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Incorporating Error Shaping Technique into LSF
Vector Quantization

Hsi-Wen Nein and Chin-Teng Lin, Senior Member, IEEE

Abstract—This paper presents an error shaping technique for
line spectrum frequency (LSF) vector quantization. The error
shaping technique based on the weighted logarithm spectral
distortion (WLSD) measure can be used for shaping the spectral
distortiondistributionofquantizationerror intoanydifferentcurve
depending on what kind of weighting function is used. However, the
high computational complexity of the WLSD measure deters this
error shaping technique from practical use. To solve this problem,
we approximate the WLSD measure by the quadratically weighted
measure or the weighted mean squared error (WMSE) measure
and propose an optimal error shaping technique of LSF vector
quantization. In this proposed error shaping technique, the optimal
WMSE weights (i.e., the optimal weights of LSF parameters) are
determined based on the theoretical analysis of the WLSD measure.
Three experiments are performed to check the performance of
the proposed error shaping technique. One experiment is set up
by incorporating human perception into the LSF quantization
and another is set up by emphasizing the human-sensitivity fre-
quency band in lower frequency bandwidth 0–3 kHz. In the third
experiment, we apply the proposed error shaping technique to the
LSF quantization of a CELP coder to test how it affects the overall
speech quality in an actual speech coding algorithm.

Index Terms—Human perception, quadratically weighted mea-
sure, sensitivity matrix, weighted logarithm spectral distortion
(WLSD), weighted mean squared error (WMSE).

I. INTRODUCTION

T HE LINEAR predictive coding (LPC) model for speech
signals is used in many modern speech compression

systems. In these systems, the LPC filter coefficients are usually
transformed to line spectrum frequency (LSF) parameters
which give a very effective representation for the quantization
of LPC information [1], [2]. An example is the new 2400 bps
MELP coder which uses 25 bit, multistage 10 LSF parameter
quantization [3].

Most vector quantization (VQ) research focuses on min-
imizing the number of bits needed to represent the speech
spectrum for achieving a low log-spectral distortion (LSD)
between the unquantized speech spectrum and the quantized
one. Although LSD is a common spectral distortion measure
for evaluating the performance of the quantizers, it is difficult
to design a quantizer that directly minimizes the overall LSD
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due to the high computational complexity of the LSD mea-
sure. Therefore, simpler distortion measures are designed for
practical applications, such as the mean squared error (MSE)
measure or weighted mean squared error (WMSE) measure for
the LSF parameters.

Most LSF vector quantizers based on WMSE measure experi-
mentally determine the weights of LSF parameters to minimize
LSD [5]–[7]. The experimentally determined weights of LSF
parameters used in these quantizers lack any theoretical anal-
ysis. Recently, Gardner and Rao [4] have proved that a WMSE
measure of LSF parameters converges to the LSD measure in
high-bit-rate VQ systems. In [4], the optimal WMSE weights of
LSF parameters are determined based on the theoretical anal-
ysis of the LSD measure. However, one obvious drawback of
the LSD measure is that it does not utilize the frequency-depen-
dent property; i.e, all frequencies have equal weights in the LSD
measure.

Since all frequencies are weighted equally in the LSD mea-
sure, the optimal weights of LSF parameters obtained in [4] does
not take into account the perceptual property of human ear. To
make better use of this property, Paliwal and Atal achieved good
VQ performance using the WMSE measure with weights deter-
mined experimentally [5]. Cohn and Collua determined weights
experimentally such that a spectral distribution of quantization
error was perceived to be “balanced,” i.e., the error at all fre-
quencies contribute equally on average to the perceived distor-
tion [7]. In summary, the weights determined in [5], [7] experi-
mentally lack any theoretical analysis, and the optimal weights
obtained from the theoretical analysis of the LSD measure [4]
do not use the human perceptual characteristics.

In order to make better use of the perceptual property of
human ear, we need use the weighted LSD (WLSD) measure
instead of the unweighted LSD measure to calculate the
distortion between the unquantized speech spectrum and the
quantized one. In this way, the error distortion distribution of
a quantizer can be shaped into any curve depending on which
weighting function is used in the WLSD measure. If the chosen
weighting function matches human perceptual characteristics,
then the error distortion distribution of the quantizer and the
perceived distortion will match in each frequency. Neverthe-
less, the simple measures such as MSE and WMSE are still
required, since it is quite difficult, if not impossible, to design a
quantizer that directly minimizes the overall WLSD due to the
high computational complexity of the WLSD measure.

In this paper, we study the error shaping technique of LSF
VQ based on the WLSD measure for any given weighting func-
tion by extending Gardner’s work [4] to include the more gen-
eral case of weighting LSD. Our theoretical analysis shows that
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the quantization distortion with the WLSD measure is close to
that of a quadratically weighted distortion measure, which is
much lower in computational complexity. We also obtain the
optimal weights for LSF parameter quantization from the the-
oretical analysis of the WLSD measure, since simple measure
such as WMSE may be desirable for practical applications. In
our experiments, we will show that quantizers using theoreti-
cally derived weights outperform quantizers using heuristically
derived weights.

This paper is organized as follows. Section II introduces the
error shaping technique using the WLSD measure, and then de-
rives approximate solutions to the WLSD measure for the LSF
VQ schemes that use a quadratic distortion measure or a WMSE
distortion measure for training and quantizing. In Section III,
two experimental LSF VQ results, and experimental testing re-
sults of applying the proposed technique to the LSF quantization
of a CELP coder are presented. Finally, conclusions are drawn
in Section IV.

II. THEORETICAL ANALYSIS OF ERRORSHAPING

In this section, we first introduce an error shaping technique
based on the WLSD measure. Then, the optimal weights used
in the quadratic and WMSE distortion measures are derived
in Section II-B. An algorithm of computing the weights used
the quadratic and WMSE distortion measures is given in Sec-
tion II-C.

A. Error Shaping Technique

The LSD measure, , being a common measure of LPC per-
formance is defined as follows [8]:

(1)
where is the radian frequency, and and are the
linear prediction power spectra before and after quantization,
respectively,

(2)

where is the order of LPC filter and is constrained to be even,
and are the linear

prediction coefficients corresponding to the unquantized and
quantized LSF parameters, respectively. This measure does not
account for human perceptual characteristics, since it gives equal
weight to the error regardless of where it occurs in frequency.

To consider frequency-dependent error, the weighted LSD
(WLSD) measure is defined as follows:

(3)

where is a normalization factor making to be unity
root mean square (RMS). The values of are all real and

positive. The function is called weighting function, which
is required to be symmetric, i.e., . This con-
straint for the weighting function is reasonable since the inter-
ested frequency range is always in .

The frequency-dependent weighting function can be
used for determining frequency-dependent error shape in fre-
quency domain and thus, it can be assigned freely for different
purposes. The error shaping technique with the WLSD measure
for a given weighting function can be applied to any LSF quan-
tizer which uses frequency-dependent error distortion measure.
The WLSD measure is generalized from [11] in which the per-
ceptual-based distortion measure is used.

B. Theoretical Analysis

Although the WLSD measure makes better use of the per-
ceptual property of human ear, it is difficult to use in a LSF
quantizer directly due to the high computational complexity of
the WLSD measure. Hence, simpler distortion measures that ap-
proximate the WLSD measure are desired, such as the quadratic
distortion measure and WMSE measure.

In Sections II-B1 and II-B2, we shall derive the approxima-
tion solutions of the WLSD measure for the LSF VQ schemes
that use a quadratic distortion measure and a WMSE distortion
measure for training and quantization, respectively. After de-
riving the approximation solutions of the WLSD measure, the
theoretical analysis on high-rate VQ using WLSD measure is
verified in Section II-B3.

1) Replacement of the WLSD Measure by the Quadratic Dis-
tortion Measure: In this section, we shall study the replacement
of the WLSD measure by a quadratic distortion measure for com-
putational simplicity. We first introduce a theorem in [4] showing
that any continuously differentiable distortion function which
satisfies some properties can be approximated by a quadratic
distortion function toanydesireddegree forshort distances.

Theorem 1: Let be an -dimensional vector and assume
that a vector quantizer mapsto an output vector , and
is a continuously differentiable distortion function having the
following properties:

• with equality holding only if ;
• having continuous partial derivatives of third

order almost everywhere;
• second-order derivatives of ,

, for all being positive definite almost
everywhere.

Then, this measure can be approximated exactly by a
quadratic distortion measure, i.e.,

for small distances (4)

where is an by dimensional matrix with its th
element defined by

(5)

andisdenotedasthe“sensitivitymatrix,”sinceitselementsrepre-
sent the relativesensitivityofquantizing thevariousparameters.

Proof: See [9].
In general, the sensitivity matrix used in the quadratic dis-

tortion measure in (4) is not diagonal. The quadratic distortion
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measure provides a simple method to computing the centroid of
a quadratic measure, whereas it may be impossible to efficiently
compute the centroid of the “true” distortion measure (such as
the LSD or WLSD measure). Thus this allows the quantizer to
be built using the generalized Lloyd or LBG algorithms [12].

It is readily apparent that Theorem 1 holds for the WLSD
measure in (3) only if the weighting function has contin-
uous third-order derivatives, since the WLSD measure satisfies
the properties required by in Theorem 1. Hence, we can
use the quadratic distortion measure in the right hand side of (4)
to replace the WLSD measure in designing an LSF quantizer. To
design an LSF quantizer based on the quadratic distortion mea-
sure, we need to determine the sensitivity matrix in (4). This
issue is what we focus on in the rest of this subsection.

For analysis convenience, we rewrite (3) as follows:

(6)

where , ,
.

To derive the sensitivity matrix for LSF parameters based on
(6), we first find out the sensitivity matrix for LPC parameters
based on (6) and then apply Jacobian matrix of transformation
which transforms LSF parameters to LPC parameters to it to
obtain the sensitivity matrix for LSF parameters.

a) Sensitivity Matrix for LPC Parameters:The following
theorem gives the exact form of the sensitivity matrix for LPC
parameters.

Theorem 2: Let and denote the impulse responses

of the discrete-time filters and in (6),
respectively. Notice that is a causal signal and is a
symmetric and noncausal signal. Then, the elements of the sen-
sitivity matrix for LPC parameters are

(7)

where

(8)

where is the traditional autocorrelation function of the im-
pulse response , i.e.,

(9)

and is the convolution of with , i.e.,

(10)

Proof: See Appendix A.
From the results in Theorem 2, the sensitivity matrix for LPC

parameters can be written as

(11)

where is defined as

...
...

... (12)

The matrix has two properties listed in the following:

a) is a symmetric matrix since and are sym-
metric signals. The proof is given by the following equal-
ities:

(13)

b) is positive-definite almost everywhere from The-
orem 1.

Property a) is useful for saving the computation time in the
calculation of

b) Sensitivity Matrix for LSF Parameters:In order to de-
fine LSF parameters, the inverse filter, , is used to construct
two polynomials:

(14)

and

(15)

The roots of these polynomials are usually called LSF parame-
ters. Some important properties of LSF parameters are detailed
in [2], [5].

Denote the transformation for LPC vectorto the LSF pa-
rameters set by the function
and the reverse transformation by . Then, the element of
the sensitivity matrix for the LSF parameters is given
by

(16)
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where is given in (11), and is the Jacobian matrix
of the transform , which has its th element defined
by

(17)

By substituting the result in (11) into (16), we can rewrite the
sensitivity matrix of LSF parameters in (16) as

(18)

2) Approximation of the WLSD Measure by the WMSE Mea-
sure: In some applications, computing the full quadratic dis-
tortion measure for each vector in a codebook during quantiza-
tion may still be too complex, and the use of relatively simple
WMSE distortion measure may be desirable. The WMSE dis-
tortion measure is a special case of quadratic distortion measure
with a diagonal matrix, which is defined as

...

(19)

where and are column vectors of the original and quantized
LSF parameters, and is the th weight corresponding to
the th element of the original vector, . It is obvious that the
quadratic distortion measure in (4) is equivalent to the WMSE
measure when the sensitivity matrix in (4) is diagonal.

An important result showing that at high-bit rate, a WMSE
measure in LSF quantization is equivalent to the LSD measure
[4]. However, this does not hold when the WLSD measure in-
stead of the LSD measure is concerned. The following theorem
shows this point.

Theorem 3: The optimal sensitivity matrix for LSF param-
eters is nondiagonal if the length of impulse response of the
weighting function used in the WLSD measure is larger
than three.

Proof: See Appendix B.
From Theorem 3, we understand that the quadratically

weighted distortion measure in a LSF quantizer cannot reduce
to the WMSE measure, since the sensitivity matrix in the
former is not a diagonal matrix as required in the latter. Hence,
from Theorem 3, there exists no WMSE measure that can
be equivalent to the WLSD measure. However, the following
theorem from [4] helps to find the optimal WMSE measure that
is closest to the WLSD measure.

Theorem 4: The optimal weights in the WMSE measure are
the diagonal elements of the sensitivity matrix using a continu-
ously differentiable distortion measure having the same proper-
ties in Theorem 1.

Proof: See [4].
Since the WLSD measure is a continuously differentiable dis-

tortion measure and satisfies the properties in Theorem 1, it has

the property shown in Theorem 4. In other words, the weights
that make the WMSE measure approximate the WLSD measure
optimally are the diagonal elements of the sensitivity matrix for
LSF parameters, in (18). Notice that if the quadratic
or WMSE distortion measure is used for designing a LSF
quantizer, then the factor in the sensitivity matrix [see (11)]
can be neglected, i.e., using in training and quan-
tization would produce identical results.

3) Verification of the Theoretical Analysis on High-Rate VQ
Using WLSD Measure:The theoretical approximation, , for
the performance ofhigh-rate VQ schemes that use quadratic
distortion measures for training and quantizing as described in
Theorem 1 has been derived in [4]. In addition, based on LSD
measure, an experiment was set up in [4] for comparing the re-
sult of the theoretical approximation to that of high-rate VQ
trained and quantized using quadratic distortion measure. The
training database of 160 000 frames of speech and the database
of about 20 000 frames of speech were used for training and
testing, respectively. The 10-dimensional vectors of LSF param-
eters and the LSF sensitivity matrix with respect to the LSD
measure for each frame in the training and testing databases
were computed. The reason for using LSF parameters as the
input vector of the vector quantizer is that the LSF sensitivity
matrix with respect to LSD measure is diagonal, which results
in simpler computation. In other words, the quadratic distortion
measure is equivalent to the WMSE distortion measure for a
vector quantizer using the LSF sensitivity matrix with respect
to the LSD measure to quantize LSF parameters. In [4], the
theoretical performance of the high-rate VQ was computed by
first estimating the density function of the set of LSF vectors
using the 160 000 training frames, and then calculating its theo-
retical approximation with the density function in a numer-
ical method. The experimental results in [4] have shown that the
theoretical approximation ( ) approaches to the performance
(LSD) of the high-rate VQ trained and quantized using the di-
agonal LSF sensitivity matrix.

Since the measure in our paper is based on the WLSD mea-
sure rather than the LSD measure, the comparisons between the
theoretical approximation ( ) and the experimental result of
the high-rate VQ using the (nondiagonal) LSF sensitivity matrix
with respect to the WLSD measure obtained in Section II-B2
should be made for further verifying our work. The compar-
isons can be made by the same experiment set up described in
[4] with the same training and testing databases except that the
LSD measure is replaced by the WLSD measure. Thus, similar
results to those presented in [4] can be obtained since the WLSD
measure can be viewed as the warped LSD measure according
to the following manipulation. By defining

(20)

we can obtain
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(21)

where and are the
warped power spectra. From (21), we find that the power
spectrum in WLSD can be mapped into the warped
power spectrum in the warped LSD. After transforming
the WLSD measure into the warped LSD measure in (21), we
can obtain the LSF sensitivity matrix with respect to the warped
LSD measure by the method described in [4]. According to
the proof in [4], such a LSF sensitivity matrix is diagonal.
Since the warped LSD measure in (21) and the original LSD
measure used in [4] are in the exactly same form, and both
of their respective LSF sensitivity matrices are diagonal, the
result of experimental justification for the theoretical analysis
on the performance of high-rate VQ in [4] can be applied to
the WLSD case directly. We can thus verify that the theoretical
approximation, , is very close to the experimental result of
the high-rate VQ using the LSF sensitivity matrix with respect
to the WLSD measure obtained in Section II-B2. In other
words, the quadratic distortion measure of LSF parameters
converges to the WLSD measure in a high-rate VQ system.
Furthermore, according to Theorem 4, when the WMSE mea-
sure of LSF parameters is used, the WMSE measure using the
diagonal elements of the LSF sensitivity matrix with respect
to the WLSD measure in Section II-B2 is close to the WLSD
measure optimally in the high-rate VQ system.

C. Computational Implementation

In order to compute the sensitivity matrix for LSF parame-
ters given by (18), we need to determine firstly the sensitivity
matrix for LPC parameters, , and the Jacobian matrix of
the transformation from LSF parameters to LPC parameters,

. The efficient computation algorithm of can be
found in [4]. Thus, what remains is the computation of .

Two problems exist in computing ; impulse response
of the LPC filter is not a finite sequence, and

may be an infinity sequence. The first problem results in the
difficulty that the autocorrelation function of cannot be
computed, since is an infinity sequence. This problem can
be solved by using the relation between the autocorrelation se-
quence ( ) of the windowed frame of input speech and
the autocorrelation sequence ( ) of as derived in [14].
However, in most cases, in order to avoid sharp spectral peaks
in LPC spectrum which may result in unnatural synthesized
speech, a fixed bandwidth expansion is applied to each pole of
LPC coefficients, by replacing by for and

. This results in the fact that the autocorrelation sequence
( ) of the impulse response ( ) of the bandwidth-ex-
panded LPC ( ) cannot be directly obtained from the
autocorrelation sequence ( ) of the speech signal. Hence,
for simply computing the autocorrelation sequence from

, we assume that is zero after some large time index

, since is an autoregressive model. Under this assump-
tion, the autocorrelation sequence can be computed as

(22)

This assumption is not very accurate and may cause some error
in computing the autocorrelation sequence . Of course, if
the fixed bandwidth expansion is not used, can be directly
and accurately obtained from the speech signal.

The second problem caused by infinity impulse response of
can also be fixed by selecting finite impulse response se-

quence to avoid the convolution of infinite sequence and
in (8). If we only have the weighting function in

the frequency domain, then can be obtained by taking the
inverse discrete Fourier transform (IDFT) of . If is
truncated to for selecting finite impulse response with fre-
quency response then must be a positive definite
signal to guarantee that the resulting quadratic weighting matrix
is positive definite. Here, we provide two simple methods to ob-
tain positive-definite by using the common windows
in the design of FIR filters such as the rectangular window, Han-
ning window and Hamming window, etc., except that we put the
center of the window at time index 0. One method to obtain the
positive-definite is by applying a positive definite window,
generated from the autocorrelation of , to . If the trun-
cated is designed by this method, the weighting function
used in the WLSD measure becomes

where denotes the frequency response of . The
other method is firstly to compute the impulse response of

, denoted as , by the spectral factor-
ization procedure, where we assume can be spectrally
factorized. Then, by applying the window to for
computing the finite impulse response , the positive-definite

can be obtained by calculating the autocorrelation of
. In the second method, the weighting function used in the

WLSD measure is given by

The truncated signal obtained by these two methods is
a positive-definite signal, since its Fourier transform is
positive [10]. Hence, the quadratic weighting matrix obtained
from Theorem 1 by applying to the WLSD measure is
positive-definite almost everywhere.

With the above two problems being fixed, the sensitivity ma-
trix for LPC parameters, , can be computed as follows.
Since the bandwidth expansion will be used in our experiments,
we assume that used for computing in (9) is zero after
a large time index . In addition, assuming that is zero
outside the range , we can then rewrite Eqs. (9)
and (10) as

(23)
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and

(24)

Using (8), the elements of can be easily computed by the
following equation:

(25)

Finally, the sensitivity matrix for LSF parameters, ,
based on the WLSD measure can be determined by (18) and
the optimal WMSE weights, named OWMSE weights, are the
diagonal elements of the sensitivity matrix .

The computational complexity for calculating the OWMSE
weights are evaluated as follows. The impulse response, for

, requires multiply-adds (multiply-add meaning
a multiplication operation followed by an addition operation),
where denotes the order of LPC model,denotes the max-
imum time index of impulse response . Equations (23) and
(24) require multiply-adds
and multiply-adds, respectively, where denotes
the length of for . The first term and the second term
in the left-hand side of (25) require multiply-adds
and multiply-adds, respectively. The approach
for computing the Jacobian matrix in [4] requires about

multiply-adds and sine (sine function) and cosine (co-
sine function) of LSF parameters. However, the cosine function
of the LSF parameters is typically computed by the root-search
procedure in finding LSF parameters. Finally, the computation
for the diagonal terms of in (18) requires about
multiply-adds. Hence, the total computation complexity is

multiply-adds v sine (26)

III. EXPERIMENTAL RESULTS

The speech database used in our experiments consists of Chi-
nese sentences recorded from 26 speakers including 16 men
and ten women. The database is divided into two parts. One
is named training database including 17 speakers (ten men and
seven women) and the other is named testing database including
nine speakers (six men and three women) independent of those
used in the training database. Speech signals are low-pass fil-
tered at 4 kHz and digitized at a sampling rate of 8 kHz. A
tenth-order LPC analysis based on Levinson–Durbin algorithm

TABLE I
BIT ALLOCATION OF EACH STAGE OF 4-STAGE VQ FOR VARIOUS BIT

RATES IN THE EXPERIMENTS

is performed every 20 ms using a 25 ms-length analysis Ham-
ming window. Moreover, a fixed 15 Hz bandwidth expansion
is applied to each pole of the LPC vector, by replacingby

, for , where . The LPC parame-
ters with bandwidth expansion of each frame are transformed to
LSF parameters by using Chebyshev polynomials [13]. Notice
that the spectra corresponding to silence are excluded. Finally,
we have 95 753 LSF vectors for training in the training database
and 60 366 LSF vectors for testing in the testing database.

Since computing the fully quadratic distortion measure for
each vector in a codebook during the LSF quantization is too
complex, the simple WMSE distortion measure is used in our
experiments. The codebooks are trained according to a multi-
stage VQ structure by using the joint optimization procedure
with four stages and search depth of as described in
[6]. The iterations before the error converges require about 100
time steps. The bit allocation of each stage for various bit rates
is shown in Table I.

A. Experiment 1

Since balanced spectral error is desirable, in this experiment,
we incorporate auditory perception into the LSF quantization by
using the Bark weighting function [7]

(27)

where is the sampling frequency of 8 kHz. Using the
weighting function and the results of previous section,
the OWMSE weights are obtained. Here, a 256-point IDFT is
applied on to obtain the time sequence with
time indices from to . Then, the impulse response

of the weighting function can be approximately obtained
from by setting to zero if is larger than 20 or
less than , because the ratios of to for
or are too small. Hence, the order of the impulse
response of the weighting function used in this
experiment is 40.

To compare the performance of the obtained OWMSE
weights with that of the weights previously proposed by others,
the LSF vector quantizers are also trained by using three other
sets of weights. In [4], the optimal weights based on the LSD
measure for LSF quantization were derived, named Gardner
weights. In [7], a set of weights in which the weight for theth
LSF component is the product of the Gardner weight,, and

in (27) were suggested, named Cohn weights. In [5], a
set of weights were given subjectively based on the linear pre-
diction power spectra, , in (2) as ,
where for , , , named
Paliwal weights.
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Fig. 1. Spectral error distributions for 24-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 1, where solid line
corresponds to OWMSE weights, dotted line to Cohn weights, dashed line to
Paliwal weights, dashdot line to Gardner weights, and “+” line corresponds to
the inverse of the Bark weighting function multiplied by4:38795� 10 .

Fig. 2. Spectral error distributions for 27-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 1, where solid line
corresponds to OWMSE weights, dotted line to Cohn weights, dashed line to
Paliwal weights, dashdot line to Gardner weights, and “+” line corresponds to
the inverse of the Bark weighting function multiplied by3:76092� 10 .

In order to observe the spectral error distribution, the RMS
distortion is calculated by evaluating the original and quantized
spectra given by (2) for 256 discrete frequencies, converting
the distortion to dB at each frequency, and then taking the RMS
value of the distortion at each frequency over all measured
spectra. The experimentally obtained spectral error distribu-
tions at different bit rates are shown in Figs. 1–3. In order to
contrast the shapes of the spectral error distribution curves in
Figs. 1–3 with the shape of the inverse of the Bark weighting
curve in (27), three curves of the inverse of the Bark weighting
functions multiplied by , and

Fig. 3. Spectral error distributions for 30-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 1, where solid line
corresponds to OWMSE weights, dotted line to Cohn weights, dashed line to
Paliwal weights, dashdot line to Gardner weights, and “+” line corresponds to
the inverse of the Bark weighting function multiplied by3:08256� 10 .

are also plotted in Figs. 1–3, respectively.
The constant gains of , and

are obtained by minimizing the mean square
error between the spectral error distribution curve for the
OWMSE weights and the inverse of the Bark weighting curve.
From Figs. 1–3, it is obvious that the spectral error distribution
curve for the OWMSE weights is closer to the spectral error
distribution of the inverse of the Bark weighting curve than
those for the Paliwal weights and Gardner weights. Although
the OWMSE weights and Cohn weights have similar spectral
error distribution curves in the figures, the OWMSE weights
still outperform the Cohn weights as will be shown in the
following tests.

For further analyzing the experimental data and comparing
the performance of the OWMSE weights with that of other
weights, two performance measures are used. One is the
average WLSD in decibels for measuring the quantization
performance. The average WLSD is defined by (28), shown at
the bottom of the next page, where

normalization factor of ,

and power spectra of the th speech
frame without and with quantiza-
tion, respectively;

total count of frames in the testing
database.

The other measure is the error balanced degree, which is defined
as

(29)

where and represent the spectral error distribution
curve and the inverse of the Bark weighting function, respec-
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tively, and is a gain factor. The spectral error distribution curve
in (29) is defined as

(30)

where and represent theth original power spectra
and the th quantized spectra in decibels, respectively, and
is the number of frames. The concept for defining (29) comes
from the minimization of error by simultaneously optimizing
the gain and shape of one curve or vector, such as the training
of gain-shape codebooks in [15]. The gain factorin (29) is
to shift the inverse of the Bark weighting function to obtain the
minimum EBD value, while keeping the original envelop shape
of the inverse of the Bark weighting function unchanged. Hence,
the EBD measure is a good indicator for evaluating the error bal-
anced degree between the spectral error distribution curve and
the inverse of the Bark weighting function. In our experiment, a
discrete type of (29) is used,

(31)

where are the set of discrete frequencies. The
optimal (minimum error) gain value can be obtained as
follows by setting to zero the differentiation of (31) with respect
to ,

(32)

Thus, by substituting (32) into (31), we can obtain

(33)

for computing EBD values. In our experiment,is set as 128
since 256-point discrete frequencies are used for computing the
spectral error.

The values of and are calculated at different bit
rates as listed in Tables II and III, respectively. These tables
indicate that the values of and for our OWMSE

TABLE II
(WSD) VALUES OF THELSF MULTISTAGE VECTORQUANTIZERS USING

OWMSE WEIGHTS, COHN WEIGHTS, PALIWAL WEIGHTS AND GARDNER

WEIGHTS AT THREE DIFFERENTBIT RATES IN EXPERIMENT 1

weights are smaller than those for the other three sets of weights
at the same bit rate. This shows the OWMSE weights obtained
by our scheme outperform the compared counterparts. More
precisely, the quantization error distortion distribution for the
OWMSE weights is more balanced than that for other three sets
of weights. Figs. 1–3 also reflect this phenomenon.

It is interesting to check how much performance is lost by
the WMSE approximation since the error distortion measure
with the spectral weighting function, , no longer results
in a diagonal sensitivity matrix for LSF parameters according
to Theorem 3. An experiment to check this was conducted for
the bit rates shown in Table I. In this experiment, the code-
books are also trained using the full quadratic distortion mea-
sure according to the multistage VQ structure with the same
optimization procedure, stages and search depth as described
in the above experiment. The weighting function used for com-
puting the LSF sensitivity matrix in this experiment is also the
Bark weighting function as defined in (27). The average WLSD,

, defined in (28) is used to observe the performance of VQs
trained and quantized using the full quadratic distortion measure
and the WMSE distortion measure. In the experiment, the values
of for VQs using the full quadratic distortion measure at
30, 27, and 24 bits/frame are 0.708 dB, 0.871 dB and 1.044 dB,
respectively. Since the difference at each bit rate between the
value of for VQ using the full quadratic distortion mea-
sure and that, listed in Table II, for VQ using the WMSE distor-
tion measure is small, we can see that the performance lost by
the WMSE approximation is not significant. This experimental
result also shows that the nondiagonal terms in the sensitive ma-
trix for LSF parameters using Bark weighting function at 30,
27, and 24 bits/frame maybe neglected, if the computation com-
plexity is the major concern. It is worth pointing out that given
the multistage nature of the VQ scheme, the full quadratic dis-
tortion measure can be used only in the final stage of the quan-
tizer. This can decrease the computation required while still pro-
vide theoptimalweighting in the final stage, where the high-rate
approximations are most likely to be valid and valuable. Obvi-
ously, the performance (i.e., the average WLSD values) of this
scheme will lie between those of the two extreme cases, one for
the WMSE distortion measure in each stage, the other for the
full quadratic distortion measure in each stage.

(28)



NEIN AND LIN: INCORPORATING ERROR SHAPING TECHNIQUE INTO LSF VECTOR QUANTIZATION 81

Fig. 4. Frequency responses of the three weighting functions used in
Experiment 2, where dashed line corresponds to the weighting functionh ,
dotted line to the weighting functionh , dashdot line to the weighting function
h .

Based on the above experimental results and to avoid the com-
putation complexity with full quadratic distortion measure for
each input vector of quantizers during a codebook search proce-
dure in LSF quantization, the simple WMSE distortion measure
is used in all the other experiments in the rest of this section. It
can be expected that better performance can be obtained if the
full quadratic distortion measure is used, instead.

B. Experiment 2

Paliwal and Atal in [5] observed that the transparent quantiza-
tion of LPC information can be obtained if the following three
conditions are met: 1) the average spectral distortion (SD) is
about 1 dB; 2) there is no outlier frame having SD larger than 4
dB, and 3) the number of outlier frames having SD in the range
of 2–4 dB is less than 2%. Here, SD is the same asdefined in
(1) except that the integration range is in 0–3 kHz. According to
the above conditions, since only the lower 3/4 of the frequency
range is used for computing the spectral distortion error, we can
design a weighting function which has larger function values at
the lower 3/4 of the frequency range, and much smaller function
values at higher frequency range to reduce the quantization SD.

Three weighting functions used in this experiment are shown
in Fig. 4. All of the three weighting functions have larger
values at lower frequencies than those at higher frequencies,
and are designed as FIR filters for easily computing the
OWMSE weights as mentioned in Section II-C. According to
the different bandwidths of the three weighting functions, we
denote the weighting function with the narrowest bandwidth as

, the one with the widest bandwidth as , and the
other as . The orders of the three weighting functions,

, and , are 20, 20, and 40, respectively.
The OWMSE weights corresponding to the three weighting
functions, , and , obtained from the pro-
cedure in Section II-C are denoted by weights, weights,
and weights, respectively. In order to test the performance
of LSF quantization using these OWMSE weights at different

TABLE III
(EBD) VALUES OF THELSF MULTISTAGE VECTORQUANTIZERS USING

OWMSE WEIGHTS, COHN WEIGHTS, PALIWAL WEIGHTS AND GARDNER

WEIGHTS AT THREE DIFFERENTBIT RATES IN EXPERIMENT 1

TABLE IV
(WSD) VALUES OF THELSF MULTISTAGE VECTORUSING PALIWAL WEIGHTS

AND OWMSE WEIGHTS WITH WEIGHTING FUNCTIONSh (w), h (w),
h (w), AT THREE DIFFERENTBIT RATES IN EXPERIMENT 2

TABLE V
EBD VALUES OF THELSF MULTISTAGE VECTORQUANTIZERS USING PALIWAL

WEIGHTS AND OWMSE WEIGHTS WITH WEIGHTING FUNCTIONSh (w),
h (w), h (w), AT THREEDIFFERENTBIT RATES IN EXPERIMENT 2

bit rates, the results of LSF quantization using Paliwal weights
at the same bit rates are also obtained for comparisons. The
definition of Paliwal weights has been given in Experiment 1.

Similar to Tables II and III in Experiment 1, Tables IV and
V show that the performance comparisons between the vector
quantizer using the Paliwal weights and the vector quantizer
using the OWMSE weights with different weighting functions

, , , where the error index and EBD
are defined in Eqs. (28) and (29), respectively, except that the
term in (28) is replaced by one of , , and

here. From Tables IV and V, we can see that the perfor-
mance of the vector quantizers using the OWMSE weights with
either of the three weighting functions is better than the vector
quantizer using the Paliwal weights. In addition, to observe
the spectral error distributions at different bit rates, we show
the spectral error distribution curves in Figs. 5–7. In Figs. 5–7,
we observe that the OWMSE weights can be efficiently used
for shaping the quantization spectral error distribution into any
desired frequency-dependent curve depending on the selected
weighting functions at different bit rates. Finally, to check
the performance in the sense oftransparent quantizationof
LPC information, we list the average SD values of the vector
quantizers using the Paliwal weights or the OWMSE weights
with different weighting functions in Table VI. Table VI shows
that the performance of LSF quantization using the OWMSE
weights is better than that using the Paliwal weights even at
lower bit rate, 24 bits/frame. This conclusion comes from the
observation on Table VI that the average SD values using the
OWMSE weights are smaller than those using the Paliwal
weights, and the outliers within 2–4 dB and above 4 dB using
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Fig. 5. Spectral error distributions for 24-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 2, where solid line
corresponds to Paliwal weights, dashed line toh weights, dotted line toh
weights, dashdot line toh weights.

Fig. 6. Spectral error distributions for 27-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 2, where solid line
corresponds to Paliwal weights, dashed line toh weights, dotted line toh
weights, dashdot line toh weights.

the OWMSE weights are comparable to those using the Paliwal
weights.

From Table VI, we can see that the average SD values using
the weighting function are somewhat larger than those
using the other weighting functions at the same bit rate. This
phenomenon is explained as follows. Since the values of the
weighting function are larger than those of the others
in almost all the higher frequency range above 3 kHz, the quan-
tization errors using the weighting function are smaller
than those using the others in the higher frequency range above
3k Hz as shown in Figs. 5–7. However, it is a fact that the total
quantization errors at the same bit rate are fixed regardless of
what kind of error shaping function being used in the quan-
tizers. Therefore, it is reasonable that the average SD values
using the weighting function are higher than those using
the others, since the average SD values only contain the quanti-
zation errors in the lower frequency range of 0–3 kHz.

Fig. 7. Spectral error distributions for 30-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 2, where solid line
corresponds to Paliwal weights, dashed line toh weights, dotted line toh
weights, dashdot line toh weights.

TABLE VI
SD VALUES OF THELSF MULTISTAGE VECTORQUANTIZERS USING PALIWAL

WEIGHTS, h WEIGHTS, h WEIGHTS, AND h WEIGHTS AT THREE

DIFFERENTBIT RATES IN EXPERIMENT 2

TABLE VII
COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS IN CALCULATING THE

OWMSE WEIGHTS, THE COHN WEIGHTS, THE GARDNER WEIGHTS, THE

PALIWAL WEIGHTS, AND THE SIMPLE MSE MEASURE

The comparisons of the computational complexity required
for computing the OWMSE weights to that required for
computing the Cohn weights, the Gardner weights, the Paliwal
weights, and a simple MSE measure are listed in Table VII,
assuming that the autocorrelation of the LPC impulse response

is computed by (23). In this table,denotes the maximum
time index of the impulse response of LPC model,denotes
the length of the impulse response (for ) of the
weighting function , denotes the order of LPC model,
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“multiply-add” denotes the multiplication operation followed
by an addition operation, “division” denotes the division opera-
tion, “sine” denotes the operation of the sine function, “cosine”
denotes the operation of the cosine function, and “power”
denotes the operation of the power function, where sine and
cosine functions are typically computed by some numerical
method such as the Taylor series expansion. In Table VII,
the term “ multiply-adds” is the requirement for
efficiently computing the diagonal terms of the sensitivity
matrix for LSF parameters in [4]. In computing the Cohn
weights, the additional computation requirement,division

power multiply-adds, comparing to the calculation
of the Gardner weights, comes from the computation of the
Bark weighting function in (27) at theLSF parameters. From
Table VII, we can see that the OWMSE weighting requires
more multiply-adds than the other weightings but it requires
no divisions and power operations. For better understanding,
the numerical values of the computational complexity for the
case of , , and , as in our Experiment 1
are found to be 17 885, 10 390, 970, 4580, and 0 multiply-adds
for the OWMSE weights, the Cohn weights, the Gardner
weights, the Paliwal weights, and the simple MSE measure,
respectively, according to the equations in Table VII, where the
computational complexities for “division,” “sine,” “cosine,”
and “power” in Table VII require about 18, 18, 20, and 48
multiply-adds estimated according to the runtime support func-
tions of the TMS320C30 DSP chip. In this case, the required
DSP MIPS for the OWMSE weights, and the four compared
schemes are 0.894, 0.520, 0.485, 0.229 and 0, respectively,
where the estimation is based on the TMS320C30 DSP chip
produced by TI (Texas Instrument, Inc.).

C. Experiment 3

The results of Experiments 1 and 2 show that the LSF quan-
tization using weights do obtain the desired effect of weighting
the spectral error toward the low frequencies. To further test
how this affects the overall speech quality in an actual speech
coding algorithm, we add weighted spectral error into LSF
quantization in a CELP coder. In this experiment, the codebooks
trained at 30, 27, and 24 bits/frame with the OWMSE weights
obtained in Experiment 1 (for the Bark weighting function)
and Experiment 2 (for the weighting function ) are used
for this testing. Three speech samples are prepared for coding;
each of them is analyzed and then reconstructed by the original
CELP coder and the modified CELP coders with weighted
spectral error incorporated into LSF quantizer obtained in
Experiment 1 and Experiment 2. The LSF quantizer used in
the original CELP coder is a nonuniform scalar quantizer using
34 bits. This experiment produces 21 reconstructed speech
signals; three for the original CELP coder, nine (3 speech
signals by 3 different bit rates) for the modified CELP coders
corresponding to the Bark weighting function in Experiment
1, and nine for the modified CELP coders corresponding to
the weighting function, , in Experiment 2. The three speech
samples and the 21 reconstructed speech signals can be found
in the web site: http://falcon3.cn.nctu.edu.tw/~ncw/shaping.
In an informal test, we find that the speech quality of the
reconstructed speech signals using the modified CELP coders

are comparable to that using the original CELP coder even at
lower bit rates such as 24 bits/frame. In other words, the results
show that the approach incorporating the weighted spectral
error in LSF quantization into a CELP coder does not produce
strange distortion, and moreover, results in lower bit rates for
equivalent speech quality, even at 24 bits/frame.

IV. CONCLUSIONS

This paper has presented an error shaping technique of LSF
vector quantization (VQ) based on the WLSD measure. It has
been shown that the VQ trained by the quadratically weighted
measure converges to a VQ trained by the WLSD measure. The
quadratic weighting matrix, the so-called “sensitivity matrix,”
is given by the second term of Taylor series expansion of the
WLSD measure and has been proven to be a nondiagonal ma-
trix. The approximate computation algorithm for calculating the
quadratic weighting matrix is provided. The optimal WMSE
weights of LSF quantization are determined by the diagonal el-
ements of the quadratic weighting matrix. The proposed error
shaping technique has been applied to make better use of the
human perceptual characteristics based on the WMSE measure.
For the balanced spectral quantization error in Experiment 1,
it has been shown that the performance of the LSF quantiza-
tion using the optimal WMSE weights is better than those using
other previously proposed weights, including Paliwal weights,
Gardner weights and Cohn weights. For the transparent spec-
tral error quantization in Experiment 2, it has been shown that
the performance of the LSF quantization using the proposed op-
timal WMSE weights is better than that using Paliwal weights.
Finally, the test of incorporating the proposed error shaping
technique into the LSF quantization (34 bits/frame originally) of
an actual CELP coder in Experiment 3 has shown that the pro-
posed scheme can result in lower bit rates (e.g., 24 bits/frame)
for equivalent speech quality.

APPENDIX A

This appendix provides the proof of Theorem 2.
Let . Then, we have

and . This
also results in .
By substituting these results in (6) and performing simple
differentiation [4], we can show that

(A.1)

where

(A.2)
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is the inverse discrete-time Fourier transform of
, since is a real function. Thus we have

, and
Using the same notations in [4], let

(A.3)

and

(A.4)

Then we have

(A.5)

Since

(A.6)

and

(A.7)

we can take inverse transforms of and , and use
the transform pairs of Eqs. (9) and (10) to obtain the following
equality

(A.8)

This completes the proof.

APPENDIX B

This appendix provides the proof of Theorem 3.
Before going to the proof of Theorem 3, some nota-

tions are defined first. Let LSF parameters be denoted by
. Since the roots of correspond

to the odd indices of LSF parameters and the roots of
correspond to the even indices of LSF parameters, can
be rewritten as

(B.1)

where

(B.2)

(B.3)

For notational clarity, we define the following equations:

(B.4)

Then we have

(B.5)

The simple differentiation of with respect to theth LSF
parameter is denoted by [4]

.

(B.6)

With the above notation definitions, we can now proceed the
proof of Theorem 3 as follows.

Proof of Theorem 3:Computing the elements of the sen-
sitivity matrix for LSF parameters by simple differentiation in
(6) directly, we obtain the following equation:

(B.7)

where “ ” is the complex conjugate operator. The proof of The-
orem 3 is completed if one nondiagonal element is proved to be
nonzero when the length of impulse response of the weighting
function used in the WLSD measure is larger than 3. Hence, we
shall prove this theorem by showing that there exists at least one
nondiagonal element in (B.7) (i.e., ) which is nonzero. In
the following, we consider the case of oddand even, i.e.,
and in (B.7) are the roots of and , respectively.

By substituting (B.6) into (B.7), we obtain

(B.8)

Let

(B.9)
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and

(B.10)

Then, using the symmetry properties ofpolynomials, the anti-
symmetry properties of polynomials and symmetry property
of , we can show

(B.11)

Equation (B.11) results in . Using the steps taken
above, a similar proof can be derived for the fact .

Now, substituting (B.6) into (B.8) again and using the above
results, we can rewrite (B.8) as shown in (B.12) at the bottom
of the page.

Let

(B.13)
and define the discrete-time Fourier pairs

(B.14)

where is the convolution of with the sequences and
for all and not equal to and , respectively.

Then define

(B.15)

where “ ” denotes the convolution operator. Since
holds and is real and causal, is real and

noncausal. Without loss of generality, assume the length of the
impulse response of is for , where

may be infinity. Then, it is easy to show that

for

for
(B.16)

where for is always nonzero since
one cannot choose a sequence such that

for all time-varying signals . Now, (B.12) becomes

for

for

(B.17)

where for is always
nonzero due to the same reason as in (B.16).

This completes the proof.

(B.12)
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