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Abstract—This paper presents an error shaping technique for
line spectrum frequency (LSF) vector quantization. The error
shaping technique based on the weighted logarithm spectral
distortion (WLSD) measure can be used for shaping the spectral
distortion distribution of quantization error into any different curve
depending on what kind of weighting function is used. However, the
high computational complexity of the WLSD measure deters this
error shaping technique from practical use. To solve this problem,
we approximate the WLSD measure by the quadratically weighted
measure or the weighted mean squared error (WMSE) measure
and propose an optimal error shaping technique of LSF vector
quantization. In this proposed error shaping technique, the optimal
WMSE weights (i.e., the optimal weights of LSF parameters) are

determined based on the theoretical analysis of the WLSD measure.

Three experiments are performed to check the performance of
the proposed error shaping technique. One experiment is set up
by incorporating human perception into the LSF quantization
and another is set up by emphasizing the human-sensitivity fre-
quency band in lower frequency bandwidth 0-3 kHz. In the third
experiment, we apply the proposed error shaping technique to the
LSF quantization of a CELP coder to test how it affects the overall
speech quality in an actual speech coding algorithm.

Index Terms—Human perception, quadratically weighted mea-
sure, sensitivity matrix, weighted logarithm spectral distortion
(WLSD), weighted mean squared error (WMSE).

. INTRODUCTION

T

guantization [3].

Most vector quantization (VQ) research focuses on mifl]
imizing the number of bits needed to represent the spee i
spectrum for achieving a low log-spectral distortion (LSD

due to the high computational complexity of the LSD mea-
sure. Therefore, simpler distortion measures are designed for
practical applications, such as the mean squared error (MSE)
measure or weighted mean squared error (WMSE) measure for
the LSF parameters.

Most LSF vector quantizers based on WMSE measure experi-
mentally determine the weights of LSF parameters to minimize
LSD [5][7]. The experimentally determined weights of LSF
parameters used in these quantizers lack any theoretical anal-
ysis. Recently, Gardner and Rao [4] have proved that a WMSE
measure of LSF parameters converges to the LSD measure in
high-bit-rate VQ systems. In [4], the optimal WMSE weights of
LSF parameters are determined based on the theoretical anal-
ysis of the LSD measure. However, one obvious drawback of
the LSD measure is that it does not utilize the frequency-depen-
dent property; i.e, all frequencies have equal weights in the LSD
measure.

Since all frequencies are weighted equally in the LSD mea-
sure, the optimal weights of LSF parameters obtained in [4] does
not take into account the perceptual property of human ear. To
make better use of this property, Paliwal and Atal achieved good
VQ performance using the WMSE measure with weights deter-
mined experimentally [5]. Cohn and Collua determined weights
experimentally such that a spectral distribution of quantization

HE LINEAR predictive coding (LPC) model for SIOeecherror was perceived to be “balanced,” i.e., the error at all fre-
signals is used in many modern speech compressi%
systems. In these systems, the LPC filter coefficients are usu |
transformed to line spectrum frequency (LSF) paramet
which give a very effective representation for the quantizati
of LPC information [1], [2]. An example is the new 2400 bp
MELP coder which uses 25 bit, multistage 10 LSF parameter

encies contribute equally on average to the perceived distor-
[7]. In summary, the weights determined in [5], [7] experi-
entally lack any theoretical analysis, and the optimal weights
tained from the theoretical analysis of the LSD measure [4]
0 not use the human perceptual characteristics.
In order to make better use of the perceptual property of
human ear, we need use the weighted LSD (WLSD) measure
instead of the unweighted LSD measure to calculate the
istortion between the unquantized speech spectrum and the
uantized one. In this way, the error distortion distribution of
antizer can be shaped into any curve depending on which

between the unquantized speech spectrum and the quant . L .
a P P d Y\ée|ght|ng function is used in the WLSD measure. If the chosen

eighting function matches human perceptual characteristics,

en the error distortion distribution of the quantizer and the
perceived distortion will match in each frequency. Neverthe-
less, the simple measures such as MSE and WMSE are still
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the guantization distortion with the WLSD measure is close fmsitive. The functiorB(w) is called weighting function, which

that of a quadratically weighted distortion measure, which is required to be symmetric, i.eB(—w) = B(w). This con-

much lower in computational complexity. We also obtain thstraint for the weighting function is reasonable since the inter-

optimal weights for LSF parameter quantization from the thested frequency range is always[in =|.

oretical analysis of the WLSD measure, since simple measuréelhe frequency-dependent weighting functiw) can be

such as WMSE may be desirable for practical applications. ised for determining frequency-dependent error shape in fre-

our experiments, we will show that quantizers using theoretiuency domain and thus, it can be assigned freely for different

cally derived weights outperform quantizers using heuristicalpurposes. The error shaping technique with the WLSD measure

derived weights. for a given weighting function can be applied to any LSF quan-
This paper is organized as follows. Section Il introduces thizer which uses frequency-dependent error distortion measure.

error shaping technique using the WLSD measure, and then @ae WLSD measure is generalized from [11] in which the per-

rives approximate solutions to the WLSD measure for the LSfeptual-based distortion measure is used.

VQ schemes that use a quadratic distortion measure or a WMSE

distortion measure for training and quantizing. In Section 11B- Theoretical Analysis

two experimental LSF VQ results, and experimental testing re-Although the WLSD measure makes better use of the per-

sults of applying the proposed technique to the LSF quantizatiesptual property of human ear, it is difficult to use in a LSF

of a CELP coder are presented. Finally, conclusions are dragifantizer directly due to the high computational complexity of

in Section IV. the WLSD measure. Hence, simpler distortion measures that ap-
proximate the WLSD measure are desired, such as the quadratic
Il. THEORETICAL ANALYSIS OF ERROR SHAPING distortion measure and WMSE measure.

In Sections 1I-B1 and II-B2, we shall derive the approxima-

based on the WLSD measure. Then, the optimal weights udi@jt Solutions of the WLSD measure for the LSF VQ schemes
in the quadratic and WMSE distortion measures are derivtt Use @ quadratic distortion measure and a WMSE distortion
in Section I1-B. An algorithm of computing the weights usedneasure for tra|r_1|ng _and qua_ntlzatlon, respectively. After de-
the quadratic and WMSE distortion measures is given in Sd&ing the approximation solutions of the WLSD measure, the

In this section, we first introduce an error shaping technique

tion 11-C. theoretical analysis on high-rate VQ using WLSD measure is
verified in Section 11-B3.
A. Error Shaping Technique 1) Replacement of the WLSD Measure by the Quadratic Dis-

tortion Measure: In this section, we shall study the replacement
ofthe WLSD measure by a quadratic distortion measure for com-
putational simplicity. We firstintroduce atheoremin [4] showing
2 a1 [T ) Cp 2 that any continuously differentiable distortion function which
D*(a, a) = —/ [1010g19(P(w)) = 10log,o(P(w))"dw o b e properties can be approximated by a quadratic
. (1) distortionfunctionto any desired degree for shortdistances.
wherew is the radian frequency, anfl(w) and P(w) are the  Theorem 1: Let x be ann-dimensional vector and assume
linear prediction power spectra before and after qua”tizatiQHatavectorquantizer magd0 an output vectag, andd(x, k)

The LSD measurd), being a common measure of LPC per
formance is defined as follows [8]:

respectively, is a continuously differentiable distortion function having the
v —2 following properties:
Plw)y=11- Z ape Ik * d(x, x) > 0 with equality holding only ifx = %;
k=1 * d(x, x) having continuous partial derivatives of third
N -2 order almost everywhere;
Plw)= 11— Z e Iwk @) « second-order derivatives ofd(x, ), (9%d(x, X))/
| (Ox;0zy), for all j, k, being positive definite almost
everywhere.

wherev is the order of LPC filter and is constrained to be eve

a=[a, az, -+ -, a,]F anda = [ay, ao, - - -, 4,]* arethelinear

prediction coefficients corresponding to the unquantized afl

quantized LSF parameters, respectively. This measure does nffi, %) = 1(x—%)" D(x)(x—%) for small distances (4)

account for human perceptual characteristics, sinceitgives ecwlﬁ

weighttothe error regardless of where it occursin frequency.
To consider frequency-dependent error, the weighted L

Iq"hen, thisd(x, x) measure can be approximated exactly by a
Hadratic distortion measure, i.e.,

IereD(x) is ann by n dimensional matrix with itgj, k)th
5eﬂ)ement defined by

WLSD) measure is defined as follows: 9%d(x, %
(WL-SD) D, 4 = 21D ©)
1 0 x] xk *=x
D3%(a, a) = B*(w)
BV T 9rB,y ) andisdenoted asthe “sensitivity matrix,” sinceits elements repre-

. [101lo. (P —10log. (P 2 3 sentthe relative sensitivity of quantizing the various parameters.
[10log;o(P(w)) og1o(P(w))]"dw  (3) Proof: See [9].

whereB, is a normalization factor making (w)/ By to be unity In general, the sensitivity matrix used in the quadratic dis-

root mean square (RMS). The valuesifw) are all real and tortion measure in (4) is not diagonal. The guadratic distortion
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measure provides a simple method to computing the centroid of Proof: See Appendix A.
a quadratic measure, whereas it may be impossible to efficientlyFrom the results in Theorem 2, the sensitivity matrix for LPC
compute the centroid of the “true” distortion measure (such parameters can be written as
the LSD or WLSD measure). Thus this allows the quantizer to
be built using the generalized Lloyd or LBG algorithms [12]. D(a) = 4aR 4 (11)
It is readily apparent that Theorem 1 holds for the WLSD
measure in (3) only if the weighting functidB(w) has contin- whereR 4., is defined as
uous third-order derivatives, since the WLSD measure satisfies

the properties required ki(x, %) in Theorem 1. Hence, we can Ram(L, 1) - Ram(1,v)
use the quadratic distortion measure in the right hand side of (4) Ram = : : . (12)
to replace the WLSD measure in designing an LSF quantizer. To Ram(v,1) -+ Rum(v, v)

design an LSF quantizer based on the quadratic distortion mea-
sure, we need to determine the sensitivity matrix in (4). ThiBhe matrixD 4(a) has two properties listed in the following:

issue is what we focus on in the rest of this subsection. a) D4 (a)is asymmetric matrix sincgn] andb, [n] are sym-
For analysis convenience, we rewrite (3) as follows: metric signals. The proof is given by the following equal-
WLSD(a, & ities:
= 27 B (AP - (AP, )
- © = X bt al4oli-) - a)
T I S B SRR

To derive the sensitivity matrix for LSF parameters based on
(6), we first find out the sensitivity matrix for LPC parameters Z be[n]reli +i —n] + Z be[—n]r[(4 — i) — n]
based on (6) and then apply Jacobian matrix of transformation =" ne—oo
which transforms LSF parameters to LPC parameters to it to = R,,,.(j, 4). (13)
obtain the sensitivity matrix for LSF parameters.
a) Sensitivity Matrix for LPC ParametersThe following b) D(a) is positive-definite almost everywhere from The-
theorem gives the exact form of the sensitivity matrix for LPC orem 1.

parameters. Property a) is useful for saving the computation time in the
Theorem 2: Let :[n] andb;[n] denote the |mpulse responsegalculation ofD 4(a).
of the discrete-time filterd/A(w) and B;(w) = B2( )in (6), b) Sensitivity Matrix for LSF Parametersin order to de-

respectively. Notice thak[n] is a causal signal anbl[»] is a fine LSF parameters, the inverse filtel ), is used to construct
symmetric and noncausal signal. Then, the elements of the s&ww polynomials:
sitivity matrix for LPC parameters are
P(z) =A(z) + 2 DAz (14)
O*WLSD(a, &)

= , and
a0, daR am(k, 1) @)

= Qz) = Az) - =D A, (15)

where
The roots of these polynomials are usually called LSF parame-

> ters. Some important properties of LSF parameters are detailed

Ram(l, D)= 3 balnllrelE+D=nl4((k=D)=n) @) i (3] (3]

e Denote the transformation for LPC vectatto the LSF pa-
wherer[n] is the traditional autocorrelation function of the imfameters setw = [wy, ws, ---, w,]" by the functionw(a)
pulse responsg[n], i.e., and the reverse transformatlon hyw). Then, the element of

the sensitivity matrixD,,(w) for the LSF parameters is given
=Y Alm]h[m + n] ©)
m=0 OWLSD(a(w), a(w)) ‘
andr.[n] is the convolution oh[—n] with h[—n], i.e., aw"aw’ W=w
Z Z aam aan( )
%) %) - awk l
n| = hl—=m]h[—(n —m)] = h[—=m]h[m — n] m=1n=1
go rgz:() I?’WLSD(a(w), é)
0 a&nla&n w=w, a=a(w)

=3 hl-mlhfm—n], n<o. (10)

m=n

= (JL(w)Da(@)d (W), , (16)
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whereD 4(a) is givenin (11), and.,(w) is the Jacobian matrix the property shown in Theorem 4. In other words, the weights
of the transforma(w), which has itgj, k£)th element defined that make the WMSE measure approximate the WLSD measure

by optimally are the diagonal elements of the sensitivity matrix for

LSF parametersD,,(w) in (18). Notice that if the quadratic

(Jo(W))j ke = a“ﬂ'(w)_ (17) or WMSE distortion measur®,, is used for designing a LSF

dwy, guantizer, then the factar in the sensitivity matrix [see (11)]

By substituting the result in (11) into (16), we can rewrite th§2n b€ neglected, i.e., usidg,, = aDy, in training and quan-

sensitivity matrix of LSF parameters in (16) as tization would produce identical results. _
3) Verification of the Theoretical Analysis on High-Rate VQ
Dy(w) = I (w)Roam ()T o (W). (18) Using WLSD MeasureThe theoretical approximatioti,, for

the performance ohigh-rate VQ schemes that use quadratic
2) Approximation of the WLSD Measure by the WMSE Me#gistortion measures for training and quantizing as described in
sure: In some applications, computing the full quadratic distTheorem 1 has been derived in [4]. In addition, based on LSD
tortion measure for each vector in a codebook during quantiZ@€asure, an experiment was set up in [4] for comparing the re-
tion may still be too complex, and the use of relatively simplult of the theoretical approximation to that of high-rate VQ
WMSE distortion measure may be desirable. The WMSE ditfained and quantized using quadratic distortion measure. The
tortion measure is a special case of quadratic distortion meastigning database of 160 000 frames of speech and the database

with a diagonal matrix, which is defined as of about 20000 frames of speech were used for training and
testing, respectively. The 10-dimensional vectors of LSF param-

dwnse(X, X) eters and the LSF sensitivity matrix with respect to the LSD
w1 (X) 0 measure for each frame in the training and testing databases
ws(x) were computed. The reason for using LSF parameters as the

=x-%)7 ) (x —%) input vector of the vector quantizer is that the LSF sensitivity

- matrix with respect to LSD measure is diagonal, which results

0 wy(X) in simpler computation. In other words, the quadratic distortion

= "2 measure is equivalent to the WMSE distortion measure for a

= 2wi(x)($i — ) (19) vector quantizer using the LSF sensitivity matrix with respect

to the LSD measure to quantize LSF parameters. In [4], the
wherex andx are column vectors of the original and quantizetheoretical performance of the high-rate VQ was computed by
LSF parameters, and;(x) is theith weight corresponding to first estimating the density function of the set of LSF vectors
thesth element of the original vectar;. It is obvious that the using the 160 000 training frames, and then calculating its theo-
quadratic distortion measure in (4) is equivalent to the WMSIEtical approximatiort’g, with the density function in a numer-
measure when the sensitivity matrix in (4) is diagonal. ical method. The experimental results in [4] have shown that the
An important result showing that at high-bit rate, a WMSHtheoretical approximationg,) approaches to the performance
measure in LSF quantization is equivalent to the LSD meask&SD) of the high-rate VQ trained and quantized using the di-
[4]. However, this does not hold when the WLSD measure i@gonal LSF sensitivity matrix.
stead of the LSD measure is concerned. The following theoremSince the measure in our paper is based on the WLSD mea-
shows this point. sure rather than the LSD measure, the comparisons between the
Theorem 3: The optimal sensitivity matrix for LSF param-theoretical approximationg,) and the experimental result of
eters is nondiagonal if the length of impulse response of tHee high-rate VQ using thepndiagona) LSF sensitivity matrix
weighting functionb, [n] used in the WLSD measure is largewith respect to the WLSD measure obtained in Section [1-B2
than three. should be made for further verifying our work. The compar-
Proof: See Appendix B. isons can be made by the same experiment set up described in
From Theorem 3, we understand that the quadratical§] with the same training and testing databases except that the
weighted distortion measure in a LSF quantizer cannot reddegD measure is replaced by the WLSD measure. Thus, similar
to the WMSE measure, since the sensitivity matrix in thegsults to those presented in [4] can be obtained since the WLSD
former is not a diagonal matrix as required in the latter. Hend&@easure can be viewed as the warped LSD measure according
from Theorem 3, there exists no WMSE measure that cihthe following manipulation. By defining
be equivalent to the WLSD measure. However, the following )
theorem from [4] helps to find the optimal WMSE measure that C*(w) = B*(w) (20)
is closest to the WLSD measure. By
Theorem 4: The optimal weights in the WMSE measure are

the diagonal elements of the sensitivity matrix using a contintls €@" obtain

qusly differentiable distortion measure having the same Propers;t oy — D2
ties in Theorem 1. 1 -
Proof: See [4]. _ _ _ _ _ =55 / B?(w)[101log;o( P(w))
Since the WLSD measure is a continuously differentiable dis- TE0 J—n

tortion measure and satisfies the properties in Theorem 1, it has — 10log;o(P(w))]? dw
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1 [" w i i i i -
_ / [10 log, o (PE) (w)) L sinceA(z/v)isan autoregressive model. Under this assump
2 J_« tion, the autocorrelation sequenBg[k] can be computed as
—10 10g10(Pc(w)(w))]2 dw L—k
1 B - = - -
— 5 [ 10100 (B(w) — 10105, (E(w) du Belt] = D alnlfeln + 1) (22)

= warped LSD 21)  This assumption is not very accurate and may cause some error

R R in computing the autocorrelation sequer¢dk]. Of course, if
where E(w) = P (w) and E(w) = P““)(w) are the the fixed bandwidth expansion is not uséi[k] can be directly
warped power spectra. From (21), we find that the powghd accurately obtained from the speech signal.
spectrumP(w) in WLSD can be mapped into the warped The second problem caused by infinity impulse response of
power spectrunt(w) in the warped LSD. After transforming j, [] can also be fixed by selecting finite impulse response se-
the WLSD measure into the warped LSD measure in (21), W@ence to avoid the convolution of infinite sequeigi] and
can obtain the LSF sensitivity matrix with respect to the warped[,] in (8). If we only have the weighting functioB, (w) in
LSD measure by the method described in [4]. According e frequency domain, thén(n) can be obtained by taking the
the proof in [4], such a LSF sensitivity matrix is diagonalinverse discrete Fourier transform (IDFT) Bf (w). If by[n] is
Since the warped LSD measure in (21) and the original LSfuncated td, [n] for selecting finite impulse response with fre-
measure used in [4] are in the exactly same form, and bajhiency responsB, (w), thenb,[n] must be a positive definite
of their respective LSF sensitivity matrices are diagonal, tRggnal to guarantee that the resulting quadratic weighting matrix
result of experimental justification for the theoretical analysis positive definite. Here, we provide two simple methods to ob-
on the performance of high-rate VQ in [4] can be applied t@in positive-definité, [] by using the common windows, [1]
the WLSD case directly. We can thus verify that the theoreticig) the design of FIR filters such as the rectangular window, Han-
approximation Eq, is very close to the experimental result ohing window and Hamming window, etc., except that we put the
the high-rate VQ using the LSF sensitivity matrix with respe@enter of the window at time index 0. One method to obtain the
to the WLSD measure obtained in Section II-B2. In othejositive-definite, ] is by applying a positive definite window,
words, the quadratic distortion measure of LSF parametgfénerated from the autocorrelationuafn], tob, [n]. If the trun-
converges to the WLSD measure in a high-rate VQ systegatedb,[n] is designed by this method, the weighting function
Furthermore, according to Theorem 4, when the WMSE megsed in the WLSD measure becomes
sure of LSF parameters is used, the WMSE measure using the o
diagonal elements of the LSF sensitivity matrix with respect B (w) = By(w) @ W2(w),

to the WLSD measure in Section II-B2 is close to the WLSD
measure optimally in the high-rate VQ system. where W,(w) denotes the frequency responseugfn]. The
other method is firstly to compute the impulse response of

B(») = B,(»)/B(»1), denoted a8[n], by the spectral factor-
ization procedure, where we assume(w) can be spectrally

In order to compute the sensitivity matrix for LSF paramemctorized. Then, by applying the window,[n] to b[n] for
ters given by (18), we need to determine firstly the sensitivigomputing the finite impulse resporie], the positive-definite
matrix for LPC parametersk.4,,, and the Jacobian matrix ofy ] can be obtained by calculating the autocorrelation of
the transformation from LSF parameters to LPC parametefs,]. in the second method, the weighting function used in the
J.(w). The efficient computation algorithm Jf,(w) can be \WLSD measure is given by
found in [4]. Thus, what remains is the computatiorfuf,,,.

Two problems exist in computin® ,1,,,; impulse response B,(w) = |B(w) @ Wy(w)]?.
hln] of the LPC filter1/A(x) is not a finite sequence, ahd[n|

may be an infinity sequence. The first problem results in thg'e truncated signal,[n] obtained by these two methods is
difficulty that the autocorrelation function df[n] cannot be @ Positive-definite signal, since its Fourier transfafig(w) is

computed, sincé[n] is an infinity sequence. This problem carPOSitive [10]. Hence, the quadratic weighting matrix obtained
be solved by using the relation between the autocorrelation @M Theorem 1 by applyind3,(w) to the WLSD measure is
quence 4[k]) of the windowed frame of input speech andoSitive-definite almost everywhere. o

the autocorrelation sequendg,(k]) of h[n] as derived in [14]. “With the above two problems being fixed, the sensitivity ma-
However, in most cases, in order to avoid sharp spectral pedi§ for LPC parametersR 4, can be computed as follows.

in LPC spectrum which may result in unnatural synthesize%”ce the bandwidth expansion WI||.be usgd in our experiments,
speech, a fixed bandwidth expansion is applied to each pole"¥§f 2ssume that[n] used for computing[»] in (9) is zero after
LPC coefficients, by replacing; by a;+ for1 < i < vando < 2 large time index.. In addition, assuming thdt [r] is zero

~ < 1. This results in the fact that the autocorrelation sequen@tSide the range- V. < » < N, we can then rewrite Egs. (9)
(R,[k]) of the impulse responsé.{[n]) of the bandwidth-ex- and (10) as

C. Computational Implementation

panded LPC 4(z/+)) cannot be directly obtained from the L—k
autocorrelation sequencé 4 [k]) of the speech signal. Hence, rlk] =r[-k] = Z h[n]h[n + K],
for simply computing the autocorrelation sequet;gk] from n=0

h.[n], we assume thdt.[n] is zero after some large time index k=0,1,2,---, N+v—1 (23)
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and TABLE |
0 BIT ALLOCATION OF EACH STAGE OF 4-STAGE VQ FOR VARIOUS BIT
. _ RATES IN THE EXPERIMENTS
re[k] = h[=n]h[n — K],
n=k Bit rates | Stage 1 (bits) | Stage 2 (bits) | Stage 3 (bits) | Stage 4 (bits)
k=0,—-1,---,—N+1. (24) 24 bits 6 6 6 6
27 bits 7 7 7 6
30 bits 8 8 7 7

Using (8), the elements @& 4,,, can be easily computed by the

following equation:
is performed every 20 ms using a 25 ms-length analysis Ham-

N ming window. Moreover, a fixed 15 Hz bandwidth expansion
Ram(k, 1) = D bofnlr((k = 1) = n] is applied to each pole of the LPC vector, by replacingy
n=-N a7yt for 1 < 4 < 10, wherey = 0.994. The LPC parame-
N ters with bandwidth expansion of each frame are transformed to
- Z bs[nfrel(k +1) =n], 1<k, I<v. | SFparameters by using Chebyshev polynomials [13]. Notice
n=k+l that the spectra corresponding to silence are excluded. Finally,

(25)  we have 95 753 LSF vectors for training in the training database
Finally, the sensitivity matrix for LSF parameteiBl,(w), and 60 366 LSF vectors for testing in the testing database.

based on the WLSD measure can be determined by (18) andslnce computing the fully qu_adratlc distortion measure for

. . : each vector in a codebook during the LSF quantization is too

the optimal WMSE weights, named OWMSE weights, are the : : : . .

. o complex, the simple WMSE distortion measure is used in our
diagonal elements of the sensitivity matiix, (w).

The computational complexity for calculating the OWMSéexpenments. The codebooks are trained according to a multi-

. ; Stage VQ structure by using the joint optimization procedure
weights are evalgated as foIIlows. The |mpu!se respbhs]efo_r with four stages and search depth/df = 8 as described in
0 < n < L, requiresyL multiply-adds (multiply-add meaning

= . -, .~ [6]. The iterations before the error converges require about 100
a multiplication operation followed by an addition operation . . : .

ime steps. The bit allocation of each stage for various bit rates
wherewv denotes the order of LPC modédl,denotes the max-

imum time index of impulse respon&n]. Equations (23) and 's shown in Table I.
(24) requirg(L + 1) — (N + v —1)/2](N +v) multiply-adds - o Experiment 1

andN(N + 1)/2 multiply-adds, respectively, wher€ denotes . . . o .
the length ob, [n] for n > 0. The first term and the second term Since balanced spectral error is desirable, in this experiment,

in the left-hand side of (25) requi@N + 1)v multiply-adds we incorporate aU(_jitor_y percep'tion into the LSF quantization by
and(V — v)(2v — 1) multiply-adds, respectively. The approact/Sind the Bark weighting function [7]

for computing the Jacobian matrd, (w) in [4] requires about 1

20v multiply-adds and sine (sine function) and cosine (co- p(w) = r 2\ 0-69 (27)
sine function) of LSF parameters. However, the cosine function 25 4+ 75 <1 +1.4 < W ) )

of the LSF parameters is typically computed by the root-search 20007

procedu_re in finding LSF parameters. Fin_ally, the c%mpl;tati%ere F, is the sampling frequency of 8 kHz. Using the
forthe diagonalterms dD,, (w) in (18) requires ahoufy v ) weighting functionW (w) and the results of previous section,
multiply-adds. Hence, the total computation complexity is the OWMSE weights are obtained. Here, a 256-point IDFT is

N+4v—1 applied onWp(w) to obtain the time sequendd’[n] with
Cowwmse = {UL + [(L +1) - T} (N +v) time indices from—127 to +128. Then, the impulse response
N(N+1) W [n] of the weighting function can be approximately obtained
+—— 4+ 2N+ 1w from W, [n] by settingW, [n] to zero ifn is larger than 20 or
2 less than-20, because the ratios &, [n] to W3 [0] for n > 20
+ (N —v)(2v — 1) + 20v 4+ v* +v2} orn < —20 are too small. Hence, the order of the impulse
) ) responsé¥,[n] of the weighting functiod¥ z(w) used in this
multiply-adds+v sine (26) experiment is 40.

To compare the performance of the obtained OWMSE
weights with that of the weights previously proposed by others,
the LSF vector quantizers are also trained by using three other

The speech database used in our experiments consists of Gats of weights. In [4], the optimal weights based on the LSD
nese sentences recorded from 26 speakers including 16 merasure for LSF quantization were derived, named Gardner
and ten women. The database is divided into two parts. Oweights. In [7], a set of weights in which the weight for tile
is named training database including 17 speakers (ten men && component is the product of the Gardner weight, and
seven women) and the other is named testing database includiig(w;) in (27) were suggested, named Cohn weights. In [5], a
nine speakers (six men and three women) independent of theseof weights were given subjectively based on the linear pre-
used in the training database. Speech signals are low-passdiittion power spectral(w; ), in (2) asw; (w) = ¢;[P(w;)%*?],
tered at 4 kHz and digitized at a sampling rate of 8 kHz. &wherec; = 1forl < ¢ < 8, ¢y = 0.8%, ¢;0 = 0.42, named
tenth-order LPC analysis based on Levinson—Durbin algorithaliwal weights.

Ill. EXPERIMENTAL RESULTS
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Fig. 1. Spectral error distributions for 24-bit LSF multistage vector quantizefsg. 3.  Spectral error distributions for 30-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 1, where solid lingsing four different sets of weights in Experiment 1, where solid line
corresponds to OWMSE weights, dotted line to Cohn weights, dashed linecresponds to OWMSE weights, dotted line to Cohn weights, dashed line to
Paliwal weights, dashdot line to Gardner weights, a#d line corresponds to Paliwal weights, dashdot line to Gardner weights, and “+” line corresponds to
the inverse of the Bark weighting function multiplied #3887 95 x 102, the inverse of the Bark weighting function multiplied By)82 56 x 102,

, Bit Rate : 27 bits/frame 3.08256 x 102 are also plotted in Figs. 1-3, respectively.
' ' ' ' ‘ ' ‘ The constant gains af.38795 x 1073, 3.76092 x 10~ and
3.08256 x 10~ are obtained by minimizing the mean square
error between the spectral error distribution curve for the
OWMSE weights and the inverse of the Bark weighting curve.
From Figs. 1-3, it is obvious that the spectral error distribution

25

5"} i curve for the OWMSE weights is closer to the spectral error
5 distribution of the inverse of the Bark weighting curve than
Ei5 those for the Paliwal weights and Gardner weights. Although
-3 the OWMSE weights and Cohn weights have similar spectral
% } error distribution curves in the figures, the OWMSE weights

still outperform the Cohn weights as will be shown in the

following tests.

O5F ™ i For further analyzing the experimental data and comparing
the performance of the OWMSE weights with that of other

. s . - . . . weights, two performance measures are used. One is the

Oz Y %000 300 40 average WLSD in decibels for measuring the quantization

performance. The average WLSD is defined by (28), shown at

Fig.2. Spectral error distributions for 27-bit LSF multistage vector quantizetBe bottom of the next page, where

using four different sets of weights in Experiment 1, where solid line Wgo = 2.603 x 10—% normalization factor oWB(w),
corresponds to OWMSE weights, dotted line to Cohn weights, dashed line to

Paliwal weights, dashdot line to Gardner weights, a#d line corresponds to S (w) andS‘ (w) power spectra of thesth speech
the inverse of the Bark weighting function multiplied By760 92 x 10-3. " " frame without and with quantiza-

tion, respectively;

In order to observe the spectral error distribution, the RMS
distortion is calculated by evaluating the original and quantized*"/
spectra given by (2) for 256 discrete frequencies, converting
the distortion to dB at each frequency, and then taking the RM$e other measure is the error balanced degree, which is defined
value of the distortion at each frequency over all measurgd
spectra. The experimentally obtained spectral error distribu-
tions at different bit rates are shown in Figs. 1-3. In order to . T 5
contrast the shapes of the spectral error distribution curves in EBD = min /0 (@(w) — kar(w))” dw (29)

Figs. 1-3 with the shape of the inverse of the Bark weighting
curve in (27), three curves of the inverse of the Bark weightingherez(w) andx(w) represent the spectral error distribution
functions multiplied byt.38795 x 103, 3.76092 x 10~2 and curve and the inverse of the Bark weighting function, respec-

total count of frames in the testing
database.
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tively, andx is a gain factor. The spectral error distribution curve
Z(w) in (29) is defined as

TABLE 1l

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 2, FEBRUARY 2001

(WSD) VALUES OF THELSF MULTISTAGE VECTOR QUANTIZERS USING
OWMSE WEIGHTS, COHN WEIGHTS, PALIWAL WEIGHTS AND GARDNER
WEIGHTS AT THREE DIFFERENTBIT RATES IN EXPERIMENT 1

N
N WSD in dB
3 _ 2
§ :[P Z(w) ‘Pl(w)] Bit rates | OWMSE weights | Cohn weights | Paliwal weights | Gardner weights
— i=1 24 1.048 1.070 1.231 1.372
T(w) = (30) 37 0378 0.890 1.037 1151
30 0.717 0.751 0.889 0.962

whereP;(w) andP;(w) represent théth original power spectra
and theith quantized spectra in decibels, respectively, &hd weights are smaller than those for the other three sets of weights
is the number of frames. The concept for defining (29) comes the same bit rate. This shows the OWMSE weights obtained
from the minimization of error by simultaneously optimizingoy our scheme outperform the compared counterparts. More
the gain and shape of one curve or vector, such as the trainprgcisely, the quantization error distortion distribution for the
of gain-shape codebooks in [15]. The gain factoin (29) is OWMSE weights is more balanced than that for other three sets
to shift the inverse of the Bark weighting function to obtain thef weights. Figs. 1-3 also reflect this phenomenon.
minimum EBD value, while keeping the original envelop shape It is interesting to check how much performance is lost by
of the inverse of the Bark weighting function unchanged. Henae WMSE approximation since the error distortion measure
the EBD measure is a good indicator for evaluating the error balith the spectral weighting functio3(w), no longer results
anced degree between the spectral error distribution curve &ma@ diagonal sensitivity matrix for LSF parameters according
the inverse of the Bark weighting function. In our experiment,t@ Theorem 3. An experiment to check this was conducted for
discrete type of (29) is used, the bit rates shown in Table I. In this experiment, the code-
books are also trained using the full quadratic distortion mea-
sure according to the multistage VQ structure with the same
optimization procedure, stages and search depth as described
in the above experiment. The weighting function used for com-
wherew , ws, -- -, wy are the set of discrete frequencies. Thputing the LSF sensitivity matrix in this experiment is also the
optimal (minimum error) gain value,,; can be obtained as Bark weighting function as defined in (27). The average WLSD,
follows by setting to zero the differentiation of (31) with respectVSD, defined in (28) is used to observe the performance of VQs
to r, trained and quantized using the full quadratic distortion measure
and the WMSE distortion measure. In the experiment, the values

EBD = mlnz — rx(w;))? (31)

! _ of WSD for VQs using the full quadratic distortion measure at
Zw(wi)x(w ) 30, 27, and 24 bits/frame are 0.708 dB, 0.871 dB and 1.044 dB,
Kopt = ”:OI—. (32) respectively. Since the difference at each bit rate between the

value of WSD for VQ using the full quadratic distortion mea-
sure and that, listed in Table Il, for VQ using the WMSE distor-
tion measure is small, we can see that the performance lost by
the WMSE approximation is not significant. This experimental
) result also shows that the nondiagonal terms in the sensitive ma-
trix for LSF parameters using Bark weighting function at 30,
] 27, and 24 bits/frame maybe neglected, if the computation com-
EBD = =2 = =0 (33) plexity is the major concern. It is worth pointing out that given
ZxQ(w‘) the.multistage nature of the VQ sc.heme,.the full quadratic dis-
— ! tortion measure can be used only in the final stage of the quan-
tizer. This can decrease the computation required while still pro-
for computing EBD values. In our experimettjs set as 128 vide theoptimalweighting in the final stage, where the high-rate
since 256-point discrete frequencies are used for computing #proximations are most likely to be valid and valuable. Obvi-
spectral error. ously, the performance (i.e., the average WLSD values) of this
The values oWSD andEBD are calculated at different bit scheme will lie between those of the two extreme cases, one for
rates as listed in Tables Il and lll, respectively. These tabldsee WMSE distortion measure in each stage, the other for the
indicate that the values aVSD and EBD for our OWMSE full quadratic distortion measure in each stage.

WSD = —

> @ (wi)
=0

Thus, by substituting (32) into (31), we can obtain

I I I
> w2 (wi)y 7 (wi) — [Zx(wi)f(w

/ W (1)[101og10( S (1) — 10 log o S (w))]2 duw

(28)



NEIN AND LIN: INCORPORATING ERROR SHAPING TECHNIQUE INTO LSF VECTOR QUANTIZATION 81

1.6 T T T T T T

TABLE Il
AT T (EBD) VALUES OF THELSF MULTISTAGE VECTOR QUANTIZERS USING
N N OWMSE WEIGHTS, COHN WEIGHTS, PALIWAL WEIGHTS AND GARDNER
145 AN A 1 WEIGHTS AT THREE DIFFERENTBIT RATES IN EXPERIMENT 1
v \
N Lo EBD
o 1:2f Y E ‘\ E Bit rates | OWMSE weights | Cohn weights | Paliwal weights | Gardner weights
g \ : 24 8.626 10.779 33127 60.549
§ \\ ' 27 5.645 6.729 23.082 42.866
z 1 \ L 30 3.600 4660 16.917 30.271
§ \\ \
g Voo
Lo L TABLE IV
I;- (WSD) VALUES OF THELSF MULTISTAGE VECTORUSING PALIWAL WEIGHTS
R AND OWMSE WEIGHTS WITH WEIGHTING FUNCTIONS Ry 1 (w), hiz2(w),
0.6F S hyz(w), AT THREE DIFFERENTBIT RATES IN EXPERIMENT 2
WSD in dB
04 \ ) ) ) ) . . Weighting function hi(w) hio(w) his{w) ]
[} 500 1000 1500 2000 2500 3000 3500 4000 Bit rates OWMSE | Paliwal | OWMSE | Paliwal | OWMSE | Paliwal
Frequency (Hz) 24 1472 | 1525 | 1.617 | 1.630 | 1.676 | 1.692
27 1.241 1.283 1.355 1.373 1.382 1.427
Fig. 4. Frequency responses of the three weighting functions used 30 1031 | 1100 | 1.142 | 1180 | 1167 | 1228
Experiment 2, where dashed line corresponds to the weighting funitign
dotted line to the weighting functiol ., dashdot line to the weighting function
hus. TABLE V

EBD VALUES OF THELSF MULTISTAGE VECTORQUANTIZERS USING PALIWAL
WEIGHTS AND OWMSE WEIGHTS WITH WEIGHTING FUNCTIONS hyq (w),

Based on the above experimental results and to avoid the com- 7¢2(%). s (), AT THREE DIFFERENTBIT RATES IN EXPERIMENT 2
putation complexity with full quadratic distortion measure for

EBD
each input vector of quantizers during a codebook search procheiggﬁfgaft‘zmon OWM’Slg(w;al_ S OWMgtE?(wl)D — OWMgg(w; —
. . . . . . 10 T 1Wi allwa, aliwal
durein LSF quantization, the Slmple WMSE distortion measure 54 43.329 | 58.036 | 53.574 | 56.273 | 69.901 | 70.051
is used in all the other experiments in the rest of this section. It 27 29.198 | 40.756 | 36.895 | 39.369 | 48.218 | 40.496
19.836 29.960 25.636 29.213 34.566 37.015

can be expected that better performance can be obtained if the
full quadratic distortion measure is used, instead.
bit rates, the results of LSF quantization using Paliwal weights
at the same bit rates are also obtained for comparisons. The
definition of Paliwal weights has been given in Experiment 1.
Paliwal and Atal in [5] observed that the transparent quantiza-Similar to Tables Il and 11l in Experiment 1, Tables IV and
tion of LPC information can be obtained if the following three/ show that the performance comparisons between the vector
conditions are met: 1) the average spectral distortion (SD)daantizer using the Paliwal weights and the vector quantizer
about 1 dB; 2) there is no outlier frame having SD larger thanusing the OWMSE weights with different weighting functions
dB, and 3) the number of outlier frames having SD in the ran@e, (w), k2 (w), his(w), where the error indeWLSD and EBD
of 2-4 dB is less than 2%. Here, SD is the sam®atefined in  are defined in Eqgs. (28) and (29), respectively, except that the
(1) except that the integration range is in 0-3 kHz. According term W (w) in (28) is replaced by one df;; (w), hi2(w), and
the above conditions, since only the lower 3/4 of the frequengy;(w) here. From Tables IV and V, we can see that the perfor-
range is used for computing the spectral distortion error, we carance of the vector quantizers using the OWMSE weights with
design a weighting function which has larger function values aither of the three weighting functions is better than the vector
the lower 3/4 of the frequency range, and much smaller functigoantizer using the Paliwal weights. In addition, to observe
values at higher frequency range to reduce the quantization $iie spectral error distributions at different bit rates, we show
Three weighting functions used in this experiment are showiime spectral error distribution curves in Figs. 5-7. In Figs. 5-7,
in Fig. 4. All of the three weighting functions have largemwe observe that the OWMSE weights can be efficiently used
values at lower frequencies than those at higher frequencifes,shaping the quantization spectral error distribution into any
and are designed as FIR filters for easily computing thdesired frequency-dependent curve depending on the selected
OWMSE weights as mentioned in Section II-C. According taveighting functions at different bit rates. Finally, to check
the different bandwidths of the three weighting functions, wiae performance in the sense tansparent quantizatiorof
denote the weighting function with the narrowest bandwidth & C information, we list the average SD values of the vector
hi1(w), the one with the widest bandwidth ag(w), and the quantizers using the Paliwal weights or the OWMSE weights
other ash;2(w). The orders of the three weighting functionswith different weighting functions in Table VI. Table VI shows
hi(w), hp(w) and hyg(w), are 20, 20, and 40, respectivelythat the performance of LSF quantization using the OWMSE
The OWMSE weights corresponding to the three weightingeights is better than that using the Paliwal weights even at
functions, h; (w), hie(w) and hiz(w), obtained from the pro- lower bit rate, 24 bits/frame. This conclusion comes from the
cedure in Section 1I-C are denoted by weights,h;» weights, observation on Table VI that the average SD values using the
and ;3 weights, respectively. In order to test the performand@WMSE weights are smaller than those using the Paliwal
of LSF quantization using these OWMSE weights at differemteights, and the outliers within 2—-4 dB and above 4 dB using

B. Experiment 2
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Bit Rate : 24 bits/frame Bit Rate : 30 bits/frame
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Fig. 5. Spectral error distributions for 24-bit LSF multistage vector quantizefsg. 7.  Spectral error distributions for 30-bit LSF multistage vector quantizers
using four different sets of weights in Experiment 2, where solid linesing four different sets of weights in Experiment 2, where solid line
corresponds to Paliwal weights, dashed liné tp weights, dotted line td;,  corresponds to Paliwal weights, dashed liné tp weights, dotted line té,-

weights, dashdot line th;; weights. weights, dashdot line th;5 weights.
o5 Bit Rate : 27 bits/frame TABLE VI
' ' ' ' ' ' ' ' SD VALUES OF THELSF MULTISTAGE VECTORQUANTIZERS USING PALIWAL
WEIGHTS, h;; WEIGHTS, h;2 WEIGHTS, AND h;3 WEIGHTS AT THREE
sl H DIFFERENT BIT RATES IN EXPERIMENT 2
!
SD computed in 0 - 3kHz band
= i tli
g2* Bit rates | weights | Avg. SD (dB) Q_SZBleri(:?’le
& Paliwal | 1105 2.730 | 0.010
% 2 hu 1.087 2.564 0.010
& 2 Puz 1.095 3.322 | 0.013
2. Fus 1.098 2.791 | 0.008
= Paliwal 0.928 1.052 0.003
i 0.911 1.024 | 0.003
: 27 Pun 0.915 0.977 | 0.007
his 0.919 0.837 0.007
Paliwal 0.796 0.480 0.003
%% 500 1000 1500 2000 2500 3000 3500 4000 hu 0.755 0.375 | 0.007
Frequency (Hz) 30 P 0.770 0.393 | 0.003
Fig. 6. Spectral error distributions for 27-bit LSF multistage vector quantizers us 0.776 0.396 | 0.007

using four different sets of weights in Experiment 2, where solid line
corresponds to Paliwal weights, dashed liné tp weights, dotted line té, - TABLE VII

weights, dashdot line th,; weights. COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS IN CALCULATING THE

OWMSE WEIGHTS, THE COHN WEIGHTS, THE GARDNER WEIGHTS, THE

the OWMSE weights are comparable to those using the Paliwal PALIWAL WEIGHTS, AND THE SMPLE MSE MEASURE
WelghtS Weighting types Computational complexity

From Table VI, we can see that the average SD values usir—2WMSE /21?;0?535 e f?) T T
the weighting functior,;3(w) are somewhat larger than those  Cebn v sine + v division + v power + 3v multiply-adds
using the other weighting functions at the same bit rate. Thi  Gardner L+ [L+1) = of2o + 200+ 7o+ 1)/2) multiply-adds +
phenomenon is explained as follows. Since the values of th™ Paliwal |12 multiply-adds + 10v cosine + 100 sine + v division + o power
weighting functionis(w) are larger than those of the others Simple MSE 0 (No weighting)

in almost all the higher frequency range above 3 kHz, the quan-

tization errors using the weighting functidms (w) are smaller ~ The comparisons of the computational complexity required
than those using the others in the higher frequency range abéive computing the OWMSE weights to that required for
3k Hz as shown in Figs. 5-7. However, it is a fact that the totabmputing the Cohn weights, the Gardner weights, the Paliwal
guantization errors at the same bit rate are fixed regardlessaafights, and a simple MSE measure are listed in Table VI,
what kind of error shaping function being used in the quamssuming that the autocorrelation of the LPC impulse response
tizers. Therefore, it is reasonable that the average SD valuk| is computed by (23). In this tablé&, denotes the maximum
using the weighting functioh;s (w) are higher than those usingtime index of the impulse response of LPC modgldenotes

the others, since the average SD values only contain the quathite length of the impulse responsgr] (for » > 0) of the
zation errors in the lower frequency range of 0-3 kHz. weighting functionB; (w), v denotes the order of LPC model,
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“multiply-add” denotes the multiplication operation followedare comparable to that using the original CELP coder even at
by an addition operation, “division” denotes the division operdewer bit rates such as 24 bits/frame. In other words, the results
tion, “sine” denotes the operation of the sine function, “cosineshow that the approach incorporating the weighted spectral
denotes the operation of the cosine function, and “powegtror in LSF quantization into a CELP coder does not produce
denotes the operation of the power function, where sine asitlange distortion, and moreover, results in lower bit rates for
cosine functions are typically computed by some numericaiuivalent speech quality, even at 24 bits/frame.

method such as the Taylor series expansion. In Table VII,

the term %2(v + 1)/2 multiply-adds” is the requirement for IV. CONCLUSIONS

efficiently computing the diagonal terms of the sensitivity —, . : :
matrix for LSF parameters in [4]. In computing the Cohn This paper has presented an error shaping technique of LSF

iahts. the additional i , tlivisi vector quantization (VQ) based on the WLSD measure. It has
Welghts, the additional computation requirementdivision ., shown that the VQ trained by the quadratically weighted

—i—fvtrfJOVéer j% mul_tlﬁllg/-adds, co;nparltr;]g to the fatI_CUIat'fotnmeasure converges to a VQ trained by the WLSD measure. The
ot the f>ardner weights, comes Irom he computation ot thig, 4 41ic weighting matrix, the so-called “sensitivity matrix,”

Bark weighting function in (27) at the LSF parameters. From .~ . . .
Table VII, we can see that the OWMSE weighting requir is given by the second term of Taylor series expansion of the

ltinlv-adds than the oth iahi but it . WLSD measure and has been proven to be a nondiagonal ma-
more multiply-adads than the other weightings but It requirgg, o approximate computation algorithm for calculating the

'?ho d'V'Slor!S flsmdlpowe; ;)hperatlons.t T.Or bletter u?d?rStfni:%radratic weighting matrix is provided. The optimal WMSE
e numerical values of the computational complexity for eights of LSF quantization are determined by the diagonal el-

caS(? OH\;T 2bO’ jifségolgr;%%z;g Zzé%ourfgpernl”tqelnt 1d ments of the quadratic weighting matrix. The proposed error
are found fo be ' ' '  and © multiply-a ﬁaping technique has been applied to make better use of the

for the OWMSE weights, the Cohn weights, the Gardner -
weights, the Paliwal weights, and the simple MSE measur uman perceptual characteristics based on the WMSE measure.

or the balanced spectral quantization error in Experiment 1,

respectN(_aIy, according to the eqtiapc_)n_s |n"T‘:‘a t?le \f”‘: Wh_ere ,'fiehas been shown that the performance of the LSF quantiza-
computational complexities for “division,” “sine,” “cosine,

’ y - . jon using the optimal WMSE weights is better than those using
and “power” in Table VI require about 18, 18, 20, and 4 ther previously proposed weights, including Paliwal weights,

multiply-adds estimated according to the runtime support fqn&- rdner weights and Cohn weights. For the transparent spec-
tions of the :MS;’ZOC?’O DSP C.h'ﬁ' In th(;S ﬁasfe, the reqUIrely| error guantization in Experiment 2, it has been shown that
DSP MIPS for the OWMSE weights, and the four comparg e performance of the LSF quantization using the proposed op-
schemes are .0'89.4’ (.)'520’ 0.485, 0.229 and 0, respectiviilal wMse weights is better than that using Paliwal weights.
where the estimation is based on the TMS320C30 DSP C'nyhally, the test of incorporating the proposed error shaping
produced by Ti (Texas Instrument, Inc.). technigue into the LSF quantization (34 bits/frame originally) of
an actual CELP coder in Experiment 3 has shown that the pro-

_ posed scheme can result in lower bit rates (e.g., 24 bits/frame)
The results of Experiments 1 and 2 show that the LSF quag; equivalent speech quality.

tization using weights do obtain the desired effect of weighting
the spgctral error toward the low frequt_anc_ies. To further test APPENDIX A

how this affects the overall speech quality in an actual speech ) )

coding algorithm, we add weighted spectral error into LSF This append|xAprOV|des the proof of Theorem 2.
quantization in a CELP coder. In this experiment, the codebooks=®t @ = do = 1. Then, we f‘av‘if,%g) =
trained at 30, 27, and 24 bits/frame with the OWMSE weights 2-m=o %m¢ "’ :;md A(Z}’) =7 im0 Gme™"*"". This
obtained in Experiment 1 (for the Bark weighting functiongISO results inA(w)|* =3, _o 22— @man cos(w(m — n)).
and Experiment 2 (for the weighting functidn;) are used BY subs_t|tl_Jt|ng these results in (6) and performing simple
for this testing. Three speech samples are prepared for codifigferentiation [4], we can show that

each of them is analyzed and then reconstructed by the originaPWLSD(a, a)
CELP coder and the modified CELP coders with weighted™ 5. 53,
spectral error incorporated into LSF quantizer obtained in v

C. Experiment 3

a=a

Experiment 1 and Experiment 2. The LSF quantizer used in = 44 Z Z amani/ B (w)
.. . . . . 271' o
the original CELP coder is a nonuniform scalar quantizer using =0 1n=0
34 bits. This experiment produces 21 reconstructed speech  cos(w(k +1—m —n)) + cos(w(k — I —m +n))
signals; three for the original CELP coder, nine (3 speech | A(w)|* dw

signals by 3 different bit rates) for the modified CELP coders voow
corresponding to the Bark weighting function in Experiment = 4« Z Z aman[f(k+l—m—n)+ f(k—l—m-+n)],
1, and nine for the modified CELP coders corresponding to m=0n=0

the weighting functionh;, in Experiment 2. The three speech (A.2)
samples and the 21 reconstructed speech signals can be fovl\"/nge

in the web site: http://falcon3.cn.nctu.edu.tw/~ncw/shaping.

In an informal test, we find that the speech quality of the 1 /7‘ T

reconstructed speech signals using the modified CELP coders By(w) |A(w)|* duw (A-2)

5
—T
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is the inverse discrete-time Fourier transform Bf(w)/ Then we have
|A(w)|*, sinceB,(w) is a real function. Thus we havé(w) =

v/2 v/2
By(w)/|A(w)[*, andF(z) = Bs(2)/(A*(2)A*(z 7). “TIs “ 1=
Using the same notations in [4], let Plw) = gp"(w)’ Qw) = ng(w). (B.5)
M(x) = Arntn F(Z — M — A.3) The simple differentiation ofi(w) with respect to théth LSF
@) ,;an::o H ) (A.3) parameter is denoted by [4]
and 1oPw)
- g
N(z)= "> amanf(z —m+n). (A.4) Ti{w) = 0A(w) _ |2 Ow
T e T 1oaw),
Then we have 2 Ow; ’ ©oever
82WLSD(a, &) , o .
T omda |, =da(M(k+1)+ N(k-1)). (A5) sin(w;)e™7v H pj(w); @ odd
= §=03j#(i+1)/2
Since - /2
B,(2) sin(w;)e™Iv H g (w); i even.
= 2 L S K3 7 H
M(z) =A%(2)F(z) 20 (A.6) J=0;j#i/2
and (B.6)
N(z) = A()A(z"HF(2) = _Bile) (A7)

A(2) A1) With the above notation definitions, we can now proceed the
) proof of Theorem 3 as follows.

we can take invers¢ transforms ofM(z) and N (z), and use Proof of Theorem 3:Computing the elements of the sen-
the Z transform pairs of Egs. (9) and (10) to obtain the followingisjy;ity matrix for LSF parameters by simple differentiation in

equality (6) directly, we obtain the following equation:
9?WLSD(a, &) S2WLSD(w, W)
dandis |, B ‘ )
= 4o Z bs[n|(re[(k+ 1D —n]+7[(k—=1)—n]). (A.8) OA* (w) A(w) + A () OA(w)
n=-—o00 _ g /ﬂ— B (w) awk awk
This completes the proof. O O | A(w)?
gA* 0A
APPENDIX B 5 (w) Aw) + A*(w) a(w)
. . . L LU (B.7)
This appendix provides the proof of Theorem 3. |A(w)|?

Before going to the proof of Theorem 3, some nota-

tions are defined first. Let LSF parameters be denoted B{ji€re *"is the complex conjugate operator. The proof of The-
w = [wy, wa, -, w,]T. Since the roots oP(z) correspond °T€M 3 is completed if one nondiagonal element is proved to be
to the odd indices of LSF parameters and the rootpf) NONZero when the length of impulse response of the weighting

correspond to the even indices of LSF parametes;) can function used in the WLSD measure is larger than 3. Hence, we
be rewritten as shall prove this theorem by showing that there exists at least one

nondiagonal element in (B.7) (i.€:,# [) which is nonzero. In
A(w) = L(P(w) + Q(w)) (B.1) the following, we consider the case of odénd ever, i.e.,
and«w; in (B.7) are the roots aP(z) and@(z), respectively.

where By substituting (B.6) into (B.7), we obtain

P(w) =(1+ ) J] 1 - 2coswie™" 4 ¢=>*) P*WLSD(w, W) ‘
i odd B

(B.2) O i .
Q(w) = (1 - e—j'u’) (1 — 2cos wie—ju; + 6_2}11’). _ o ™ '];: (w)']l* (w) ]k(w)Jl(w)
71111 - Ba(w) A*2(w) A?(w)
B.3
> LI hw) L) )]
For notational clarity, we define the following equations: A () A(w) T A (w)Alw) .
Po(w) =14¢ v ©8
pi(w) =1— 2cos(w2i_1)@—iw 4w Let
To(w) =1 — 7% I T () o)
7;(w) =1 — 2cos(wz;)e ™" +¢7H" (B.4) T(w) =~ /, S a0 B9
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and whereg[n] is the convolution 0b,[»] with the sequences, and
a [T Ty (w) I} (w) G, for all n andm not equal tok + 1)/2 andl/2, respectively.
f = — A A S R ) i m ) 3
U(w) ) B (w) A (w)A(w) dw (8.10) Then define
Then, using the symmetry propertiesfopolynomials, theanti- — H[n] =p,[n] @ p[n] @ - Bi[n] @ - - o2l
symmetry properties aff polynomials and symmetry property _ _ = -
o o e LA R MO LR WA
o @hll @], i#(E+1)/2, G2
T(w) = / By(w) (B.15)
(CJ(L+1)'LUJ;:( w))(—e I T (—p)) where " denotes the convolution operator. SinBg(w) =
1A(w)2 dw B*(—w) holds andH|[rn] is real and causal[n] is real and

noncausal. Without loss of generality, assume the length of the
impulse response @t [n] is2N + 1 for —N < n < N, where

T - |A(—w)] N may be infinity. Then, it is easy to show that
__a [T I (w)Ji(w) _ 2
S / Bl gl-2= bl @ Hnl|
— _T(w). (B.11) e for v < 2
Equation (B.11) results il (w) = 0. Using the steps taken = st[i]H[i —9], forN>2 (B.16)
above, a similar proof can be derived for the f&ct) = 0. i=2

Now, substituting (B.6) into (B.8) again and using the above . . _
results, we can rewrite (B.8) as shown in (B.12) at the bottowherey_\, b.[ilH[i — 2] for N > 2is always nonzero since

of the page. one cannot choose a sequehgf] such thatZZ o [z‘]ﬁI[z‘ —
Let 2] = 0 for all time-varying signals{ [n]. Now, (B.12) becomes
v/2 v/2 5 N
. _ . _ J*WLSD(w, W)
sin wy, H p;(w) | [sinwy H 7;(w) f‘
G(w) = B,(w) [ J# (412 i/ R
w) = w : : T
| A2 (w) _ Zasin wy sin wy 20 G )2
(B.13) = o _ﬁ(G(w)c + G (w)e’ ™) dw

and define the discrete-time Fourier pairs ] ] .
= 2a sinwy sinwi(g[n]|n=—2 + ¢* [n]}n=—2)

gln] = G(w), o
Boln] = 8[n] + 8[n — 1] = 4o sin wy, sin wy g[—2]
< po(w), zero, for N < 2,
m — J— . — p— = ]\r ~
pifn] =éln] _2 cos(wzi—1)é[n = 1]+ 8[n = 2] 4evsin wy, sin wIZbS [(|JH[i — 2], forN >2
< p;(w), i=2
Qo[n] =6[n] — 6[n — 1] (B.17)
_ = Golw), whereda sin wy, sin w; Z?;Q b,[{|H[i— 2] for N > 2is always
a;[n] = d[n] — 2cos(ws;)d[n — 1] + 6[n — 2] nonzero due to the same reason as in (B.16).
= G;(w) (B.14) This completes the proof. O

PPWLSD(w, W)
Dby, O,

‘VV—VV —7

v/2 v/2
sin wyel® H Pi(w)| |sinwel H 7i(w)

a [T J#E(k+1)/2 J#l/2
-2/ B,
FI A2(w)
v/2 v/2
sinwye v H p;j(w)| |sinwe H g;(w)
+ B.(w) chatlnile chalk duw. (B.12)

A2 (w)
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