The clustering concept is adopted in this processtohe filter based on the same training pattern. Notice that the
achieve the purpose. As described in Section V, layer 5, orillowing parameter learning is performed on the whole filter
the center of each output cluster is used during the defuzzifiedter structure learning, no matter whether the nodes (links) are
tion process, and the width of each output cluster is for clusewly added or are existent originally. Since the RAFF is a
tering only. Advantage of this approach is that we can redudgnamic filter with feedback connections, the real-time recur-
the number of output singletons and avoid the need of keepirent learning (RTRL) algorithm [32] is used. Considering the
other parameters such as the widths of the output clusters. Ssipgle-output case for clarity, our goal is to minimize the error
pose a new input cluster is formed after the presentation of thumction

current input/output training pafx, d). The consequent part is 1 9

constructed by the following z:I‘(gorit%m: B(t+1)=3 (it + 1) =it +1)) (18)

IF there are no output clusters wherey?(t+1) is the desired output ang (¢ + 1) is the current

do { PART 1in Process A, withx replaced byd } output. For ea_ch training pattern, starting at the input nodes, a
ELSE forward pass is used to compute the activity levels of all the

do { nodes in the network to obtain the current outpiit+1). In the
find J = arg max; F¥(x) followings, for the notation clarity, dependency on titneill be
IF FY > Fou(t) ! ’ omitted unless emphasis on temporal relationships is required.

connectinput cluster(t + 1) to the existing output cluster With the error function defined in (18), we can derive the update

ELSE rule of im;; as
generatg a new output cluster, it + 1) = my () — Amy(t + 1) (19)
connect input clustet(t + 1) to the newly generated output
cluster. where
1. (6)

Arngi(t+1) =7 (y;(E+ 1) — yf(t + 1)) (20)

HON
3) Feedback Structure Identificatiorin learning process B, Y
the number of generated clusters in the consequent part is €ie update value of,,,, the center of the membershlp function
fected by the problem to be solved. The number of output clug-the precondition part, is

ters is large for complex problems and is small for simple ones. d

Naturally,gin the feegbacE layer, more internal variableps are re- Armpg(t +1) = (y;(t +1) = ¢ (¢ + 1)
quired for more complex problems. Knowing this relationship, e —y;(t+1) aa(?’)
quired for | | . x 3 (t)
or simplicity, we can simply set the number of internal variables - S a(3) (t) Omypg
equal to the number of output clusters in the consequent part

(i.e., the number of output term nodes in layer 4). Hence, duriMgiere

(21)

the on-line learning, an internal variable is generated once a 4% B dal ) 2p(t) = Mk
output cluster is generated. The fan-in of the context node comes (t)= ) Tkt ay e 2———5——  (22)
Mpq Mpq Tpk

from all the nodes in layer 4, with the link weight assigned with

a small random value initially. After an internal variable is gerand, = exp{—>_,((z:(t) — mix/oi))?}.

erated (meaning a context node is created), the next step is t¥he partial derivative?ag‘) /Om,, is calculated as

decide its effect on each rule node. As mentioned in Section I,

only a global membership function is assigned to each internal 8a( )

variable and acts as the feedback term node of the correspondingm,,

context node. Of course, we can cover the universe of discourse

of the internal variable by some local membership functions, but = aé")( t) (1 (h) ) {Zwu

this makes the network structure become larger and complexity

increase seriously. When the firing degree of each internal vari- [a (’L>
X

®)

(t = Dpelt = 1) + pe(t = Dag (¢ — 1)

able to its corresponding membership function is calculated, we

m
should next decide which rules the firing degree is acted on. e
In other words, we should decide which rule nodes in layer 3 Tp(t —1) —myy -
26 (23)
a generated feedback term node should connect to. In general, agz

each rule has its own corresponding internal variable, which i |s

to memorize the history of the rule. But for the rules that havéhere

the same consequent part (i.e., connect to the same output term i { 1, ifrule ¢ is connected to nodéin layer4
node), the same internal variable is assigned to these rules. With ~ — | 0, otherwise
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Similarly, the update value af,, is

Acp(t+1) =n(y;(t+1) -yt + 1))

3
N Z Ay; (t+1) Bai) ;

(24)
% 8@23)@) dopq
The partial derlvatlv@a(?’) /00, IS
P (3) da (h) ) £ — 32
aak a - ik + a(l) i - 2($P( ) 5 mpk) (25)
Tpq qu T ok

where the partial derivativaa"” /9c,,, is

da ) al(
et =) (1-470) {Zwu

<h>
x[§ (t = Dpe(t — 1) + pue(t — al™ (¢ — 1)

Mpq
—1) = 2,
The
The update value oy, is
Awpg(t +1) = (y;(t+1) =y (£ +1))
Oy;(t+1) aa( )
x YOSy (27)
w00 (1) O
and
aaf’) B (h) (1 _ (h)) ahk (28)
Owpq m e Owpq
where
Ohi @)
= -1
() = 047t = Dy
aa(h)
+)wne 3 (t = Dpe(t—1).  (29)
7 Wpq
Hence, we have the following recursive form
aagb) (h) (h (4)
= -1
g (®) =) (1 0 (0) el ¢ - Do,
(h)
+ Zwu (t— Dpe(t —1). (30)
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temporal relationship, we may set the learning consjargev-
eral times larger than.

The learning algorithm derived above is used in the following
examples. Notice that according to the ordered derivative [31],
we can also obtain the same parameter learning rules for the
RAFF. For some complex problems, where the learned network
size is large, this algorithm may not be efficient for real-time ap-
plication. For this, we can simplify the above learning algorithm
by treating the feedback values from layer 4 as outside inputs
and the modifiable connections can be regarded to be forward.
With this treatment, the parameters can be trained by the con-
ventional backpropagation learning method, and the learning al-
gorithm derived above can be modified as follows. The term

(3)( t)/Om,, in (21) is simplified as

9al) 4
RN TR UL SR
Mpq Opk
The termda® (t)/do,, in (25) is simplified as
a4 4 (2, (t) — mp)?
Tk gy oy o2 TR 32
aO'pq [£2% ok O_gk ( )
The termdhy (t)/ 0wy, in (29) is simplified as
Ohi @)
= — 1)orp-
()= ot~ 1o, (33)

It should be noted that even the RAFF trained by this simplified
algorithm might have lower output accuracy, the overall perfor-
mance of the RAFF is still admirable. This will be verified in the
noisy speech recognition problem in the next section. Of course,
other existing on-line learning algorithms [33] for tuning the
weights of recurrent neural networks can be possibly adopted
for tuning the RAFF, too.

V. EXPERIMENTS

The proposed RAFF is applied to the adaptive noise cancella-
tion and noisy speech recognition problems using the technique
introduced in Section II.

A. Adaptive Noise Cancellation

Example 1: The speech to be recovered is a sequence of
Mandarin digits and the noise signals are from the NOISEX-92
database [34]. Assume that the relation between noise source
r(k) and corrupting noise(k) is a dynamic nonlinear function

n(k) = 0.24r(k — L)n(k — 2) + 0.1n(k — 2)

The valuesda™ /dm, da™ /0o, andda™ /ow are equal to
zero initially and are reset to zero after a period time to avoid
the accumulation of too far away errors. Note that two step-size
parameters are used in the above equatigpsor the tuning

of memory weightw and for the remaining parameters. Ex-Suppose the noise sourcés fed to the filter input directly. The
cept the weight parametes, which is assigned randomly ini- adaptive filter is implemented by the RAFF. Only the currently
tially, the other parameters all have good initial values assignezteived noise signal k) is used as the input to the RAFF. The
during the structure learning. To increase the learning speedheise signal used is the noise on the floor of a car factory. A word

+0.25n(k — 1) — 0.6r(k — 2) + 0.97(k — 1)2

+0.9r(k — 1) + 1.5r(k). (34)
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Fig. 5. (a) The original speech signdlk). (b) The corrupted signal(k), where the corrupting noise in the first 5100 times steps is the factory noise and that in
the succeeding time steps is the F-16 noise. (c) The recovered s{gndty the RAFF.

utterance, the digit “0” is recorded and training is performelth the above ruleshi, hs, h3, and hy are generated internal
on this word in advance. The initial parameters of the RAFFriables,u(m;, 0;) represents a Gaussian membership func-
are set ady, = 0.35, Fl,; = 0.8, 7 = 0.03, andn,, = 61. tion with centerm; and widths;, andG is the global member-
Ten epoches of training are performed, and four input clustesisip function stated previously in Section Ill. The number of
(rules), and four output clusters and internal variables are gengarameters in the learned RAFF is 28.

ated. Afterwards, other speech signals are spoken, and the RAFFo see how good the performance of the RAFF is, another re-
is on-line tuned to recover the speech signal. The original speathrent neural network, Elman’s network [35], is used for com-
signal s(k) is shown in Fig. 4(a). The measured noisy speegarison. In this network, the recurrence is obtained by feeding
signalxz(k) is shown in Fig. 4(b), wher8NR ~ —1 dB. The nodes in the hidden layer back to the input layer, functioning
recovered signal during on-line filtering is shown in Fig. 4(c)s context nodes. So the input layer contains two parts: the true

whereSNR = 8 dB. The obtained dynamic fuzzy rules afteinput nodes and the context nodes. Similar structure is also pro-
on-line learning are

Rule L:IFr(k) is (—0.74,0.57) andh (k) is G
THEN y(k) is 4(—0.34,0.3) and
hi(k+1)is —0.06 andh(k + 1) is —0.09 and
hs(k 4+ 1)is 0.82 anch4(k + 1) is 0.04
Rule 2:1Fr(k) is 1(0.43,0.30) andha(k) is G
THEN y(k) is 14(0.22,0.17) and
hi(k+1)is —0.75 andhy(k + 1) is —0.58 and
hs(k+1)is—0.19 andhs(k + 1) is 0.78
Rule 3:IFr(k) is 1:(0.70,0.21) andhs(k) is G
THEN y(k) is 14(0.69,0.29) and
hi(k+1)is —0.38 andh(k + 1) is —0.51 and
hs(k 4+ 1)is —0.09 andha(k + 1) is —0.77.
Rule 4:1Fr(k) is 4(0.15,0.56) andh4(k) is G
THEN y(k) is 14(0.38,0.15) and
hi(k+1)is 0.52 anch,(k + 1) is 0.01 and
hs(k+1)is —0.01 andhs(k + 1) is —0.88.

posed in [36]. Like the training of RAFF, the input training data
to the network is'(k) and the desired outputig k). First, with
nearly the same number of network parameters (five hidden
nodes, 35 parameters in total) and ten epoches of training as
used in training the RAFF, an SNR value of 2.18 of the recov-
ered speech signal is obtained with learning constant value of
0.45. Next, with more network parameters (ten hidden nodes,
120 parameters in total) and 100 training epoches, an SNR value
of 2.64 of the recovered speech signal is obtained. This perfor-
mance is obviously worse than that of the proposed RAFF. The
recovered speech sample by the Elman’s network is shown in
Fig. 4(d).

In the above simulation, the noise source is kept the same
during filtering. To see the noise elimination performance for
different type of noise during on-line filtering of the RAFF, the
F-16 cockpit noise is added for comparison. In Fig. 5(b), the first
5100 speech samples are corrupted by the factory noise, while
the succeeding 5100 samples are corrupted by the F-16 noise
during on-line filtering. The original speech signal is shown in
Fig. 5(a), where the two segments of clean speech corrupted by
these two noise sources are the same for comparison purpose.
The on-line filtering result is shown in Fig. 5(c). For these two
kinds of noise sources, both achieve an enhancement of about 9
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Fig. 6. The original SNR value £") and the enhanced SNR valueK") using the RAFF for different values of: and different Mandarin digits. (a) “1.” (b)
2 () “3. (d) “4."

dB, meaning that the cancellation is not affected by the diffe
ence of noise sources.

Example 2: In this example, we shall discuss the probler
when longer delay exists. Like the function used in Example

8- i

B}
the dynamic nonlinear function used is al 1
%: >\/\/

n(k) = 0.24r(k — Dn(k — 2) 4+ 0.1n(k — 2) 2r I
+0.25n(k — 1) — 0.6r(k — m — 2) ol W |
+0.97(k—m —1)2 +0.97(k —m —1)

+ 1.57(k —m) (35) 25 ]
1 0 1 2 3 2 5

wherem denotes the delay samples. For example, the valuc word

m = 5 means that the currently measgred noisy SPeeCh SIgBRl 7. The original SNR value ¢*) and the enhanced SNR value by the
« is affected by the measured noise signat least five sam- RAFF (“+”), Elman’s network (5") and the fuzzy adaptive filter with input
ples ahead. Different values of, includingm = 0,...,5, are [r(k).7(k = D] (*"), [r(k),r(k — 1), r(k = 2)] (*x"), and [r(k),r(k —

. ; . 1), r(k—2),r(k—3 tm = 4 for different Mandarin digits (“1,” “2,
tested. Only one input(k) is used as the input for the RAFF.u3)"nrénd “42)'.7"( 1= atm or difierent Mandarin dighs (
For different values ofn, the training method is the same as

that in Example 1, i.e., about ten epoches of training are per- ) ) ,
formed on the digit “0” and then on-line training and filtering j@n economic approach. Next, like Example 1, the Elman’s re-

performed for other words. For different valuesof the filter  Current network with ten hidden nods and 100 training epoches
size is kept the same (four dynamic rules with four output clulS US€d again for performance comparison in this example. The
ters and internal variables) for comparison. The enhanced SRR'@nced result is also shown in Fig. 7 for comparison. This
values with different values of, for different digits (including comparison shows the RAFF still outperforms the Eiman’s net-
“1,” “2,” “3,” and “4") are shown in Fig. 6. For comparison, work for different Mandarin digits.

two types of filters are simulated. First, a feedforward filter ) o

the fuzzy adaptive filter [22], with ten rules is applied to th&- Noisy Speech Recognition

same problem withn = 4 in (35). Different number of input  Inthis subsection, we use the RAFF as a noise reduction filter
values, includindr(k),»(k — 1)], [r(k),r(k — 1),r(k — 2)], based upon the architecture in Fig. 2. The database contains ten
and[r(k),r(k — 1),»(k — 2),r(k — 3)], are used as inputs toisolated Mandarin digits “0,. ., “9.” The problems of speaker-

the fuzzy adaptive filter for comparison. The enhanced SNR lbgpendent and speaker-independent recognition are both tested
the RAFF with only one input(%), and that by the fuzzy adap-in the following Examples 1 and 2, respectively.

tive filter with different orders of input are shown in Fig. 7. Even Example 1—Speaker-Dependent Recogniti®he ten digits

with only one input and a smaller filter size, the RAFF performsere spoken by the same speaker, with 20 noise-free repetitions
better than the feedforward fuzzy adaptive filter. By further irfor each word. For these 20 repetitions, ten are used for training,
creasing the input dimension of the fuzzy adaptive filter to covélie other ten are used for testing. The time delay neural net-
more delays of the input variables, we can obtain a better reswibrk (TDNN) is used as a recognizer. The features extracted
The resulting network size is, however, quite large and this is rente cepstral coefficients with order 12 for each frame and 20
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Fig. 8. (a) The recognition rates on testing data for different SNR values by using the RAFF as noise reductior”jijtéortlan’ recurrent neural network
(“o”) and, without using noise reduction filter") under different noisy environments. (a) Factory noise. (b) Operation room noise. (c) Buccaneer jet noise. (d)
F-16 noise.

constant frames are used for each word to meet the requiremarthis example. With the same training and testing data and net-
of TDNN. The noise signals are from the NOISE-92 databaserk learning parameters, the obtained recognition results are
[34]. Different types of noise including (a) the noise on the flodisted in Table I. Compared with the result in Fig. 8, the simpli-
of a car factory, (b) destroyer operation room noise, (c) bucd#d learning algorithm reduces only about 3.5% of the recogni-
neer jet noise, and (d) F-16 cockpit noise are tested. The noign rate of the original RAFF in average.
speech is generated by artificially adding these noise signals td-or performance comparison, the Jordan’s recurrent neural
clean speech under a specific SNR value. network[37], [38] is applied to the same problem in this example.
Without the noise reduction network, the recognition ratenlike the Elman’s recurrent network used in Section V-A,
under clean environment is 99%. In training the RAFF ashich feeds its hidden-node values back to the input layer, the
a noise reduction network, the 12 noisy cepstral features Jifrdan’s recurrent network feeds its output-node values back to
each frame are used as the inputs and the correspondingHeinput layer to form the context nodes. A total of 30 hidden
noise-free cepstral features as the desired outputs. All the Taftles is used in the Jordan’s network (1080 parameters in
words in the training set are used for training unslR = 18. total) and 50 epoches of training are performed. The training
Each kind of noise has its own corresponding RAFF and tineethod is the same as that of the RAFF with a learning
four RAFF’s for the four noise types are trained independentlgonstant value of 0.45 and the strength of self-connections is
The parameters used for each RAFFBge~ 0.3, F... ~ 0.7, 0.3. The obtained recognition rates are also shown in Fig. 8
n = 0.005, 1, = 9n, and 50 epoches of training are performedor different types of noise. Fig. 8 obviously shows that the
The number of rules generated for the four RAFF's is abo®RAFF achieves a higher recognition rate than the Jordan’s
22 and that of the output clusters and internal variables aretwork.
about 17. In total, 1021 parameters are used in the RAFF. Thélo see the performance of RAFF on unknown types of noise,
noise reduction effects by the RAFF are tested by the testitige RAFF trained aBNR = 18 for factory noise is tested on
database for different SNR values. The original and improvéide other three types of noise at different SNR values. The re-
recognition rates for different types of noise at different SNBulting recognition rates are listed in Table Il. From Table I, we
values are shown in Fig. 8. The results show that highsee that even for unknown types of noise, the performance of
recognition rates are achieved through the use of the RAFF. RAFF is almost the same with that of the one trained and tested
The simplified backpropagation-type learning algorithm desn the same noise type shown in Fig. 8; in other words, the per-
rived at the end of Section IV is also applied to train the RAFfermance of RAFF is almost independent of the noise types.
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TABLE I
THE RECOGNITION RATES FORTWO SETS OF TEST DATA, WHERE SET
1 Is THE DATA FROM THE SAME TRAINING SPEAKERS AND SET 2 IS
FROM OTHER SPEAKERS

TABLE |
RECOGNITION RATES WITH RAFF TRAINED BY SIMPLIFIED LEARNING
ALGORITHM AND WITHOUT RAFF (ORIGINAL) FOR DIFFERENT TYPES OF
NoISE AT DIFFERENT SNR VALUES

Noise Type | Factory | Operation | Buccaneer | F - 16 Data Type SNR=00 | SNR=06 | SNR=12 | SNR=18
Room Jet Set 1 Original 40 60 83 85
SNR =18 Original 65 61 59 62 + RAFF 54 74 86 87
+ RAFF 83 79 77 78 Set 2 Original 35 59 70 76
SNR = 12| Original 50 46 53 48 + RAFF 42 70 74 80
+ RAFF 67 64 68 72
SNR = 06 | Original 29 31 35 31
+ RAFF 48 44 27 44 properties make it more appropriate for real-world applica-
SNR =00 | Original 13 13 15 14 tions. One real-world application of the illustrated ten-digit
+ RAFF 20 35 23 31 . . s :
word recognition problem is the vocal phone dialing in noisy
environment. Besides, in the above examples, a simple recog-
TABLE I nizer, the TDNN, is used as the speech recognition kernel to

THE RECOGNITION RATES FORDIFFERENT TYPES OFNOISE WITH THE RAFF

recognize the speech signals after RAFF filtering. In fact, in
TRAINED BY FACTORY NOISE ATSNR = 18

the real-world speech recognition applications, the RAFF may
be combined with other types of recognizers, like the hidden

Noise Type | Factory | Operation | Buccaneer | F - 16
Room Jet Markov model (HMM), to increase the recognition rate of the

SNR =18 | Original 65 61 59 62 recognition system in noisy environment. Furthermore, other

+ RAFF 85 85 81 84 robust speech recognition techniques [39], such as the robust
SNR = 12 Efﬁfﬁ{ 22 ‘;‘13 gg ‘;? feature extraction scheme, can be integrated with the RAFF to
SNR =06 | Origial 59 a1 5 31 further improve the recognition system’s performance in noisy

TRAFF | & 7 37 43 environment.
SNR = 00| Original 13 13 15 14

+ RAFF 24 27 29 30 VI. CONCLUSION

Two noisy speech processing techniques, the adaptive noise

Example 2—Speaker-Independent Recognitibhe data- cancellation for speech enhancement and the noise reduction
base contains ten isolated Mandarin digits “0,”, “9.” They filter for noisy speech recognition based upon filtering approach
were spoken by ten different speakers. The training data w@i€ addressed and a novel filter, the RAFF, is proposed. The
spoken by five speakers among the ten, with two noise-frBAFF owns on-line self-organizing learning ability and is con-
repetitions for each word. The testing data contains two seggucted by expanding the general feedforward adaptive neural
One set is from the original five training speakers with anothészzy filter to a recurrent one. Using the RAFF, we need not
two noise-free spoken repetitions for each word. The other &&ow the exact order of the inputs nor do we have to deter-
is from the other five speakers, with two spoken repetitiorigine the size of the RAFF in advance. The RAFF can handle
for each word. The recognizer and speech features are these problems by creating and updating recursive fuzzy rules
same as those in Example 1. The training is performed undgttomatically via on-line structure and parameter learning. The
SNR = 18 for the factory noise. With the simplified trainingRAFF has shown its efficiencies for some noisy speech pro-
algorithm and after 70 epoches of training, 27 dynamic fuzggssing problems. Further works on RAFF include its real appli-
rules are generated in the RAFF. The recognition rates with agftion to ANC and extension of the speaker independent recog-
without the RAFF for the aforementioned two different testingition problem to including more speakers, e.g., more than 100
data sets under different SNR values of factory noise are shoseakers. Applications of the RAFF for other temporal filtering
in Table IlI. Table Il shows that foBNR > 6 and, with the problems will also be investigated.
RAFF, a recognition rate greater than 70% is achieved for both
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