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interfered reference modulator, a modified model based on the same
Second-Order Delta—Sigma Modulation with Interfered uncorrelated white noise assumption is proposed, which is presented

Reference in Section Il. Based on this model, the transfer function of the inter-
fered reference modulator can be derived. In Section Ill, assuming a
Yu-Chung Huang and Wei-Shinn Wey stochastic noise interference, the quantization noise spectral density

and cumulative power density are obtained by taking Fourier transfor-
_ B mation for the autocorrelation function of the modulator’s output. In
Abstract—A delta-sigma (A ) modulator has been traditionally an-  gection |V, theoretical spectral densities are compared with simulated
alyzed by assuming its reference to be constant, but practically the refer- ones. These results provide a qood match between the calculated and
ence may be interfered and thus vary with time. For an interfered reference . ~>* p g ;
modulator, the performance of quantization noise is degraded by quanti- Simulated power spectral densities. In Section V, some comments are
zation noise leakage due to interfered feedback. In this paper, a systematic made that relate a deterministic signal interfering to the modulator per-

study for observing the behavior of a second-order modulator with aninter-  formance. Finally, conclusions are presented in Section VI.
fered references is presented, based on a linear modeling, spectral analysis,
and behavioral simulations. An analytical form of the output of aA 32 mod-
ulator with an interfered feedback is obtained and compared with behav- Il. ANALYTICAL MODEL
ioral simulation. Due to the agreement between the theoretical calculation '
and the behavioral simulation results, it is concluded that the quantization A conventional linear model of a 1-bit ADC in AY modulator
noise leakage should be considered for describing the behavior of thid > is shown in Fig. 1(a), which considers the quantization process as an
modulators more precisely. - . . .
o _ additive white noise sourceand the output step size as An analog
_ Index Terms—Analog-to-digital converter (ADC), delta—sigma modula-  jnput : is assumed to be in the no-overload rangetdf. Note here
tion, interfered reference, quantization noise, quantization noise leakage, that the reference signal is normalized to unity for convenience since it
sigma—delta modulation, varying reference. .
is constant.
However, for an interfered reference modulator, this conventional

|. INTRODUCTION model fails to capture the behavior related to the reference. In order to
In‘:tat(:h this behavior, the reference signal is represented explicitly by a
. ; . . ) variablew instead of unity, and the two possible output stateg affe
in mixed-mode signal processing ICs. Conventionallyy: modula- ) ¢ . Y POSSID put states

; . : {j(?flned ast1 instead of+A/2, as shown in Fig. 1(b). Without nor-
tors are analyzed by assuming their reference inputs to be constant. lizati .
ractice, the reference input may be interfered by deterministic sign:[ﬂa ization (o the reference), analog feedback signhhs two pos-

P ' &iBle levels oftw, and the 1-bit ADC input: is in the range between

(e.g., pickup of radio frequency, power lines, etc.) and/or by rando:t w. Consequently, it can be found that the additive white noise model

noise (e.g., flicker, thermal noise, etc.), thus varying with time. Takinsqnould be led by a factor of/l. Thus, the digital output can be given

by

Delta—sigmd AX) modulators have become increasingly importal
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To ensure this modulator’s being in the no-overload region, the in-

A A stantaneous reference times a factdras to be always greater than the
) A A absolute value of instantaneous signal so that
L_TA~A i-A-A X 90D awg > |21 @)
: ’ d’/ : > whereq is less than 1.0 for the second-order modulator [10]. In prac-
T tetADC tice, the reference signal can be represented by a positive constant
AAN voltage with an interfering signal. so that
v < 2°2 : f y=xte wr =14 n; 9)
i htbac o where the constant voltage is normalized to unity for simplicity. Note
here thaty;, is an interfering signal and has to be restricted to ensure
(a) , S
w;'s satisfying (8). Thus, we also have
k| < 1. (10)
: Ill. SPECTRAL ANALYSIS
: ' : >y Spectral analysis ah ¥ modulators can be formulated in the frame-
R PG work of quasi-stationary process as considered as in [11] and [12]. The
P AREAT _x classification of quasi-stationary processes forms a general class of de-
v W : : =—+e terministic and random processes for which the first- and second-order
) : ? : moments are well defined and to which traditional system autocorre-
Woe—— T ) lation and spectral analysis can be applied [13]. This class includes

® stationary as well as asymptotically mean stationary random processes
[14].
A discrete time process; is said to be quasi-stationary if there is a
constant”' such that

E{z} <C; for all &

Fig. 1. (a) Traditional linear model and (b) modified model.

and is sampled at frequeng¢y = 1/7, then the autocorrelation func-

tion can be given by [9] Bz} = \;im %E{ek} exists
Elencr} = 27 60s @ |Be(n.k)|<C:  foralln, kwhereR.(n, k) = E{eacx} (11)
=5
(8] . . .
whereé,, _ is the Kronecker delta and if for eachk the limit LN
5oy = 1, forn==k @) E{enzi}= lim — Z R.(n, k) = R.(k) (12)
0, forn # k. ) n=1 _ .
Based on this model, a sampled-data equivalent circuit of a secoﬁé'—StS' The power spect.rumofs Qeflned asthe discrete Fourier trans-
. . : form of an autocorrelation function
orderAY modulator with an interfered reference can be illustrated in o
Fig. 2. The outpuy; can be given by S.(n, ') = Z R.(n, k)e /=¥ (13)
Th—1 k=—c0
Y = Tk = ek — 2b1 kEk— bo, kEk—2 4 . . . . .
Ye =Tkt M wr, + (e tashot b ki) (4) which may depend on time. If = is a quasi-stationary process, then
where for eachk the limit
) 1 [ee] [ee] ok
w Wh_- Jwy— oy — =l Jjw
by g = LLl/Z;l and by . = LLllzfz ) S.(e’*)=5-(n, eiv) = mhinoo 7 Zl kz R.(n, ke (14)
k 'k n=1 k=—co

exists. We can now compute the noise spectrum of the second-order
modulator with its reference interfered by a signal.
From (4) and assuming that, =, andn, are uncorrelated with
each other, we get
E{ynynt+r} = E{rornii} + E{nnnnyr}. (15)
As viewed from quantization noise., the output noise depending Considering the noise transfer characteristic, we have
onwy, is time variant. In a conventional case with a constant reference, E
. . {nnnntr}

b1, andb; . both are unity, and thus the output noisereduces to a (1+4E{b bin)+ B{D bonl) 6

well-known second difference equation as follows [3]: 1,ntkOL,n 2ok, ) Ok
—2(E{b1,n} + E{b1,ntkb2,n}) Sk+1

which shows a ratiometric function. and a noise equatioty.. Thus,
we have

np =k — 2by kek—1 + bo kEr—2. (6)

2
Mk =Sk = 28k F Sk @) T —2(E{bin) + E{brnbansi}) ber
Comparing (6) with (7), it can be found that the varying reference +E{b2,n } (642 + Ok—2)
makes the zeros of the noise transfer function be no longer at dc, and  _ Ro(n, n+Fk). (16)

thus the signal-to-noise ratio (SNR) of the modulator is degraded by (FF . . .

quantization noise leakage in the band of interest. The more rapidly he99ng (16) into (13), we obtain

reference varies, the more crucial the SNR degradation becomes. MoreS~ (n, ’)

over, an analytical solution to describe the quantization noise power (1 + 4E{bin} + E{bﬁe n})

spectral density can be found by its autocorrelation function, which = 2 —4(E{b1,n} + E{b1,nba, nt1})cos(w) | . (17)
will be presented in next section. +2E{D2,n } cos(2w)
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Fig. 2. Discrete-time equivalent circuit of a second-ordef modulator.
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Fig. 3. Simulation diagrams for observing (a) quantization noise leakage due to interfered feedback as well as interfered signal transfistichatagter
interfered signal transfer characteristics regardless of interfered feedback induced quantization noise leakage, and (c) interfereténolsar aetesistics with
compensated signal input.

It can be assumed thay is a zero-mean stochastic signal with rootThe noise power in the signal band can be approximately given by

mean-square (rms) power@;’; and an instantaneous value far less than , -fo -
the reference voltage such that | < 1. Thus, we have no = /0 Su(f)df
E{n.} =E{n.-i} =0, T Lo [ 2 4 2 o
E{niy=0r forn=1,2,3,..., andi<n. (18) T 15 OSR> ' ""|OSR ' 9 OSR? ' 45 OSR’ |’
By using this property, it can be further obtained that (24)
E{ni’—l} =0 fori=1,2,3..... (19) Itappearsto be the power of the second-order shaped noise plus quan-

Th tak tization noise leakage. The leakage power is proportional to the power
en we can take . of the interfering noise and depends on the oversampling ratio.
E{bi w}=E{b2n}=1+0,

E{b; .Y =E{b .} =1+40, IV. SIMULATION RESULTS

E{bi, nbs ny1} =1+ 30 (20) In this section, simulation results of the second-ordét modu-

(in the Appendix). All of them depend only on the rms power regaréjator with the reference interfered by a zero-mean stochastic process
less of which kind of stochastic process. Hence substitutin(::] (20) are presented. The simulation results obtained are compared with the

into (17), the noise spectrum of the second-order modulator with réPalytical results of the previous section. o
erence interfered by a random noise is given by The output ofAY modulators can be represented by a combination

. ) ) ) of a signal function and a noise function as (4). It is useful to inves-
Sn(e’) =3 7 (6+ 200, — 8(1 + 207,) cos(w) tigate the influences of the interfered reference on signal function, on
+2(1+ 7)) cos(2w)) (21) noise function, and on both of them. The simulation diagrams for in-
vestigating these influences are illustrated by Fig. 3. Based on the di-
agrams, the cumulative power density as well as the power spectral
density of the three different cases can be obtained by simulation. Note

which depends on the rms power of the random proggsAssuming
a signal in frequency ban@dl < f < fo, the oversampling ratio is

defined as . - .
that the cumulative power density, the integral of the power spectral, of
OSR = Js _ 1 _ (22) the modulator’s output represents the in-band noise power.
2fo  2for  wo’ The simulation diagram of A modulator with reference interfered

by a signal is shown as Fig. 3(a). The signal and reference inputs are,

For a sufficiently high oversampling ratio, we have respectively, assumed by

Su(¢’)m 27 (W' + o) (644w + 2w"))., 2x = sin(wok)
w
Where; <1 (23) wy =14+ nK_1 (25)
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Fig. 4. Output spectrums of the simulation results of Fig. 3(a)—(c) while the interfering process is uniformly distributed and has an rms po®wer of 1/10
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Fig. 5. Simulated and theoretical calculated power spectral density while the interfering process is uniformly distributed with rms power. of 1/1000

wherer;, is a zero-mean stochastic process and should be restrictedit@rder to compare this theoretical prediction directly with a simula-
satisfy (8). In this case, the interfered reference has influence on bttn result, the signal input should be multiplied by the reference input,

signal function and noise function. as shown in Fig. 3(c). Then, from (4), the output functigncan be
In traditional analysis based on the ratiometric concept, the effectgifen by

interfered reference on a signal function has been considered [1], [2], _ Tkl ¥ (eh = 2by 4e F b peies)

but the quantization noise leakage incurred by the interfered feedback”* ~ F AR TR R

was ignored. This case can be modeled by assuming = sin (wo(k — 1)) + (& — 2b1, kEk—1 + b2, kEK—2). 27)
wn = sin(wok) The signal function is reduced to a sinusoidal signal whose Fourier

11 + (26) transform will appears to be a single spectral line. Thus, how the quan-

Wy =

tization noise spectrum is affected by the interfered reference can be
as shown in Fig. 3(b). observed directly and clearly from the output spectrum.

As deduced above, not only the signal function but also the quantiza-Output spectra of the simulation results are shown in Fig. 4, where
tion noise equation is affected by the interfered reference, resultingtire zero-mean interfering procegs has uniform distribution with
guantization noise leakage to the band of interest, as expressed by (@dyver of 0.001 and the signal frequencyfis/64. It can be found
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Fig. 6. Simulated and theoretical calculated power spectral density while the interfering signal is a sinusoidal wave.

that the cumulative power spectrum of ignoring the quantization _ 4 <1_|_ ﬁ _|_) sin(wok)
noise leakage, case (b), is approximately 15 dB lower than that of 2
the practical interfered case (a). Besides, the output spectrum of only

Ay Y o
considering noise leakage is plotted by curve (c), which is much closer + 2 [cos ((wa + wo)k) = cos ((wa — wo)k)]

to curve (a) than curve (b). Therefore, we can conclude that to describe Ay? .

the behavior of the modulator more precisely, the quantization noise 4 [sin ((2watwo)k) =sin ((2wa—wo) k)] + -+ (30)
leakage should be taken into account for a modulator with an interfered

reference. where the first term is the signal tone including aliasing components

Furthermore, the output spectrum of th& modulator with its ref- and the second and third terms are the signal tones modulated by the
erence interfered by different stochastic processes having different rimierfering signal and by its harmonics. Assuming tHat= v = 0.1
power is obtained by behavioral simulation and compared with theaadwg = 4wy = 27/64, the simulated results are shown in Fig. 6. It
retical results, as shown in Fig. 5. The interfering process is norntn be found that the simulated amplitude of the signal and harmonics
(Gaussian) distribution with rms power of 1/1000. This result providdésnes agrees with the calculated results as (30).
a good match between the calculated and simulated power spectral defrurthermore, the noise spectrum of this interfering can be derived
sities. With this approach, the analytical description matches the sintay- plugging (28) into (17) and (14). As with the stochastic case, this
lation results with a difference of just a few decibels for all signal levelgeterministic interfering also incurs quantization leakage to the band

oversampling ratios, and interfering stochastic processes. of interest. However, in contrast to that case, the valueE @, .. },
E{b? .}, andE{by,.bo. .} depend not only on signal power but also
V. DETERMINISTIC SIGNAL INTERFERING on its waveform and are obtained by numerical computation here since

) ) __they are difficult to obtain by hand calculation. Finally, AH{b; ..},
In practice, we are also interested to know the performance impae; 2 1, andE{b, bz, } exist, there is a good match between the

of t_he mF’d“'?‘tor W't_h ref_erenc_e interfered by a deterministic S'gn%{nalytical and simulated power spectral densities even if the interfering
A sinusoidal interfering signal is taken here as an example to obseg\(gnal is deterministic, as shown in Fig. 6

this phenomenon. The signal and reference inputs are, respectively, as-

sumed b
y VI. CONCLUSION
zp = Asin(wok) A systematic study of thA X modulator with an interfered reference
wr =14 ysin(wqak) (28) has been carried out. It reveals that the interfered feedback incurs quan-

tization noise leakage to the band of interest and degrades the quanti-
wherey sin(wqk) is the interfering signal. From (4), the impact on thezation noise performance. An analytical model has been proposed to
linearity of this modulator can be found by obtain the output function of the modulator with an interfered feed-

back. The output function shows that the interfered reference makes

p—1 _ Asin(wok) the zeros of the noise equation be no longer at dc, and thus the SNR

T ysin(wak)’ (29) of the A modulator is degraded. Based on the quasi-stationary ap-

proximation, the quantization noise spectrum and the in-band quanti-

It can be extended that zation noise power have been derived by taking the Fourier transform
) ) ) of the autocorrelation function of the interfered output function. For a

rk = Asin(wok) — Ay sin(wok) sin(wqk) stochastic interfering, the in-band power of quantization noise leakage

+ A~ sin(wok) sin® (wgk) — - -« is proportional to the power of the interfering noise and also depends
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on the oversampling ratio. If the interfering signal is deterministic, theurthermore, the expected valuebef, b2, »+1 can be given by

impact on linearity of the interfered modulator can be evaluated by a
ratiometric function. The theoretical results have been approved by the
comparison between the calculated and simulated results. Note that the
approach developed for the second-order system could be extended to

general high-order modulators using similar techniques. It can be fourdte thatE {b; ,, }, E{b>

E{b1,nb2 ni1} ~ 1430, (A.6)

»}, @andE{b1, b2, .1} all depend only on

that the quantization noise leakage should be taken into account to the-mean-square value pfregardless of the kind of random process.

scribe the behavior of the modulator more precisely while the modu-
lator’s reference is interfered by a signal. Finally, the performance im-
pact of the modulator with an interfered reference can be quickly eval-
uated, and the simulation items about the reference interfering coulo[ !
be decreased or even omitted.
[2
APPENDIX

From (5) and (8), the expected valuebof, andbs,,, can be written 13

as
E{bi,n}:E{ } fori =1, 2
(5]

Since|n.| < 1, the Taylor expansion of this equation exists; then we
have

1 + Nn—i [4]

T (A.1)

(6]

(71

=(1+ E{n.—:}) <1+Z -1)'B{p} )
:1+Z(_1)1E1nn}+E{n"—’ <1+Z( 1) Elnn )
=1
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