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Analysis of a novel flexure hinge with three degrees of freedom

Feng-Zone Hsiao®
Synchrotron Radiation Research Center, No.1 R&D Road VI, Science-Based Industrial Park, Hsinchu 30077,
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Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan,
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(Received 9 August 2000; accepted for publication 11 November)2000

The flexure hinge is widely used as the mechanism for a high precision positioning stage with a
micrometer or nanometer resolution. In this article we propose a novel flexure hinge with three
degrees of freedom in which the motions are restricted in the same plane. An analysis model is
developed to analyze the flexure hinge. The results obtained are consistent with those of the finite
element method. A characteristic study using the proposed model shows that this flexure hinge has
a feature of linear load displacement. In addition, the most effective way to change the stiffness of
this flexure hinge is to modify the notch’s radius. A prototype of this novel flexure hinge has been
manufactured and the measured characteristics prove the advantages of this proposed model.
© 2001 American Institute of PhysicgDOI: 10.1063/1.1340024

I. INTRODUCTION analysis is that the minimum hinge thickness is much smaller
than both the cutting notch radius and the hinge height.
The need for micromotion stage has found wide applicaSmith, Chetwynd, and Bowérshowed an approximate for-
tion in fields like the lithography process of the semiconduc-mma, which was derived from the finite element analysis
tor industry, optical device tuning, ultraprecision machining,resu“, to evaluate the compliance of right-circular profile
analysis of material surface structure, and the direct manipuhinges for cases of larger minimum hinge thickness. The
lation of DNA in genetic engineering. Nowadays, trends ofanalysis formulations for the flexure hinges with elliptical
miniaturization push the resolution of stage toward to theprof"eS were presented by Smigh al® Xu and King’ com-
scale of nanometer or even subnanometer. Stages with hiEﬁhred the performance of different flexure hinge profiles by
precision using sliding and rolling bearings of various typesine finite element methodFEM) and they concluded that the
are inherently subjected to stick-slip and backlash problemgayre hinge with elliptical profiles has a lower maximum
for small displacement. The flexure hinge is a way to avoidstress and thus a long fatigue life while the corner-filleted
such problems. It can be used to smoothly transfer the Mrofiles offer the highest flexibility.
tion provided by actuators with sufficient resolution. In this article we propose a novel monolithic flexure
In fine stage design the flexure hinges with one or twoninge with three degrees of freedom, where motions in the
axes of motion are usually used in which the fine motion isggme plane with two translation and one rotation are al-
achieved either directly using the flexure hinge to transfer thegwed. An analytical model is proposed for the analysis and
small displacement from actuators like piezoelectric dfies gesign of the flexure hinge and the finite element method is
or using the flexure hinge magnification mechanism to obtaifsed to compare the results obtained from this model. The
a larger stroké:* In those applications the flexure hinge is characteristics of the flexure hinge are then studied. Based on
usually the notch type which is formed through the machin+pis study, a prototype is manufactured and its characteristics

ing of the high precision numerical controlled cutting ma- gre measured to verify the results from the analysis model.
chine. Because of the advancement of manufacturing tech-

nology, the profiles of notch-type flexure hinges can have
right-circular, corner-filleted, and elliptical formis.The !l CONFIGURATION

notch-type flexure hinge usually has one axis of motion. g re 1 shows the geometric configuration of the novel
Flexure hinges with two axes of motion can be formed eithef oy re hinge, where two notches with radjsis and p,, are
from the universal joint with coincident axes or by combin- |5 ateq respectively, at the left and top region and two con-
ing two notch-type hinges with perpendicular rotation axeS.entric arcs form the boundary of the comer region. The
together. For the study of flexure hinges Paros andyigih of the horizontal and vertical straight section can be
Weisbord presented an analysis formulation for evaluatinggitterent and the thickness of the flexure hinge is uniform.
the compliance of the notch-type flexure hinges with right-1he central points of the arcs at the left end notch generally
circular profiles and then investigated the characteristics ofaye an offset with the edge of the adjacent straight section.
such kinds of flexure hinges. The limitation used in their o cimilar condition holds for the notch at the top end. The
span angle of the outer afadiusR,) in the corner region is
dElectronic mail: fzh@srrc.gov.tw 90° and the two ends of this arc are tangent to the edges of
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FIG. 1. General geometry of the flexure hinge. o
FIG. 3. Simplified model.

their adjacent straight sections, respectively. If the left-hand . .
side of the flexure hinge is clamped and the forces and mot-hus bo.th the translation and rotatpn degrees of freedom are
ment are applied at the top end, the flexure hinge will move'(ionstramed. At the top end pqsmon_ .the_ external force
in horizontal, vertical, and rotational directions. That is, the x,Fy,M are ap.plled here and .thls position is also regarde_d
gs the output point. The deflection curve for the neutral axis
of the flexure hinge at segments A and C can be expressed by

tion plane. A monolithic stage using this type of flexure he differential equation

hinge is shown in Fig. 2, where four flexure hinges placed a{
the corners of the stage are oriented to form a symmetric d2y
structure. Due to the unique feature of the flexure hinge, this  El(X) — =M(x), 1)
stage has 3 motional degrees of freedom. dx

where the notationg andy are defined in Fig. 4E is the
11l. ANALYSIS MODEL Young’s modulus,l is the cross sectional area moment of

Fi 3sh the simolified model of the hi inertia of the neutral axis, anil (x) is the bending moment
Igure 5 Shows the simplified model of the Tlexure NiNGe. ; ¢ given poink, which can be expressed as follows:

In this model the offset is set to zero and the notch radius at
the left and top ends is set to the same value. The central M(x)=M+Fy(H—0.5u) —Fx(L—0.50)—Fyx. (2)

point of the two concentric arcs at the corner is set as thefhe assumptions used in E@) are small deflection, small
intersection of the two extension lines from the edges of th?otation andd?y/dx2< 12 Since the thickness of the flexure

horizontal and vertical_ straight sections. That i_s, the Spa'ﬁinge is uniform,I(x) at the straight section is a constant
angle of the inner arc is 270°. Though we simplify the geo- | e. At the notch regioh(x) can be expressed as
metric configuration, the following analysis procedure can

still be applied to the general configuration. 1(x)=2bh%(x)/3, (©)

In Fig. 3 the flexure hinge is divided into three segmentsyhereb is the thickness of the flexure hinge amds the half

A, B, and C. Segments A and C are treated as beam and @ qih of the notch region. The half width at a given posi-
one-dimensional beam theory model is used to evaluate thg,, x is expressed as

deformation of each section. The left end is clamped and

h(x)=0.5u— p?— (p—x)2. (4)
Thus the lateral deflection of the beam can be obtained from
the integration of Eq(1) and we have the following expres-
sions:

| y

o
7 3 A

FIG. 2. A stage using the new flexure hinge. FIG. 4. Coordinate definition.
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At left notch region: G=x<2p (0=<6=<m) | Fyq
!
V' (0)= (01 Cap)pTLU.29, 01+ C20%P[u.20, 01+ A, -—R
©)
Y(6)=(c1-C2p)p?QLU,2p, 6]+ Cop°S[u,2p, ] Frq—=—o
g7
+A(p—pcosh)+A,. ¢ / q/
At the horizontal straight section;pZ2<x<H-u—R, // //
Cy Cy 5 r / / (B)
y’(x)=—3x— X +Ag3, /
u 2u sy
(6) xe

(o -

y(x)— 3X —%x +AX+A,. @
, O M Vs

At notch adjacent to the corner regioH-u-Rj<x<H-u

<f=m7l/2
(O o=<ul2) FIG. 5. Loading at Sec. B.

y'(0)=(c3—c,RORT[U,R;, 0]+ CoR?P[U,R;, 6]

ar o
+Cc4RF[U,R;, 0]+ As, 0,=(c3—C,R)RT|u,R; > +C,R?P| U,R, ’E}
(7)
y(0)=(c3—C,R)RIQ[U,R; , 0]+ C,RPSu,R;, 0] -
+c4,RF|UR;, =|+As.
+C,R2G[U,R; , 0] + As(R— R c0S6) + Ag. CaRiF WL 5| T A

Here the integral function®[-], P[-], F[-], Q[-1, -1, G[-], In segment B, the energy method is used to obtain the

coefficientsc,; ~c, andA,~ A are defined in the Appendix. displacement formula. Assume the plane section remains

In deriving Egs.(5) and (7) we use the coordinate transfor- Plane after loading and the contribution to strain energy from

mation in which the polar coordinate with origin at the centerradial stresso, and out of plane stress, are negligible

point of the arc boundary is uségee Fig. 4 Each term in compared with the contribution of circumferential stress.

Egs. (5)—(7) can be expressed explicitly, though they areThe energy functiolJ* is then expressed as

lengthy expressions. Thus we have the deformation formula

expressed explicitly as a function &fat a given geometry u* —J J i

and loading condition. 2E 26
The axial displacement can be obtained by using the&Since segment B is bounded by two concentric arcs it is a

stress—strain relations for a beam subjected to the uniaxiglurved beam. The stress for a curved beam under the loading

rd¢ dA. (10)

load F: shown in Fig. 5 is expressed’8s
_F _My f_n_ 1)+ Ne
I MY A
(13)
oy V2
SX_E, (8) =12 — A
whereA is the cross sectional area aaédndr,, are defined
Ax:j exdx as below
Thus from Eqs(7) and (8) the deformation at the interface _ A _ u—R;
between segment A and @oint p) can be obtained as fol- n dA In(u)—-In(Ry)’
lows: T
rdA (12
Xp= Eb(pW[u2p m] = pVV[u2p0]+RWuR|,2} e=R—rn=fT—rn.
H-u-R—2p From the free body diagram the force equilibrium condition
—RW[u,R;,0]+ ' shown in Fig. 5 can be expressed as
. eolum Tecredur M 4=My—FyqR-sing—F,R(1—cose),
p=(Ca™ C2RIRIQ Ui 5|+ C2 2 Ny=— FygSin -+ Fyq COSS, (13
2 ™ ) T
+c,RTG U, R 'S +AsR+ Ag, 9 V4 =FyqC0sh+Fyqsing, 0s¢s§
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q(xy)

FIG. 7. Meshes and deformation.

p(0,0) X =Y, =(u+Ri)/2 rotation at pointp as Fig. 6 shows. Neglecting the second
. _ order term and treating segment B as a rigid body one, the
FIG. 6. Finite rotation. corresponding displacementx, Ay from the finite rotation

is expressed as below

whereM, F,,, andF,, are the loadings at poirt, which .
qr Txq Iz =y — Y= _1)—
are related to the external loads by the following expressions: AX=X=X0=Xo(€0S0p 1) = ¥oSinbp, 16
Mg=—-M+Fy(L—u)+3FyR;, Ay=y—Yo=XoSinf,+Yyg(cos,—1).
Fyq=—Fx, (14)  Thus the displacement at poigtcan be obtained as follows:
RANRS X=X — At R coso —sing.—1)
=Xp— cosf,—sinf,—1),
Based on the assumption of small displacement and linear ~ ¢ "P “H° 2 ( P P
elastic material, the deflection at poigtcan be expressed
igliano’ u+R;
from Castigliano’s theorem Yo=Y+ Ay+ . i X (sin,+c0sf,— 1), 17)
A_(9U*_1 " R)M+1TRF RF)
Ho0Fq EA\T e/l 797 4 "X 27 Oq=0p—Ay.
N 1.2?( 3 ZFX+ EFY) Deformation of segment C can be obtained through the
GA 4 2 same procedure as that in segment A. Continuous conditions
aU*  Mg(R o Fy (R 1.9RE in both displacement a_nd slope are appll_ed at the Junctlor_l of
Ay= = 1-=]-1] -2 ——R+ — segments B and C. With the local coordinate transformation
dFyq EAle 2 2EAl e G n=—xandé=y, the expressions for the lateral deflection at
. Fy [R?(3m N irls - . 1.27 RE segmenht C canhbe o_btainde_d as foIIovr\:S: _
EAale\ 7 i ek At the notch region adjacent to the corner region
13 7'(6)=CsRT[UR; 0]+ 2c,R2P[u,R, , 6]
A—aU*——l 7TM +RXFy+RXFy| 1 c
"M, EAel2 0 X W2 + 5 RF[UR,0]+A;,
1 (18)
~EaFxTFY). 7(8)=CsRIQIU,R;, 6]+ 2¢,RPS[U.R; , 6]
In addition to the deformation caused by the loading at C2 ,
. . . - + =R 0]+ i +Ag.
point g, the displacement af actually includes the finite 2 RIGLU,R;, 6]+ A7R; cosd+ Ag
TABLE |. Simulation results using both the analysis model and the finite element method.
Case Dx(um) Dy(um) 6z(mrad
Geometry Loading FEM Analysis Errd®o) FEM Analysis Error(%) FEM Analysis Error(%)
A A 259.67 265.02 —-2.06 —-350.72  —364.04 -3.80 —10.39 -10.02 3.55
B A 286.54 292.42 -2.05 -398.81  —412.42 -3.41 -10.98 —10.94 0.42
A B 217.10 212.39 2.17 —249.96  —260.15 -4.08 -9.84 -9.16 6.88
A c -51.08 —49.59 2.90 49.85 5410  -8.52 2.91 3.04 —4.69
A D 425.79 427.42 -0.38 -550.83  —570.47 —3.57 —-17.08 -16.14 5.50
Remark:

Geometry Ap=5, Ri=5, u=12, H=45,L=30, b=16 mm.

Geometry B:p=4.8,Ri=5.2,u=11.6,H=46, L=30, b=15 mm.

Loading A: Fy=-60 N, Fx=M=0; Loading C:Fx=Fy=0, M=300 N mm.
Loading B:Fx=60 N, Fy=M=0; Loading D:Fx=60, Fy=—60 N, M=300 N mm.
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FIG. 10. Effect of geometry dimension on flexure compliarieg= M =0, Fy=20 N.



Rev. Sci. Instrum., Vol. 72, No. 2, February 2001 Flexure hinge 1571

At the vertical straight section result shows smaller difference for cases of pure vertical
c loading and larger difference for cases of either horizontal
7' (£)=cgé+ ?7§2+A9’ force or moment loading exists. The maximum deviation
here is 8.5%. A further study shows that the tolerance be-
Co c, (19 tween the analysis result and FEM simulation is within 13%
77(§)=§§2+ €§3+A9§+A10. in case of 14 H/(u—2p)<58, 14&L/(u—2p)<73, 0.1
<R;/(u—R;))<1.67, 0.25b/(u—2p)<20, or 3.2u/(u
At the top notch region —2p)<7.67. The tolerance is within 16% if<1 p/(u

7' (8)=(Ca+2C4p)pT[,2p,0]—2¢4p?P[u,2p, 0]+ Ay, ~2p) <45.

20
7(6)= (Ca2¢4p) p°QLU,20, 0] — 2¢4p°S[u,2p,0] 20
+A11(p_p COSH) +A12.

V. CHARACTERISTICS

) ) i . Using the analysis model we study the characteristic of
The axial displacement can be obtained by using 8.  he monolithic flexure hinge. Figure 8 shows the flexure

Thus the formulations for the displacement of the flexureyinge nehavior for cases of different external horizontal load-

hingg subjected to external loads gt output peirdan be ing Fyx and vertical loadind- . The effect of adding exter-
obtained from Eqs(8) and (20) and listed as below nal momentM is shown in Fig. 9. From Figs. 8 and 9 a

X, =—(Cg+2Cyp)p?Q[u,2p,7] linear relation between loading and displacement exits in all
3 X, Yy, and @, directions. Furthermore, if one applies only
+2C4p° U, 2p, 7] = 2pA11— Agz, either the horizontal force, the vertical force, or the pure
Fy - moment at the top end, the flexure hinge will have the hori-
Y, =Yq+ b RW| u,R; 'S —RW[u,R;,0] zontal motion, the vertical motion, and the rotating motion
LR —u_2 simultaneously. That is, the flexure hinge has a coupled mo-
B —Ri—u—2p tion behavior. Since a linear relationship holds between the
+pWLu.2p, ] = pWLu,2p, 0]+ u ' loading and the motion it is easy to compensate this coupled

(2)  motion problem. From the linear relationship and coupled
behavior the motion at the end point of the flexure hinge

subject to external loading can be expressed as follows:
Each term in Eq(21) can be expanded in terms of either _
loading or geometric dimension and the explicit form is ex- Dx=ZoFxtZyFy+ZM,

pressed in the Appendix. Dy=Z,Fx+ZyFy+Z,M, (22)
HZ:ZQXF)("'Z@yFy"_ZggM .

_ ) o ) Here Z,; represents thel-direction compliance due to
The motion of the flexure hinge is simulated by using the;_gjrection loading.
commercial FEM packagensys. Figure 7 shows the Case studies for the effect of geometry dimension on the

meshes used to analyze the flexure hinge. An eight-node efexure characteristics for the same loading condition are
ement SOLID73, with 6 motional degrees of freed@hmee  snown in Fig. 10, where the constraintR;, u>2p, H

translation and three rotatipon each node, is used to define ~,12,+R  and L>u+2p+R, are applied. Only six
the geometry and simulate the deformation. Since there arg,rves are shown here because the compliaigeand Z;,
singularity problems at the left and top ends of the flexure
hinge, the range of the geometric model at both ends is ex-
tended to avoid the mesh singularity. The clamped boundary
condition is applied at the left-extended region. To reduce
the effect of large stress gradient around the loaded region
(Saint-Venant's principle the loading is applied at the end
of the top extended region. However, because of the exten-
sion at the top end, application of the horizontal force will
give an additional moment at the notch end. A correction
moment should be added in FEM analysis for cases of hori-
zontal loading. Table | shows the simulation result obtained
from both the analysis model and the finite element method,
where the additional moment caused from horizontal load is 3 / < : ;
compensated in FEM analysis. The enlarged scale of the } by T - 1512000
typical deformation for the flexure hinge at a given loading is 5 Suiaaa
displayed in Fig. 7.

In Table | five different cases formed from two geometry
and three external forces are analyzed. From different cases
of comparison, both methods give a consistent result. The FIG. 11. Performance measurement of the prototype.

0, =(Cg+2C4p)pT[U,2p, 7] —2C4p2P[u,2p, 7]+ Ay;.

IV. FINITE ELEMENT METHOD (FEM)

1 flexure hinge 3 LVDT probe
2 force gauge 4 probe signal processor
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TABLE Il. Characteristics of the flexure prototype.

Dx Dy Dx Dy

Fy Measure  Analysis Error Measure  Analysis  Error Fy Measure  Analysis Error  Measure  Analysis Error
(Kgw) () () (%) (pwm) () (%) (Kgw) (pwm) () (%) (pwm) () (%)

1 38.6 347 -10.1 —42.6 —42.5 -0.2 1 —42.4 —-43.4 2.4 72.5 59.3 -18.2

2 78.3 69.3 -—11.5 —85.2 -85.1 -0.1 2 —-82.5 —86.9 5.3 142.1 1185 -16.6

3 118.6 104.0 -—-123 —126.9 —127.6 0.6 3 —118.5 —-130.4 10.0 208.5 177.7 —-14.8

4 158.8 138.6 —12.7 —168.3 —-170.2 1.1 4 —153.4 —-173.8 13.3 275.3 236.9 -—-13.9

5 200.6 1732 —-13.7 —-210.9 —-212.7 0.9 5 —188.3 —-217.4 15.5 339.3 296.1 -—-12.7

6 240.7 207.8 —13.7 —254 —255.3 0.5 6 —223.7 —260.9 16.6 401.7 355.2 —-11.6
-1 —-37.2 —-34.7 —-6.7 38.5 42.5 104 -1 35.4 43.4 22.6 —-57.4 —-59.3 3.3
-2 -74.1 —69.4 —-6.3 79.7 85.0 66 -2 73.1 86.8 18.7 —115.2 —-118.6 3.0
-3 —-111 —-104.1 —6.2 122 127.5 45 -3 111.6 130.1 16.6 —179.9 —-177.9 -1.1
-4 —146 —138.8 —-4.9 161 170.0 56 —4 149.5 1735 16.1 —238.1 —237.3 -0.3
-5 —-177.4 —-173.5 —-2.2 195.3 212.4 88 -5 190.2 216.8 14.0 —298.5 —296.6 -0.6
—6 —204 —208.2 2.1 222.8 254.9 144 -6 223.6 260.1 16.3 —360.8 —356.0 -1.3

have similar value. From Fig. 10 all the compliances show

strong sensitivity to the change of the notch’s cutting radius[u,d, 8]= —_zda,
p, flexure thicknes®, and widthu, where the most sensitive (u—dXsind)
factor isp. Changing the corner radil& has not as apparent

an effect asp does. Changing the magnitude Hf has a G[u,d,a]zf F[u,d,#]sin6de,
strong effect on the compliancé&s,, Z,,, andZ,,; similar

conditions hold for the case of changihgexcept that the

sing@

o . siné
directionsx andy are interchanged. W[u,d, 8]= J ?da,
A prototype is fabricated to check the accuracy of the (u—dXsing)
analysis model. The loading in either horizontal or vertical M+ Fy(H = u/2) — F(L— uf2) F
Y X Y

direction is applied to test the characteristics of this flexure;, = Co=———
: b Eb/12 © 2T Eb2

prototype. Figure 11 shows the measurement setup of this

prototype. A force gauge is used to measure the magnitude

of the applied loads. Deformation of the prototype is meatszlvI FFv(Ri+ul2) FXL’ 0423'

sured through the 0.Lm accuracy linear variable differen- Eb/12 Eb/6

tial transformer probe. Table Il shows the measured result for

different loading conditions; the results estimated from the, _ M—Fx(L—u)—Fyu/2 - M—-Fx(L-u—R))
analysis model are also shown here for comparison. From> Eb/12 b8 Ebud/12
Table Il the analysis model provides a good estimation in the

case of horizontal loading and a less accurate estimation in Fy M —2Fyp

the case of vertical loading. The measured result also proves =

] C8_ )
Eb/12
the linear load-displacement feature of the flexure hinge. Ebu?/12

A1=—(C1—C2p)pT[U,2p,0]—C2p?*P[u,2p,0],
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2¢1p—2¢yp?
213-003. Az=A— T +(Cc1—Cop)pT[Uu,2p, 7]
APPENDIX +C,p?P[u,2p, 7],
Sin0 20 2 4C 3
T[u,d,0]=J— 0, _ _ _chp 2p
(u—dxsin6)3 Aa=Rot2(A=Ag)p— — 5=+ — 3
Plu.d e]zj sin#x cos¢ 40 +(C1—C2p)p?Q[U,2p, m]+ Cp3F u,2p, 7],
o (u—dxsing)®

Cc Cc
As=Ag+ —(H-U-R)— —=(H-u-R)?
Q[u,d,0]=f T[u,d, 8] Xsinde, u 2u

—(c3— CoR)RT[U,R;,0]— c,R?P[u,R;,0]

S[u,d,a]:f Plu,d,6]Xsingde, —CRF[UR.O,
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Cq1 2

A=A, +Az(H-u—R)+ F(H—u—Ri)
u

C, .
_@(H_U_Ri)

- (03_ CZRi)RiZQ[ui Ri 10] - CZRiss[uiRi !0]
—¢,4R?G[u,R; 0],

ar 2 o
A7=0q—CsRT|U,R; =) —2¢4R7P|u,R; =)
Cz o
—?RiF U,Ri,E,
2 o 3 o
Ag=—Xq—CsR Q| U,R; D —2¢4R7S U, R; D
c T
—?ZR?G u,Ri,E},

Ag=A;+csR T[u,R;,0]+2¢,R?P[u,R;,0]
Co
+ 5 RiF[u,R;,0],
Ajo=Ag+A;R;+csR?Q[u,R;,0]+ 2¢,R*S u, R;,0]

C
+ -5 RIG[U,R, 0],

Flexure hinge 1573

C
Ag=Ag+Ce(L—U—R;—2p)+ %(L—U—Ri—Zp)z

—(Cg+2C4p)pT[U,2p,0]+2C4p?P[u,2p,0],

C
A1z= Ao+ Ag(L —U—Ri=2p) + 2 (L—U=R~2p)?

C
+ 5 (L-u=R~2p)°

—(Cg+2¢4p) p*Q[U,20,0] +2C4p>F u,2p,0].

IM. Taniguchi, M. Ikeda, A. Inagaki, and R. Funatsu, Int. J. Jpn. Soc.

Precis. Eng26, 35(1992.

2M. R. Howells, Opt. Eng(Bellingham 34, 410 (1995.

SF. E. Scire and E. C. Teague, Rev. Sci. Instrd®.1735(1978.

4S. H. Chang and B. C. Du, Rev. Sci. Instrué®, 1785(1998.

SW. Xu and T. King, Precis. EndL9, 4 (1997.

6J. M. Paros and L. Weisbord, Mach. D&F, 151 (1965.

’S. T. Smith, D. G. Chetwynd, and D. K. Bowen, J. Phys2@& 977
(1987.

8S. T. Smith, V. G. Badami, J. S. Dale, and Y. Xu, Rev. Sci. Instr@é).
1474(1997).

9J. M. Gere and S. P. Timoshenkidechanics of Material{PWS Engi-
neering, Boston, 1984p. 354.

10R. D. Cook and W. C. YoungAdvanced Mechanics of Materiaiac-
millan, New York, 1985, p. 416.



