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Noisy Speech Processing by Recurrently Adaptive
Fuzzy Filters
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Abstract—Two noisy speech processing problems—speech en-
hancement and noisy speech recognition—are dealt with in this
paper. The technique we focus on is by using the filtering approach;
a novel filter, the recurrently adaptive fuzzy filter (RAFF), is pro-
posed and applied to these two problems. The speech enhance-
ment is based on adaptive noise cancellation with two microphones,
where the RAFF is used to eliminate the noise corrupting the de-
sired speech signal in the primary channel. As to the noisy speech
recognition, the RAFF is used to filter the noise in the feature do-
main of speech signals. The RAFF is inherently a recurrent mul-
tilayered connectionist network for realizing the basic elements
and functions of dynamicfuzzy inference, and may be considered
to be constructed from a series of dynamic fuzzy rules. As com-
pared to other existing nonlinear filters, three major advantages
of the RAFF are observed: 1)a priori knowledge can be incorpo-
rated into the RAFF, which makes the fusion of numerical data and
linguistic information possible; 2) owing to the dynamic property
of the RAFF, the exact lagged order of the input variables need
not be known in advance; 3) no predetermination, like the number
of hidden nodes, must be given since the RAFF can find its op-
timal structure and parameters automatically. Several examples on
adaptive noise cancellation and noisy speech recognition problems
using the RAFF are illustrated to demonstrate the performance of
the RAFF.

Index Terms—Adaptive noise cancellation, noisy speech recog-
nition, real-time recurrent learning, structure identification.

I. INTRODUCTION

SIGNALS are usually corrupted by noise in the real world.
To reduce the influence of noise, two research topics—the

speech enhancement and speech recognition in noisy environ-
ments—have arose. For the speech enhancement, the extraction
of a signal buried in noise, adaptive noise cancellation (ANC)
[1] provides a good solution. In contrast to other enhancement
techniques, its great strength lies in the fact that noa priori
knowledge of signal or noise is required in advance. The advan-
tage is gained with the auxiliary of a secondary input to measure
the noise source. The cancellation operation is based on the fol-
lowing principle. Since the desired signal is corrupted by the
noise, if the noise can be estimated from the noise source, this
estimated noise can then be subtracted from the primary channel
resulting in the desired signal. Traditionally, this task is done by
linear filtering. In real situations, the corrupting noise is a non-
linear distortion version of the source noise, so a nonlinear filter
should be a better choice [2]–[4].
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About the noisy speech recognition problem, it has been
shown in literature that a speech recognizer designed to per-
form well under noise-free conditions usually shows marked
degradation in performance when the background noise is
present [5]. Many techniques, like the noise-robust acoustic
representations, noise-robust spectral distortion measures,
and parameter mapping methods, etc. have been proposed to
solve this problem [6]. Among them, the parameter mapping
method aims to filter the noise in the feature domain via a noise
reduction networ and is the focus of this paper.

Adaptive filtering has achieved widespread applications [1].
Among the various adaptive filters, linear filtering is the most
widely used method in this area. However, for applications in the
realworldsuchastheANCandnoisyspeechrecognitionbylinear
filtering,poorperformanceisusuallyobserved.Thedevelopment
of nonlinear filters is thus necessary. In fact, some kinds of non-
linearadaptive filtershavebeenproposed.Adaptivevolterra filter
[7] is a linear combination of order stochastics and the combi-
nation coefficients are tunable when the signal or noise statistics
change. The drawbacks of this filter are that it is constrained to be
applied to the class of nonlinear systems that can be represented
by the Volterra series expansion and, as the order of the filter in-
creases, much greater complexity in design and filter size occurs.
This higher order problem also occurs in another type of filter,
the adaptive stack filter [8], which is constrained to be applied to
the situations when the threshold levels are small.

Another kind of filter, the neural filter [9], is proposed to take
advantage of the universal approximation and powerful learning
ability of the neural networks. Applications of this type of fil-
ters include channel equalization [12], [13], restoration of im-
ages corrupted by impulse noise [9], speech enhancement [3],
[10], [11], and noisy speech recognition [14]–[20], etc. In [10],
a multilayer perceptron neural network is used as an adaptive
filter for noise canceling, where two microphone beamformers
are used for suppressing directional background noise. In [11],
a recurrent radial basis function network, whose output is fed
back as the input variables, is used as an adaptive filter for noise
cancellation. As for the noisy speech recognition problem, in
[14] and [15], a noise reduction neural network is used to realize
a mapping from the set of noisy signals to the set of noise-free
signals in the time domain. The results showed even for noisy
speech signals that had not been part of the training data, the
network successfully produced noise-suppressed output signals.
The drawback of the approach is its expensive computation load
since every speech sample is propagated through the noise re-
duction model. To solve this problem, the cepstral noise reduc-
tion networks are proposed in [16] and [17], where the networks
are performed on the feature domain and the cepstral coeffi-
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cients are used as features. The results showed that the use of
feature vectors as input signals resulted in significantly smaller
networks and, hence, in reduction of computation time.

Since the speech signals are temporal signals, in [18] the in-
formation about the characteristics of the noise and speech com-
ponents of the input signals including context information in
feature domain is taken into account. The context features to-
gether with the current ones are fed to the noise reduction net-
work, a feedforward multilayer perceptron network and a higher
recognition rate is achieved with the cost of increasing the net-
work input dimension. In [19], a recurrent neural network is
used as a noise reduction network to capture the temporal re-
lationship of the speech signals without increasing the input di-
mension and determining the context frame number. In [20], a
structure different from those above is proposed; a number of
multilayer perceptron-based estimators are placed in every filter
bank in the feature domain to estimate each filter bank channel
output in [20]. Local statistical information of the speech and
the noise are estimated and used as inputs to the networks.

In general, the aforementioned neural filters can be trained by
numerical data only. When we are constructing information pro-
cessing systems, like the filters, the available information pro-
cessing systems usually comes in two forms: numerical form
and linguistic form. The inconvenience of incorporating lin-
guistic information expressed by fuzzy IF-THEN rules in design
is a shortcoming of the neural filter. Owning to this reason, an-
other type of filter—the adaptive neural fuzzy filter [4] or fuzzy
adaptive filter [22]—which makes the combination of numerical
information as well as linguistic information possible, are pro-
posed. Besides this combination ability, the learning speed of
this type of filter is usually faster than the neural filters. How-
ever, all these filters belong to the feedforward filters. To de-
sign a feedforward filter, the lagged order of the input variables,
which determines the number of filter inputs, must be known
in advance. In real situations, the order is usually unknown. For
higher order problems, the input number is large, resulting in se-
rious increment in filter size, whereas, if a recurrent fuzzy filter
is used, these problems can be solved. If a recurrent filter that
can memorize the past history of the input, is used, we only need
to feed the current state to the filter and the size of the filter can
be reduced considerably. This concept of recurrent fuzzy net-
work is also stated in [23]–[26]. In [23], a quasi-linear fuzzy
model (QLFM), a dynamic fuzzy model, is proposed and, in
[24]–[26], concepts of dynamic fuzzy reasoning are proposed.

A recurrent filter, the recurrently adaptive fuzzy filter
(RAFF), is proposed in this paper. The RAFF expands the basic
ability of a neural-fuzzy-type filter to cope with delayed prob-
lems via the inclusion of some internal memories in the form
of context elements. In contrast to other recurrent neural filters
whose structures are always opaque to the user, the weight as
well as the node in the RAFF has its own meaning and plays a
special element in a fuzzy rule. More clearly, with the context
elements, the filter performs the following reasoning:

Rule IF is and and is and

is

THEN is and is

and and is

where
input;
output;

and fuzzy sets;
internal variable;

and fuzzy singletons;
and numbers of input and hidden vari-

ables, respectively.
The dynamic reasoning implies that the inference output

is affected by the internal variable and the current in-
ternal output is a function of previous output value

, i.e., the internal variable itself forms the dynamic rea-
soning.

In contrast to other filters, where the filter structure is fixed
and should be assigned in advance there are no rules initially in
the RAFF; all of them are constructed during on-line learning.
Two learning phases, the structure as well as parameter learning
phases, are used to accomplish this task. The structure learning
phase is responsible for the generation of fuzzy IF-THEN rules
as well as the judgement of feedback configuration and the pa-
rameter learning phase for the tuning of free parameters of each
dynamic rule (like the shapes and positions of membership func-
tions and the singleton values). The RAFF is applied to the ANC
and noisy speech recognition problems.

This paper is organized as follows. Section II describes the
noisy speech processing techniques, the ANC and the noisy
speech recognition, based on filtering approach. The structure of
the RAFF and its on-line construction scheme, including struc-
ture and parameter learning, under a mean square error (MSE)
criterion, is proposed in Section III. In Section IV, the RAFF
is applied to the adaptive noise cancellation and noisy speech
recognition problems. Finally, conclusions are summarized in
the last section.

II. NOISY SPEECHPROCESSINGPROBLEM

The noisy speech processing problem discussed in this sec-
tion can be divided into two areas, the speech enhancement
and noisy speech recognition. The speech enhancement tech-
nique, the method based upon adaptive noise cancellation with
two microphones, is discussed in Section IIA. Section II-B dis-
cusses the other technique—noisy speech recognition by param-
eter mapping in the feature space of speech signals.

A. Adaptive Noise Cancellation

Adaptive noise cancellation is concerned with the enhance-
ment of noise-corrupted signals and is based upon the avail-
ability of a primary input source and an auxiliary (reference)
input source located at the noise field, which contains no or little
signal as shown in Fig. 1. In Fig. 1, the primary input source
contains the desired signal, which is corrupted by noise
generated from the noise source. The received signal is thus

(1)

The secondary or auxiliary (reference) input source receives
the noise , which is correlated with the corrupting noise.
The principle of the adaptive noise cancellation techniques is



JUANG AND LIN: NOISY SPEECH PROCESSING BY FUZZY FILTERS 141

Fig. 1. Adaptive noise cancellation system.

to adaptively process (by adjusting the filter’s weights) the ref-
erence noise to generate a replica of and then subtract
the replica of from the primary input to recover the de-
sired signal . We denote the replica of, i.e., the adaptive filter
output, as process. To show how the system works, we shall
follow what is derived in [1]. The assumptions that and
are stationary zero-mean processes,is uncorrelated with and

, and and are correlated are made. Also, the reference
input source is situated in such a position that it detects only the
noise not the signal. Here, another constraint that processis
uncorrelated with processis added owning to the use of non-
linear adaptive filters. From Fig. 1, we have

(2)

By squaring and taking expectation on both sides, we can obtain

(3)

Our objective is to minimize . Observing
(3), we can see that this objective is equivalent to minimizing

and when
approaches zero, the remaining error is, in fact, the desired
signal , where represents the function of the nonlinear
adaptive filter.

Traditionally, the design of the adaptive filters for the
aforementioned noise canceling problem is based upon a linear
filter adapted by the least mean square (LMS) or recursive least
square (RLS) algorithm. In real situations, the environment
between and is so complex that is in fact a nonlinear
function of [2], [3]. Better performance of noise cancellation
by using a nonlinear filter can thus be expected. Some nonlinear
filters, the polynominal-type filters (e.g., the Volterra filter)
[2] and the neural filter [3] have been proposed for adaptive
filtering. To use these filters, the order of the input variables
needs to be known in advance. Moreover, if the input order is
large, increment in network size is serious. If the past history of
the input variable can be memorized, however, then the exact
order of the input can be unknown and the size of the filter can
be reduced. The RAFF proposed in the next section is thus a
good choice.

B. Noisy Speech Recognition

A well-performed speech recognition system under
noise-free conditions usually show marked degradation in

performance when background noise is present. To solve the
problem, many approaches have been proposed [6]. The noise
removal by noise reduction network is one method trying to
remove the noise via a mapping from the noisy input to the
clean output in the feature domain. The architecture of the
enhancement recognition system is shown in Fig. 2. The system
works as follows. In time domain, speech signal and noise
signal are added and a noise corrupted speech signal

is measured. After receiving the noisy
speech signal, the next step is to extract the noisy features from
the noisy speech. The function of the noise reduction filter is
to map the noisy features to clean features and then feed these
filtered features to the recognizer. The general design method
of the noise reduction filter is as follows. At first, we generate
the noisy speech signal by artificially adding noise to the
clean speech. Using the noisy features extracted from the noisy
speech as inputs to the filter and the corresponding clean feature
as the desired output, the noise reduction filter is trained under
MSE criterion. After training, the noise reduction filter maps
the noisy feature extracted from the real noisy speech signal to
the filtered feature for recognition to obtain a higher recognition
rate. The mapping performed by the filter is quite complex;
designs by liner transformation are obviously poorer than those
by nonlinear transformation [19], which are usually performed
by artificial neural networks [14], [19], [18]. Since the speech
signal is a temporal signal and information is contained in
dynamic form, adjacent information is thus important. In [18],
adjacent information (features from adjacent frames) was used
to achieve better performance than the mapping without using
adjacent information. However, the adjacent information is
obtained at the expense of expanding the input dimension.
To contain longer temporal information, the input dimension
should increase, causing a requirement of much larger network.
Hence, a nonlinear recurrent filter with internal memories is a
better choice. Although we can use existing recurrent neural
networks to do this task [19], the structures of these recurrent
neural networks [21], are opaque to the user and the network
size has to be decided in advance. As shown below, the RAFF
introduced in the next section solves these problems.

III. STRUCTURE OF THERAFF

In this section, the structure of the RAFF shown in Fig. 3 is
introduced. The RAFF consists of nodes, each has some finite
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Fig. 2. Structure of the noisy speech recognition system with noise reduction filter.

Fig. 3. Structure of the proposed recurrently adaptive fuzzy filter (RAFF).

fan-in of connections represented by weight values from other
nodes and some fan-out of connections to other nodes. Basically,
it is a five-layered neural fuzzy filter embedded with dynamic
feedback connections (the feedback layer in Fig. 3) that brings
the temporal processing ability into a feedforward neural fuzzy
filter. To give a clear understanding of the filter, the function
of the node in each layer is described below. In the following
descriptions, the symbol denotes theth input of a node in
the th layer; correspondingly, the symbol denotes the node
output in layer .

Layer 1: No computation is done in this layer. Each node in
this layer is called an input linguistic node and corresponds to
one input variable. The node only transmits input values to the
next layer directly; that is

(4)

Layer 2: Nodes in this layer are called input term nodes,
each of which corresponds to one linguistic label (small, large,
etc.) of an input variable. Each node in this layer calculates
the membership value specifying the degree to which an input
value belongs to a fuzzy set. A local membership function, the
white Gaussian membership function, is used in this layer be-
cause a multidimensional white Gaussian membership function
can be easily decomposed into the product of one-dimensional
(1-D) membership functions. With this choice, the operation
performed in this layer is

(5)

where and are, respectively, the center (or mean) and
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the width (or standard deviation) of the Gaussian membership
function of the th term of the th input variable .

Layer 3: Nodes in this layer are called rule nodes. A rule
node represents one fuzzy logic rule and performs precondi-
tion matching of a rule. The fan-in of a node comes from two
sources: one from layer 2 and the other from the feedback layer.
The former represents the rule’s spatial firing degree and the
latter the rule’s temporal firing degree (denoted by ). We
use the following AND operation on each rule node to integrate
these fan-in values

(6)

where and
. Obviously, the output of a rule

node represents the firing strength of its corresponding rule.
Layer 4: This layer is called the consequent layer and the

nodes in this layer are called output term nodes. Each output
term node represents a multidimensional fuzzy set (described
by a multidimensional Gaussian membership function) obtained
during the clustering operation in the structure learning phase.
Only the center of each Gaussian membership function is deliv-
ered to the next layer for the local mean of maximum (LMOM)
defuzzification operation [21], so the width is used for output
clustering only. Different nodes in layer 3 may be connected to
a same node in this layer, meaning that the same consequent
fuzzy set is specified for different rules. The function of each
output term node performs the following fuzzy OR operation:

(7)

to integrate the fired rules, which have the same consequent part.
Layer 5: Each node in this layer is called an output linguistic

node and corresponds to one output linguistic variable. This
layer performs the defuzzification operation. The nodes in this
layer together with the links attached to them accomplish this
task. The function performed in this layer is

(8)

where and , the link weight, is the center of the
membership function of theth term of the th output linguistic
variable . Here, the membership function is the fuzzy set
that will be described at the end of this section, where the whole
dynamic fuzzy rule is presented.

Feedback Layer: This layer calculates the value of the internal
variable and the firing strength of the internal variable to its
corresponding membership function, where the firing strength
contributes to the matching degree of a rule node in layer 3. As
shown in Fig. 3, two types of nodes are used in this layer, the
square node named ascontext nodeand the circle node named
as feedback term node, where each context node is associated
with a feedback term node. The number of context nodes (and,
thus, the number of feedback term nodes) is the same as that of
output term nodes in layer 4. Each context node and its associ-
ated feedback term node corresponds to one output term node.
The inputs to a context node are from all the output term nodes,
and the output of its associated feedback term node is fed to

the rule nodes whose consequent is the output term node corre-
sponded to this context node. The context node functions as a
defuzzifier

(9)

where the internal variable is interpreted as the inference
result of the hidden (internal) rule and is the link weight
from the th node in layer 4 to theth internal variable. The link
weight, , represents a fuzzy singleton in the consequent part
of a rule, and also an input term of the internal variable. Due
to the hidden and intermediate property of an internal variable,
fuzzy singleton instead of fuzzy membership function is used
as its input term; a fuzzy term on an internal variable does not
make much sense. In (9), the simple weighted sum is calculated
[27]. Instead of using the weighted sum of each rule’s outputs
as the inference result, the conventional average weighted sum

can also be used [27].
As to the feedback term node, unlike the case in the space

domain, where a local membership function is used, a global
membership function is adopted on the universe of discourse
of the internal variable to simplify network structure and meet
the global property of the temporal history. Here, the global
property means that for a cluster in the space domain its his-
tory path (memorized by the internal variables) can be any-
where in the space at different time, so a global membership
function, which covers the universe of discourse of the internal
variable, is used to rank the influence degree each internal vari-
able contributes to a rule. In this paper, the membership function

is used for each internal variable. With this
choice, the feedback term node evaluates the output by

(10)

This output is connected to the rule nodes in layer 3, which con-
nect to the same output term node in layer 4. The outputs of
feedback term nodes memorize the firing history of the fuzzy
rules. The feedback module provides the RAFF with the ability
to deal with temporal mappings. Without the feedback module,
the RAFF functions as a feedforward network which can process
static mapping only. To deal with temporal mappings by the
feedforward structure, we should increase the input dimension
to include context information. This will considerably increase
the network size. In addition, it is a problem in deciding how
much past input or output information (i.e., the order of the
mapping problem) should be fed into the network as the inputs.
By including the feedback module in the RAFF, the context in-
formation is learned and stored automatically and the temporal
problem is solved implicitly.

With the aforementioned node functions in each layer, the
RAFF realizes the following dynamic fuzzy reasoning:

Rule IF is and and is and

is

THEN is and is and

is and and

is



144 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

where
input;
output;

and fuzzy sets;
internal variable;

and fuzzy singletons;
and numbers of input and internal

variables, respectively.
From the above fuzzy rule, we can see the spacial mapping re-
lationship between the input variable and output variable

, the influence of on this spacial mapping, and the
influence degree of each rule on other ones as explained as fol-
lows. Owning to the monotonic increasing property of the mem-
bership function , a higher value of means a higher firing
strength (or influence). From the value of in the con-
sequent part of each rule, we may see the influence degree of
the rule on other ones, or the influence of a spacial cluster on
other clusters in the input space. For the cases wherea priori
knowledge of the spacial mapping is clear and known, we may
put thea priori knowledge in the dynamic rule with in each
rule being set as zero, meaning that the influence degree ofto
every rule is of the same value, and there is no temporal influ-
ence in the beginning. Further temporal relationship, the tuning
of may be learned by the succeeding parameter learning.

IV. L EARNING ALGORITHMS FOR THERAFF

In this section, we develop an on-line learning algorithm to
find the optimal RAFF under the MSE criterion.

A. Problem Formulation

The problem of the design or adaptation of an optimal fuzzy
filter can be phrased as follows. Given a process specified
in a finite interval length, , we are to design a
nonlinear filter in such a way that the estimated value based
upon is as close as possible to the desired process.
Written in mathematical form, we have

(11)

where is in the interval and represents the func-
tion of the desired nonlinear filter. The process is usually
a nonlinear version of corrupted with noise . The ob-
jective is to find the optimal filter so as to minimize the
MSE

(12)

Two steps, the structure learning step and the parameter learning
step are used concurrently to achieve this goal and are intro-
duced in the following subsection.

B. Learning Algorithms for the RAFF

Two types of learning—structure and parameter
learning—are used concurrently for constructing the RAFF.
The structure learning includes the precondition, consequent,
and feedback structure identification of a dynamic fuzzy
IF-THEN rule. Here, the precondition structure identification
corresponds to the input space partitioning. The consequent
structure identification is to decide when to generate a new

membership function for the output variable based upon
clustering. As to the feedback structure identification, the
main task is to decide the number of internal variables with
its corresponding feedback fuzzy terms and the connection of
these terms to each rule. For the parameter learning based upon
supervised learning, an ordered derivative learning algorithm is
derived to update the free parameters in the RAFF. There are
no rules (i.e., no nodes in the network except the input/output
linguistic nodes) in the RAFF initially. They are created
dynamically as learning proceeds upon receiving incoming
training data by performing the following learning processes
simultaneously:

a) input/output space partitioning;
b) construction of fuzzy rules;
c) feedback structure identification;
d) parameter identification.

In the above, processes a), b), and c) belong to the structure
learning phase and process d) belongs to the parameter learning
phase. The details of these learning processes are described in
the rest of this section.

1) Input/Output Space Partitioning:The way the input
space is partitioned determines the number of rules. Even
though the precondition part of a rule in the RAFF includes
the external inputs, which represent the spatial information
and the internal variable values which represent the temporal
information, only the spatial information is used for clustering
due to its local mapping property.

Geometrically, a rule corresponds to a cluster in the input
space with and representing the center and variance of
that cluster. For each incoming pattern, the strength a rule is
fired can be interpreted as the degree the incoming pattern be-
longs to the corresponding cluster. For computational efficiency,
we can use the spatial firing strength component in (6) directly
as this degree measure

(13)

where . In the above equation, the term
is, in fact, the distance betweenand the

center of cluster. Using this measure, we can obtain the fol-
lowing criterion for the generation of a new fuzzy rule. Let
be the newly incoming pattern. Find

(14)

where is the number of existing rules at time. If
, then a new rule is generated, where is a

prespecified threshold that decays during the learning process.
Once a new rule is generated, the next step is to assign initial
centers and widths of the corresponding membership functions.
Since our goal is to minimize an objective function and the cen-
ters and widths are all adjustable later in the parameter learning
phase, it is of little sense to spend much time on the assignment
of the centers and widths for finding a perfect cluster. Hence,
we can simply set

(15)

(16)
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Fig. 4. (a) The original speech signals(k). (b) The corrupted signalx(k). (c) The recovered signale(k) by the RAFF. (d) The recovered signal by Elman’s
recurrent neural network.

according to the first-nearest-neighbor heuristic [28], where
decides the overlap degree between two clusters. Similar

methods are used in [29], [30] for the allocation of a new radial
basis unit. However, in [29], the degree measure does not take
the width into consideration. In [30], the width of each unit
is kept at a prespecified constant value, so the allocation result
is, in fact, the same as that in [29]. In the RAFF, the width
is taken into account in the degree measure, so a cluster with
larger width (meaning a larger region is covered), will generate
fewer rules in its vicinity than a cluster with smaller width.
This is a more reasonable result. Another disadvantage of [29]
is that another degree measure, the Euclid distance, is required,
which increases the computation load.

After a rule is generated, the next step is to decompose the
multidimensional membership function formed in (15) and (16)
to the corresponding 1-D membership functions for each input
variable. For the Gaussian membership function used in the
RAFF, the task can be easily done as

(17)

where and are, respectively, the projected center and
width of the membership function in each dimension.

Let represent the Gaussian membership function
with center and width . The whole algorithm for the gen-
eration of new fuzzy rules as well as fuzzy sets for each input
variable is as follows. Suppose no rules are existent initially.

IF is the first incoming pattern THEN do
PART 1. Generate a new rule

with center , width
,

where is a prespecified constant.
After decomposition, we have 1-D membership func-

tions,
with and .

ELSE for each newly incoming pattern, do
PART 2. find ,

IF
do nothing

ELSE

generate a new fuzzy rule, with

After decomposition, we have
.

2) Construction of Fuzzy Rules:As mentioned in learning
process A, the generation of a new input cluster corresponds
to the generation of a new fuzzy rule, with its precondition
part constructed by the learning algorithm in learning process A
and the feedback structure identification scheme to be described
below in learning process C. At the same time, we have to de-
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cide the consequent part of the generated rule. One simple way
is to assign a singleton value to each rule [22]. The drawback
of this way is that the number of output singletons will increase
in parallel with the number of fuzzy rules. In fact, we may find
that some singletons are very close and can be assigned with the
same value. The clustering concept is adopted in this process to
achieve the purpose. As described in Section V, layer 5, only
the center of each output cluster is used during the defuzzifica-
tion process, and the width of each output cluster is for clus-
tering only. Advantage of this approach is that we can reduce
the number of output singletons and avoid the need of keeping
other parameters such as the widths of the output clusters. Sup-
pose a new input cluster is formed after the presentation of the
current input/output training pair . The consequent part is
constructed by the following algorithm:

IF there are no output clusters,
do PART 1in Process A, with replaced by

ELSE
do

find
IF
connect input cluster to the existing output cluster
ELSE
generate a new output cluster,
connect input cluster to the newly generated output

cluster.
.

3) Feedback Structure Identification:In learning process B,
the number of generated clusters in the consequent part is af-
fected by the problem to be solved. The number of output clus-
ters is large for complex problems and is small for simple ones.
Naturally, in the feedback layer, more internal variables are re-
quired for more complex problems. Knowing this relationship,
for simplicity, we can simply set the number of internal variables
equal to the number of output clusters in the consequent part
(i.e., the number of output term nodes in layer 4). Hence, during
the on-line learning, an internal variable is generated once a
output cluster is generated. The fan-in of the context node comes
from all the nodes in layer 4, with the link weight assigned with
a small random value initially. After an internal variable is gen-
erated (meaning a context node is created), the next step is to
decide its effect on each rule node. As mentioned in Section II,
only a global membership function is assigned to each internal
variable and acts as the feedback term node of the corresponding
context node. Of course, we can cover the universe of discourse
of the internal variable by some local membership functions, but
this makes the network structure become larger and complexity
increase seriously. When the firing degree of each internal vari-
able to its corresponding membership function is calculated, we
should next decide which rules the firing degree is acted on.
In other words, we should decide which rule nodes in layer 3
a generated feedback term node should connect to. In general,
each rule has its own corresponding internal variable, which is
to memorize the history of the rule. But for the rules that have
the same consequent part (i.e., connect to the same output term
node), the same internal variable is assigned to these rules. With

this way, we can effectively reduce the parameter number in the
feedback layer.

4) Parameter Identification:After the filter structure is ad-
justed according to the current training pattern, the filter then en-
ters the parameter identification phase to adjust the parameters
of the filter based on the same training pattern. Notice that the
following parameter learning is performed on the whole filter
after structure learning, no matter whether the nodes (links) are
newly added or are existent originally. Since the RAFF is a
dynamic filter with feedback connections, the real-time recur-
rent learning (RTRL) algorithm [32] is used. Considering the
single-output case for clarity, our goal is to minimize the error
function

(18)

where is the desired output and is the current
output. For each training pattern, starting at the input nodes, a
forward pass is used to compute the activity levels of all the
nodes in the network to obtain the current output . In the
followings, for the notation clarity, dependency on timewill be
omitted unless emphasis on temporal relationships is required.
With the error function defined in (18), we can derive the update
rule of as

(19)

where

(20)

The update value of , the center of the membership function
in the precondition part, is

(21)

where

(22)

and .
The partial derivative is calculated as

(23)

where

if rule is connected to nodein layer
otherwise
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Similarly, the update value of is

(24)

The partial derivative is

(25)

where the partial derivative is

(26)

The update value of is

(27)

and

(28)

where

(29)

Hence, we have the following recursive form

(30)

The values , , and are equal to
zero initially and are reset to zero after a period time to avoid
the accumulation of too far away errors. Note that two step-size
parameters are used in the above equations:for the tuning
of memory weight and for the remaining parameters. Ex-
cept the weight parameter, which is assigned randomly ini-
tially, the other parameters all have good initial values assigned
during the structure learning. To increase the learning speed of

temporal relationship, we may set the learning constantsev-
eral times larger than.

The learning algorithm derived above is used in the following
examples. Notice that according to the ordered derivative [31],
we can also obtain the same parameter learning rules for the
RAFF. For some complex problems, where the learned network
size is large, this algorithm may not be efficient for real-time ap-
plication. For this, we can simplify the above learning algorithm
by treating the feedback values from layer 4 as outside inputs
and the modifiable connections can be regarded to be forward.
With this treatment, the parameters can be trained by the con-
ventional backpropagation learning method, and the learning al-
gorithm derived above can be modified as follows. The term

in (21) is simplified as

(31)

The term in (25) is simplified as

(32)

The term in (29) is simplified as

(33)

It should be noted that even the RAFF trained by this simplified
algorithm might have lower output accuracy, the overall perfor-
mance of the RAFF is still admirable. This will be verified in the
noisy speech recognition problem in the next section. Of course,
other existing on-line learning algorithms [33] for tuning the
weights of recurrent neural networks can be possibly adopted
for tuning the RAFF, too.

V. EXPERIMENTS

The proposed RAFF is applied to the adaptive noise cancella-
tion and noisy speech recognition problems using the technique
introduced in Section II.

A. Adaptive Noise Cancellation

Example 1: The speech to be recovered is a sequence of
Mandarin digits and the noise signals are from the NOISEX-92
database [34]. Assume that the relation between noise source

and corrupting noise is a dynamic nonlinear function

(34)

Suppose the noise sourceis fed to the filter input directly. The
adaptive filter is implemented by the RAFF. Only the currently
received noise signal is used as the input to the RAFF. The
noise signal used is the noise on the floor of a car factory. A word
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(a)

(b)

(c)

Fig. 5. (a) The original speech signals(k). (b) The corrupted signalx(k), where the corrupting noise in the first 5100 times steps is the factory noise and that in
the succeeding time steps is the F-16 noise. (c) The recovered signale(k) by the RAFF.

utterance, the digit “0” is recorded and training is performed
on this word in advance. The initial parameters of the RAFF
are set as , , , and .
Ten epoches of training are performed, and four input clusters
(rules), and four output clusters and internal variables are gener-
ated. Afterwards, other speech signals are spoken, and the RAFF
is on-line tuned to recover the speech signal. The original speech
signal is shown in Fig. 4(a). The measured noisy speech
signal is shown in Fig. 4(b), where dB. The
recovered signal during on-line filtering is shown in Fig. 4(c),
where dB. The obtained dynamic fuzzy rules after
on-line learning are

Rule 1:IF is and is

THEN is and

is and is and

is 0.82 and is 0.04

Rule 2:IF is and is

THEN is and

is and is and

is and is 0.78

Rule 3:IF is and is

THEN is and

is and is and

is and is

Rule 4:IF is and is

THEN is and

is 0.52 and is 0.01 and

is and is

In the above rules, and are generated internal
variables, represents a Gaussian membership func-
tion with center and width , and is the global member-
ship function stated previously in Section III. The number of
parameters in the learned RAFF is 28.

To see how good the performance of the RAFF is, another re-
current neural network, Elman’s network [35], is used for com-
parison. In this network, the recurrence is obtained by feeding
nodes in the hidden layer back to the input layer, functioning
as context nodes. So the input layer contains two parts: the true
input nodes and the context nodes. Similar structure is also pro-
posed in [36]. Like the training of RAFF, the input training data
to the network is and the desired output is . First, with
nearly the same number of network parameters (five hidden
nodes, 35 parameters in total) and ten epoches of training as
used in training the RAFF, an SNR value of 2.18 of the recov-
ered speech signal is obtained with learning constant value of
0.45. Next, with more network parameters (ten hidden nodes,
120 parameters in total) and 100 training epoches, an SNR value
of 2.64 of the recovered speech signal is obtained. This perfor-
mance is obviously worse than that of the proposed RAFF. The
recovered speech sample by the Elman’s network is shown in
Fig. 4(d).

In the above simulation, the noise source is kept the same
during filtering. To see the noise elimination performance for
different type of noise during on-line filtering of the RAFF, the
F-16 cockpit noise is added for comparison. In Fig. 5(b), the first
5100 speech samples are corrupted by the factory noise, while
the succeeding 5100 samples are corrupted by the F-16 noise
during on-line filtering. The original speech signal is shown in
Fig. 5(a), where the two segments of clean speech corrupted by
these two noise sources are the same for comparison purpose.
The on-line filtering result is shown in Fig. 5(c). For these two
kinds of noise sources, both achieve an enhancement of about 9
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(a) (b)

(c) (d)

Fig. 6. The original SNR value (“�”) and the enhanced SNR value (“+”) using the RAFF for different values ofm and different Mandarin digits. (a) “1.” (b)
“2.” (c) “3.” (d) “4.”

dB, meaning that the cancellation is not affected by the differ-
ence of noise sources.

Example 2: In this example, we shall discuss the problem
when longer delay exists. Like the function used in Example 1,
the dynamic nonlinear function used is

(35)

where denotes the delay samples. For example, the value
means that the currently measured noisy speech signal

is affected by the measured noise signalat least five sam-
ples ahead. Different values of, including , are
tested. Only one input is used as the input for the RAFF.
For different values of , the training method is the same as
that in Example 1, i.e., about ten epoches of training are per-
formed on the digit “0” and then on-line training and filtering is
performed for other words. For different values of, the filter
size is kept the same (four dynamic rules with four output clus-
ters and internal variables) for comparison. The enhanced SNR
values with different values of for different digits (including
“1,” “2,” “3,” and “4”) are shown in Fig. 6. For comparison,
two types of filters are simulated. First, a feedforward filter,
the fuzzy adaptive filter [22], with ten rules is applied to the
same problem with in (35). Different number of input
values, including , ,
and , are used as inputs to
the fuzzy adaptive filter for comparison. The enhanced SNR by
the RAFF with only one input , and that by the fuzzy adap-
tive filter with different orders of input are shown in Fig. 7. Even
with only one input and a smaller filter size, the RAFF performs
better than the feedforward fuzzy adaptive filter. By further in-
creasing the input dimension of the fuzzy adaptive filter to cover
more delays of the input variables, we can obtain a better result.
The resulting network size is, however, quite large and this is not

Fig. 7. The original SNR value (“�”) and the enhanced SNR value by the
RAFF (“+”), Elman’s network (“ ”) and the fuzzy adaptive filter with input
[r(k); r(k � 1)] (“ �”), [r(k); r(k � 1); r(k � 2)] (“�”), and [r(k); r(k �
1); r(k� 2); r(k�3)] (“�”) at m = 4 for different Mandarin digits (“1,” “2,”
“3,” and “4”).

an economic approach. Next, like Example 1, the Elman’s re-
current network with ten hidden nods and 100 training epoches
is used again for performance comparison in this example. The
enhanced result is also shown in Fig. 7 for comparison. This
comparison shows the RAFF still outperforms the Elman’s net-
work for different Mandarin digits.

B. Noisy Speech Recognition

In this subsection, we use the RAFF as a noise reduction filter
based upon the architecture in Fig. 2. The database contains ten
isolated Mandarin digits “0,” , “9.” The problems of speaker-
dependent and speaker-independent recognition are both tested
in the following Examples 1 and 2, respectively.

Example 1—Speaker-Dependent Recognition:The ten digits
were spoken by the same speaker, with 20 noise-free repetitions
for each word. For these 20 repetitions, ten are used for training,
the other ten are used for testing. The time delay neural net-
work (TDNN) is used as a recognizer. The features extracted
are cepstral coefficients with order 12 for each frame and 20
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(a) (b)

(c) (d)

Fig. 8. (a) The recognition rates on testing data for different SNR values by using the RAFF as noise reduction filter (“�”), Jordan’ recurrent neural network
(“�”) and, without using noise reduction filter (“+”) under different noisy environments. (a) Factory noise. (b) Operation room noise. (c) Buccaneer jet noise. (d)
F-16 noise.

constant frames are used for each word to meet the requirement
of TDNN. The noise signals are from the NOISE-92 database
[34]. Different types of noise including (a) the noise on the floor
of a car factory, (b) destroyer operation room noise, (c) bucca-
neer jet noise, and (d) F-16 cockpit noise are tested. The noisy
speech is generated by artificially adding these noise signals to
clean speech under a specific SNR value.

Without the noise reduction network, the recognition rate
under clean environment is 99%. In training the RAFF as
a noise reduction network, the 12 noisy cepstral features of
each frame are used as the inputs and the corresponding 12
noise-free cepstral features as the desired outputs. All the 100
words in the training set are used for training under .
Each kind of noise has its own corresponding RAFF and the
four RAFF’s for the four noise types are trained independently.
The parameters used for each RAFF are , ,

, , and 50 epoches of training are performed.
The number of rules generated for the four RAFF’s is about
22 and that of the output clusters and internal variables are
about 17. In total, 1021 parameters are used in the RAFF. The
noise reduction effects by the RAFF are tested by the testing
database for different SNR values. The original and improved
recognition rates for different types of noise at different SNR
values are shown in Fig. 8. The results show that higher
recognition rates are achieved through the use of the RAFF.

The simplified backpropagation-type learning algorithm de-
rived at the end of Section IV is also applied to train the RAFF

in this example. With the same training and testing data and net-
work learning parameters, the obtained recognition results are
listed in Table I. Compared with the result in Fig. 8, the simpli-
fied learning algorithm reduces only about 3.5% of the recogni-
tion rate of the original RAFF in average.

For performance comparison, the Jordan’s recurrent neural
network [37], [38] is applied to the sameproblem in this example.
Unlike the Elman’s recurrent network used in Section V-A,
which feeds its hidden-node values back to the input layer, the
Jordan’s recurrent network feeds its output-node values back to
the input layer to form the context nodes. A total of 30 hidden
nodes is used in the Jordan’s network (1080 parameters in
total) and 50 epoches of training are performed. The training
method is the same as that of the RAFF with a learning
constant value of 0.45 and the strength of self-connections is
0.3. The obtained recognition rates are also shown in Fig. 8
for different types of noise. Fig. 8 obviously shows that the
RAFF achieves a higher recognition rate than the Jordan’s
network.

To see the performance of RAFF on unknown types of noise,
the RAFF trained at for factory noise is tested on
the other three types of noise at different SNR values. The re-
sulting recognition rates are listed in Table II. From Table II, we
see that even for unknown types of noise, the performance of
RAFF is almost the same with that of the one trained and tested
on the same noise type shown in Fig. 8; in other words, the per-
formance of RAFF is almost independent of the noise types.
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TABLE I
RECOGNITION RATES WITH RAFF TRAINED BY SIMPLIFIED LEARNING

ALGORITHM AND WITHOUT RAFF (ORIGINAL) FOR DIFFERENTTYPES OF

NOISE AT DIFFERENTSNR VALUES

TABLE II
THE RECOGNITION RATES FORDIFFERENTTYPES OFNOISE WITH THE RAFF

TRAINED BY FACTORY NOISE AT SNR = 18

Example 2—Speaker-Independent Recognition:The data-
base contains ten isolated Mandarin digits “0,”, “9.” They
were spoken by ten different speakers. The training data were
spoken by five speakers among the ten, with two noise-free
repetitions for each word. The testing data contains two sets.
One set is from the original five training speakers with another
two noise-free spoken repetitions for each word. The other set
is from the other five speakers, with two spoken repetitions
for each word. The recognizer and speech features are the
same as those in Example 1. The training is performed under

for the factory noise. With the simplified training
algorithm and after 70 epoches of training, 27 dynamic fuzzy
rules are generated in the RAFF. The recognition rates with and
without the RAFF for the aforementioned two different testing
data sets under different SNR values of factory noise are shown
in Table III. Table III shows that for and, with the
RAFF, a recognition rate greater than 70% is achieved for both
testing data sets.

From the above two examples, we find that even for unknown
types of noise or multispeakers, the improved recognition rates
by the RAFF are admirable. Our experimental results also show
that the RAFF requires less tuning parameters to achieve the
same performance of its compared counter parts. Hence, even
the parameter learning method for the RAFF is more complex,
its smaller network-size property can compensate this problem
and makes the real-time application of the RAFF possible. For
a very complex learning problem, where the learned network
size is large, we have also derived a new simplified parameter
learning method based on the feedforward backpropagation
learning algorithm to meet the real-time application. These

TABLE III
THE RECOGNITION RATES FORTWO SETS OFTEST DATA, WHERE SET

1 IS THE DATA FROM THE SAME TRAINING SPEAKERS AND SET 2 IS
FROM OTHER SPEAKERS

properties make it more appropriate for real-world applica-
tions. One real-world application of the illustrated ten-digit
word recognition problem is the vocal phone dialing in noisy
environment. Besides, in the above examples, a simple recog-
nizer, the TDNN, is used as the speech recognition kernel to
recognize the speech signals after RAFF filtering. In fact, in
the real-world speech recognition applications, the RAFF may
be combined with other types of recognizers, like the hidden
Markov model (HMM), to increase the recognition rate of the
recognition system in noisy environment. Furthermore, other
robust speech recognition techniques [39], such as the robust
feature extraction scheme, can be integrated with the RAFF to
further improve the recognition system’s performance in noisy
environment.

VI. CONCLUSION

Two noisy speech processing techniques, the adaptive noise
cancellation for speech enhancement and the noise reduction
filter for noisy speech recognition based upon filtering approach
are addressed and a novel filter, the RAFF, is proposed. The
RAFF owns on-line self-organizing learning ability and is con-
structed by expanding the general feedforward adaptive neural
fuzzy filter to a recurrent one. Using the RAFF, we need not
know the exact order of the inputs nor do we have to deter-
mine the size of the RAFF in advance. The RAFF can handle
these problems by creating and updating recursive fuzzy rules
automatically via on-line structure and parameter learning. The
RAFF has shown its efficiencies for some noisy speech pro-
cessing problems. Further works on RAFF include its real appli-
cation to ANC and extension of the speaker independent recog-
nition problem to including more speakers, e.g., more than 100
speakers. Applications of the RAFF for other temporal filtering
problems will also be investigated.
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