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Second-Order Delta–Sigma Modulation with Interfered
Reference

Yu-Chung Huang and Wei-Shinn Wey

Abstract—A delta–sigma(��) modulator has been traditionally an-
alyzed by assuming its reference to be constant, but practically the refer-
ence may be interfered and thus vary with time. For an interfered reference
modulator, the performance of quantization noise is degraded by quanti-
zation noise leakage due to interfered feedback. In this paper, a systematic
study for observing the behavior of a second-order modulator with an inter-
fered references is presented, based on a linear modeling, spectral analysis,
and behavioral simulations. An analytical form of the output of a��mod-
ulator with an interfered feedback is obtained and compared with behav-
ioral simulation. Due to the agreement between the theoretical calculation
and the behavioral simulation results, it is concluded that the quantization
noise leakage should be considered for describing the behavior of the��
modulators more precisely.

Index Terms—Analog-to-digital converter (ADC), delta–sigma modula-
tion, interfered reference, quantization noise, quantization noise leakage,
sigma–delta modulation, varying reference.

I. INTRODUCTION

Delta–sigma(��)modulators have become increasingly important
in mixed-mode signal processing ICs. Conventionally,�� modula-
tors are analyzed by assuming their reference inputs to be constant. In
practice, the reference input may be interfered by deterministic signals
(e.g., pickup of radio frequency, power lines, etc.) and/or by random
noise (e.g., flicker, thermal noise, etc.), thus varying with time. Taking
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account of the reference input, the signal-transfer characteristic of a
�� modulator becomes a ratiometric function. Hence, interference
occurring on the reference will modulate with the signal on the input
due to the ratiometric operation. Based on this ratiometric concept, the
transfer characteristic of the modulator has been analyzed while the ref-
erence interfered by deterministic signals [1] orkT=C noise [2]. How-
ever, because�� modulators use feedback to lock onto a band-lim-
ited input, interfered feedback incurs quantization leakage to the band
of interest. Hence, not only the signal-transfer characteristics but also
the quantization noise spectrum will be affected by the interfered ref-
erence. Therefore, exploring how the quantization noise spectrum is
influenced is relevant to the study of�� modulators.

In this paper, some aspects of the behavior of a second-order��
modulator with an interfered reference are studied. The main reason
why�� modulators are difficult to analyze rigorously is the existence
of a 1-bit analog-to-digital converter (ADC) in a feedback loop intro-
ducing strong nonlinearity. The most popular approach to analyze��
modulators is to assume the quantization noise to be a signal-indepen-
dent white random signal [3]. This model replaces an inherent non-
linear modulator by a stochastic linear system, thereby permitting the
use of linear systems methods to analyze�� modulators. Although
this model cannot perfectly describe loop stability [4] and pattern noise
[5], it predicts the in-band noise surprisingly well [6]–[8]. However,
this model really cannot describe the interfered reference case since it
assumes that the reference is constant. To capture the behavior of an
interfered reference modulator, a modified model based on the same
uncorrelated white noise assumption is proposed, which is presented
in Section II. Based on this model, the transfer function of the inter-
fered reference modulator can be derived. In Section III, assuming a
stochastic noise interference, the quantization noise spectral density
and cumulative power density are obtained by taking Fourier transfor-
mation for the autocorrelation function of the modulator’s output. In
Section IV, theoretical spectral densities are compared with simulated
ones. These results provide a good match between the calculated and
simulated power spectral densities. In Section V, some comments are
made that relate a deterministic signal interfering to the modulator per-
formance. Finally, conclusions are presented in Section VI.

II. A NALYTICAL MODEL

A conventional linear model of a 1-bit ADC in a�� modulator
is shown in Fig. 1(a), which considers the quantization process as an
additive white noise sourcee and the output step size as�. An analog
input x is assumed to be in the no-overload range of��. Note here
that the reference signal is normalized to unity for convenience since it
is constant.

However, for an interfered reference modulator, this conventional
model fails to capture the behavior related to the reference. In order to
catch this behavior, the reference signal is represented explicitly by a
variablew instead of unity, and the two possible output states ofy are
defined as�1 instead of��=2, as shown in Fig. 1(b). Without nor-
malization (to the reference), analog feedback signalv has two pos-
sible levels of�w, and the 1-bit ADC inputx is in the range between
�2w. Consequently, it can be found that the additive white noise model
should be led by a factor of 1=w. Thus, the digital outputy can be given
by

y =
x

w
+ " (1)

featuring a ratiometric function plus a white noise. If the white quan-
tization error has equal probability of lying anywhere in the range�1
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Fig. 1. (a) Traditional linear model and (b) modified model.

and is sampled at frequencyfS = 1=� , then the autocorrelation func-
tion can be given by [9]

Ef"n"kg =
2

3
� �n�k (2)

where�n�k is the Kronecker delta

�n�k �
1; for n = k

0; for n 6= k:
(3)

Based on this model, a sampled-data equivalent circuit of a second-
order�� modulator with an interfered reference can be illustrated in
Fig. 2. The outputyk can be given by

yk = rk + nk =
xk�1
wk

+ ("k � 2b1; k"k�1 + b2; k"k�2) (4)

where

b1; k =
wk�1

wk

and b2; k =
wk�2

wk

(5)

which shows a ratiometric functionrk and a noise equationnk. Thus,
we have

nk = "k � 2b1; k"k�1 + b2; k"k�2: (6)

As viewed from quantization noise"k, the output noisenk depending
onwk is time variant. In a conventional case with a constant reference,
b1; k andb2; k both are unity, and thus the output noisenk reduces to a
well-known second difference equation as follows [3]:

nk = "k � 2"k�1 + "k�2: (7)

Comparing (6) with (7), it can be found that the varying reference
makes the zeros of the noise transfer function be no longer at dc, and
thus the signal-to-noise ratio (SNR) of the modulator is degraded by the
quantization noise leakage in the band of interest. The more rapidly the
reference varies, the more crucial the SNR degradation becomes. More-
over, an analytical solution to describe the quantization noise power
spectral density can be found by its autocorrelation function, which
will be presented in next section.

To ensure this modulator’s being in the no-overload region, the in-
stantaneous reference times a factor� has to be always greater than the
absolute value of instantaneous signal so that

�wk > jxk�1j (8)

where� is less than 1.0 for the second-order modulator [10]. In prac-
tice, the reference signal can be represented by a positive constant
voltage with an interfering signal�k so that

wk = 1 + �k (9)

where the constant voltage is normalized to unity for simplicity. Note
here that�k is an interfering signal and has to be restricted to ensure
wk ’s satisfying (8). Thus, we also have

j�kj < 1: (10)

III. SPECTRAL ANALYSIS

Spectral analysis of�� modulators can be formulated in the frame-
work of quasi-stationary process as considered as in [11] and [12]. The
classification of quasi-stationary processes forms a general class of de-
terministic and random processes for which the first- and second-order
moments are well defined and to which traditional system autocorre-
lation and spectral analysis can be applied [13]. This class includes
stationary as well as asymptotically mean stationary random processes
[14].

A discrete time process"k is said to be quasi-stationary if there is a
constantC such that

Ef"kg �C; for all k

Ef"kg = lim
N!1

1

N
Ef"kg exists

jR"(n; k)j �C; for all n; k whereR"(n; k) � Ef"n"kg (11)

and if for eachk the limit

Ef"n"kg = lim
N!1

1

N

N

n=1

R"(n; k) � R"(k) (12)

exists. The power spectrum of" is defined as the discrete Fourier trans-
form of an autocorrelation function

S"(n; e
j!) =

1

k=�1

R"(n; k)e
�j!k (13)

which may depend on timen. If " is a quasi-stationary process, then
for eachk the limit

S"(e
j!)�S"(n; ej!) = lim

N!1

1

N

1

n=1

1

k=�1

R"(n; k)e
�j!k (14)

exists. We can now compute the noise spectrum of the second-order
modulator with its reference interfered by a signal.

From (4) and assuming that"n, xn, and�n are uncorrelated with
each other, we get

Efynyn+kg = Efrnrn+kg+Efnnnn+kg: (15)

Considering the noise transfer characteristic, we have

Efnnnn+kg

= 2

3
�

(1 + 4Efb1;n+kb1; ng+Efb2;n+kb2; ng) �k
�2 (Efb1;ng+Efb1;n+kb2; ng) �k+1
�2 (Efb1;ng+Efb1;nb2; n+kg) �k�1
+Efb2;ng(�k+2 + �k�2)

= Rn(n; n+ k): (16)

Plugging (16) into (13), we obtain

Sn(n; e
j!)

= 2

3
�

1 + 4Efb21; ng+ Efb22; ng

�4 (Efb1;ng+Efb1;nb2; n+1g) cos(!)

+2Efb2;ng cos(2!)

: (17)
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Fig. 2. Discrete-time equivalent circuit of a second-order�� modulator.

Fig. 3. Simulation diagrams for observing (a) quantization noise leakage due to interfered feedback as well as interfered signal transfer characteristics, (b)
interfered signal transfer characteristics regardless of interfered feedback induced quantization noise leakage, and (c) interfered noise transfer characteristics with
compensated signal input.

It can be assumed that�n is a zero-mean stochastic signal with root-
mean-square (rms) power of�2� and an instantaneous value far less than
the reference voltage such thatj�nj � 1. Thus, we have

Ef�ng =Ef�n�ig = 0;

Ef�2ng =�
2

� for n = 1; 2; 3; . . . ; andi < n: (18)

By using this property, it can be further obtained that

Ef�2l�1n g = 0 for l = 1; 2; 3; . . . : (19)

Then we can take

Efb1; ng =Efb2;ng = 1 + �
2

�

Efb21; ng =Efb22; ng = 1 + 4�2�

Efb1;nb2; n+1g =1 + 3�2� (20)

(in the Appendix). All of them depend only on the rms power, regard-
less of which kind of stochastic process�n. Hence, substituting (20)
into (17), the noise spectrum of the second-order modulator with ref-
erence interfered by a random noise is given by

Sn(e
j!) = 2

3
� 6 + 20�2� � 8(1 + 2�2�) cos(!)

+ 2(1 + �
2

�) cos(2!) (21)

which depends on the rms power of the random process�n. Assuming
a signal in frequency band0 � f < f0, the oversampling ratio is
defined as

OSR =
fS

2f0
=

1

2f0�
=

�

!0
: (22)

For a sufficiently high oversampling ratio, we have

Sn(e
j!) � 2

3
� !

4 + �
2

� 6 + 4!2 + 2

3
!
4

;

where
!

�
� 1: (23)

The noise power in the signal band can be approximately given by

n
2

0 =
f

0

Sn(f)df

�
�4

15

1

OSR5
+ �

2

�

2

OSR
+

4

9

�2

OSR3
+

2

45

�4

OSR5
:

(24)

It appears to be the power of the second-order shaped noise plus quan-
tization noise leakage. The leakage power is proportional to the power
of the interfering noise and depends on the oversampling ratio.

IV. SIMULATION RESULTS

In this section, simulation results of the second-order�� modu-
lator with the reference interfered by a zero-mean stochastic process
are presented. The simulation results obtained are compared with the
analytical results of the previous section.

The output of�� modulators can be represented by a combination
of a signal function and a noise function as (4). It is useful to inves-
tigate the influences of the interfered reference on signal function, on
noise function, and on both of them. The simulation diagrams for in-
vestigating these influences are illustrated by Fig. 3. Based on the di-
agrams, the cumulative power density as well as the power spectral
density of the three different cases can be obtained by simulation. Note
that the cumulative power density, the integral of the power spectral, of
the modulator’s output represents the in-band noise power.

The simulation diagram of a��modulator with reference interfered
by a signal is shown as Fig. 3(a). The signal and reference inputs are,
respectively, assumed by

xk = sin(!0k)

wk =1 + �k�1 (25)
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Fig. 4. Output spectrums of the simulation results of Fig. 3(a)–(c) while the interfering process is uniformly distributed and has an rms power of 1/1000.

Fig. 5. Simulated and theoretical calculated power spectral density while the interfering process is uniformly distributed with rms power of 1/1000.

where�k is a zero-mean stochastic process and should be restricted to
satisfy (8). In this case, the interfered reference has influence on both
signal function and noise function.

In traditional analysis based on the ratiometric concept, the effect of
interfered reference on a signal function has been considered [1], [2],
but the quantization noise leakage incurred by the interfered feedback
was ignored. This case can be modeled by assuming

xk =
sin(!0k)

1 + �k
wk =1 (26)

as shown in Fig. 3(b).
As deduced above, not only the signal function but also the quantiza-

tion noise equation is affected by the interfered reference, resulting in
quantization noise leakage to the band of interest, as expressed by (21).

In order to compare this theoretical prediction directly with a simula-
tion result, the signal input should be multiplied by the reference input,
as shown in Fig. 3(c). Then, from (4), the output functionyk can be
given by

yk =
xk�1
wk

+ ("k � 2b1; k"k�1 + b2; k"k�2)

= sin (!0(k� 1)) + ("k � 2b1; k"k�1 + b2; k"k�2): (27)

The signal function is reduced to a sinusoidal signal whose Fourier
transform will appears to be a single spectral line. Thus, how the quan-
tization noise spectrum is affected by the interfered reference can be
observed directly and clearly from the output spectrum.

Output spectra of the simulation results are shown in Fig. 4, where
the zero-mean interfering process�k has uniform distribution with
power of 0.001 and the signal frequency isfs=64. It can be found
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Fig. 6. Simulated and theoretical calculated power spectral density while the interfering signal is a sinusoidal wave.

that the cumulative power spectrum of ignoring the quantization
noise leakage, case (b), is approximately 15 dB lower than that of
the practical interfered case (a). Besides, the output spectrum of only
considering noise leakage is plotted by curve (c), which is much closer
to curve (a) than curve (b). Therefore, we can conclude that to describe
the behavior of the modulator more precisely, the quantization noise
leakage should be taken into account for a modulator with an interfered
reference.

Furthermore, the output spectrum of the�� modulator with its ref-
erence interfered by different stochastic processes having different rms
power is obtained by behavioral simulation and compared with theo-
retical results, as shown in Fig. 5. The interfering process is normal
(Gaussian) distribution with rms power of 1/1000. This result provides
a good match between the calculated and simulated power spectral den-
sities. With this approach, the analytical description matches the simu-
lation results with a difference of just a few decibels for all signal levels,
oversampling ratios, and interfering stochastic processes.

V. DETERMINISTIC SIGNAL INTERFERING

In practice, we are also interested to know the performance impact
of the modulator with reference interfered by a deterministic signal.
A sinusoidal interfering signal is taken here as an example to observe
this phenomenon. The signal and reference inputs are, respectively, as-
sumed by

xk =A sin(!0k)

wk =1 + 
 sin(!dk) (28)

where
 sin(!dk) is the interfering signal. From (4), the impact on the
linearity of this modulator can be found by

rk =
xk�1
wk

=
A sin(!0k)

1 + 
 sin(!dk)
: (29)

It can be extended that

rk =A sin(!0k)� A
 sin(!0k) sin(!dk)

+A
2 sin(!0k) sin
2(!dk)� � � �

=A 1 +

2

2
+ � � � sin(!0k)

+
A


2
[cos ((!d + !0)k)� cos ((!d � !0)k)]

�
A
2

4
[sin ((2!d+!0)k)�sin ((2!d�!0)k)] + � � � (30)

where the first term is the signal tone including aliasing components
and the second and third terms are the signal tones modulated by the
interfering signal and by its harmonics. Assuming thatA = 
 = 0:1
and!d = 4!0 = 2�=64, the simulated results are shown in Fig. 6. It
can be found that the simulated amplitude of the signal and harmonics
tones agrees with the calculated results as (30).

Furthermore, the noise spectrum of this interfering can be derived
by plugging (28) into (17) and (14). As with the stochastic case, this
deterministic interfering also incurs quantization leakage to the band
of interest. However, in contrast to that case, the values ofEfbi; ng,
Efb2i; ng, andEfb1; nb2; ng depend not only on signal power but also
on its waveform and are obtained by numerical computation here since
they are difficult to obtain by hand calculation. Finally, ifEfbi;ng,
Efb2i; ng, andEfb1;nb2; ng exist, there is a good match between the
analytical and simulated power spectral densities even if the interfering
signal is deterministic, as shown in Fig. 6.

VI. CONCLUSION

A systematic study of the��modulator with an interfered reference
has been carried out. It reveals that the interfered feedback incurs quan-
tization noise leakage to the band of interest and degrades the quanti-
zation noise performance. An analytical model has been proposed to
obtain the output function of the modulator with an interfered feed-
back. The output function shows that the interfered reference makes
the zeros of the noise equation be no longer at dc, and thus the SNR
of the�� modulator is degraded. Based on the quasi-stationary ap-
proximation, the quantization noise spectrum and the in-band quanti-
zation noise power have been derived by taking the Fourier transform
of the autocorrelation function of the interfered output function. For a
stochastic interfering, the in-band power of quantization noise leakage
is proportional to the power of the interfering noise and also depends
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on the oversampling ratio. If the interfering signal is deterministic, the
impact on linearity of the interfered modulator can be evaluated by a
ratiometric function. The theoretical results have been approved by the
comparison between the calculated and simulated results. Note that the
approach developed for the second-order system could be extended to
general high-order modulators using similar techniques. It can be found
that the quantization noise leakage should be taken into account to de-
scribe the behavior of the modulator more precisely while the modu-
lator’s reference is interfered by a signal. Finally, the performance im-
pact of the modulator with an interfered reference can be quickly eval-
uated, and the simulation items about the reference interfering could
be decreased or even omitted.

APPENDIX

From (5) and (8), the expected value ofb1; n andb2; n can be written
as

Efbi; ng = E
1 + �n�i

1 + �n
for i = 1; 2: (A.1)

Sincej�nj < 1, the Taylor expansion of this equation exists; then we
have

= (1 +Ef�n�ig) 1 +

1

l=1

(�1)lEf�lng

=1 +

1

l=1

(�1)lEf�lng+ Ef�n�ig 1 +

1

l=1

(�1)lEf�lng :

Using (18) and (19), we can be take

=1�
1

l=1

Ef�2l�1n g+
1

l=1

Ef�2ln g

=1 +

1

l=1

Ef�2ln g = 1 +

1

l=1

(2l� 1)!!�2l�

� 1 + �
2

� (A.2)

Similarly, the expected value ofb2i; n can be written by

Efb2i; ng = E
1 + 2�n�i + �2n�i

1 + 2�n + �2n
: (A.3)

To ensure the Taylor expansion of this equation existing, we assume
that

j�nj <
p
2� 1; for all n: (A.4)

Hence, we have

1 + Ef2�n�i + �
2

n�ig 1 +

1

l=1

(�1)lE [2�n + �
2

n]
l

= 1 + Ef�2ng+
1

l=0

(�1)l
l

m=0

l

m
2mEf�2l�mn g

� 1 + 4�2�: (A.5)

Furthermore, the expected value ofb1; nb2; n+1 can be given by

Efb1;nb2; n+1g � 1 + 3�2�: (A.6)

Note thatEfbi;ng, Efb2i; ng, andEfb1;nb2; n+1g all depend only on
the mean-square value of� regardless of the kind of random process.
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