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A Reed–Solomon Product-Code (RS-PC)
Decoder Chip for DVD Applications

Hsie-Chia Chang, C. Bernard Shung, Member, IEEE, and Chen-Yi Lee

Abstract—In this paper, a Reed–Solomon Product-Code
(RS-PC) decoder for DVD applications is presented. It mainly con-
tains two frame-buffer controllers, a (182, 172) row RS decoder,
and a (208, 192) column RS decoder. The RS decoder features
an area-efficient key equation solver using a novel modified
decomposedinversionless Berlekamp–Massey algorithm.

The proposed RS-PC decoder solution was implemented
using 0.6- m CMOS single-poly double-metal (SPDM) standard
cells. The chip size is4 22 3 64 mm

2 with a core area of
2 90 2 88 mm

2, where the total gate count is about 26K. Test
results show that the proposed RS-PC decoder chip can support
4 DVD speed with off-chip frame buffers or 8 DVD speed
with embedded frame buffers operating at 3 V.

Index Terms—Reed–Solomon Product-Code decoder, DVD, de-
composed inversionless Berlekamp–Massey algorithm.

I. INTRODUCTION

DUE TO increasing demand for high-quality video and
audio consumer products, the digital versatile disc (DVD)

was standardized in 1995 to provide higher storage capacity by
leading industrial consortion. In order to mitigate the errors that
may be introduced during manufacturing or by user damage,
a Reed–Solomon Product-Code (RS-PC) is used in DVD for
error correction. In this paper, we report a RS-PC decoder chip
for DVD applications.

As illustrated in Fig. 1, the DVD RS-PC is composed of a
(182, 172) RS code in the row direction and (208, 192) RS code
in the column direction. We will refer to the matrix
in Fig. 1 as aframe. A RS code contains message
symbols and parity checking symbols, and is capable
of correcting up to symbol errors. For (182,
172) and (208, 192) RS codes, each symbol is one byte.

The most popular RS decoder architecture today, [1], [2] can
be summarized into four steps: 1) calculating thesyndromes
from the received codeword; 2) computing theerror locator
polynomialand theerror evaluator polynomial; 3) finding the
error locations; and 4) computing error values. The second step
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Fig. 1. DVD RS-PC frame structure.

in the four-step procedure involves solving thekey equation1

[1], which is

(1)

where is the syndrome polynomial, is the error lo-
cator polynomial, and is the error evaluator polynomial.

While there has been a lot of research work reported on RS
decoder designs, there has been little on RS-PC decoders. The
architectural design of the RS-PC decoders is different from that
of the RS decoders in the following ways. First, each symbol in
the RS-PC decoder is subject to a row RS decoding and a column
RS decoding. Since the column RS decoding cannot proceed
until all the row RS decodings in the frame are finished, aframe
buffer is required to parallelize the row and column decoding.
Second, in most RS decoder designs,line buffersin the form
of shift registers are used to store the received symbols when
the error locations and error values are computed. When the
code size is large, these line buffers constitute a major portion
of the hardware complexity. In a RS-PC decoder, however, we
can exploit the frame buffers by cleverly arranging the accessing
pattern and eliminating the need of the line buffers. Third, it
is a design choice whether to implement aprogrammableRS
decoder which can serve as row RS decoding and column RS
decoding at different times, or implement onededicatedrow RS
decoder and one dedicated column RS decoder. All these design
considerations will be explained in more detail in this paper.

1In fact, the key equation defined in [1] was(1 + S(x))�(x) = 
(x) mod
x , where the syndrome polynomial was defined to beS(x) = S x . In
our notation which follows [4],S(x) = S x , and hence our key equation
is slightly different.
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Fig. 2. Reed–Solomon decoding flowchart.

Fig. 3. Three-stage pipelining of the RS decoder using the column RS decoder as the example.

Section II describes the RS decoder architecture. Our RS de-
coder architecture is shown in Fig. 2 which contains a syndrome
calculator, a key equation solver, a Chien search and an error
value evaluator. We present a novel implementation of the key
equation solver which helps to reduce the hardware complexity
significantly. Section III describes the dual-frame-buffer archi-
tecture of the RS-PC decoder. We explain the control flow and
data flow of the two frame-buffer controllers. Section IV shows
the chip implementation and chip testing. Finally, in Section V
we conclude the paper.

II. RS DECODERDESIGN

As shown in Fig. 2, we divide the decoding process into four
steps. The syndrome calculator calculates a set of syndromes
from the received codewords. From the syndromes, the key
equation solver produces the error locator polynomial
and the error value evaluator polynomial , used by the
Chien search and the error value evaluator to produce the
error locations and error values, respectively. In Fig. 3, we
illustrate the three-stage pipelining used in (208, 192) column
RS decoder.

In our RS decoder, an inversionless Berlekamp–Massey al-
gorithm is adopted which not only eliminates the finite-field in-
verter (FFI) but also introduces additional parallelism. We dis-
cover a clever scheduling ofthreefinite-field multipliers to im-
plement the algorithm, which is named asdecomposedinver-

tionless Berlekamp–Massey algorithm here. Because of the de-
composed algorithm, a specified sequence is added to the syn-
drome calculator, and we will illustrate the modification in Sec-
tion II-A. In Sections II-C and II-D, we introduce how to calcu-
late error locations and error values.

A. Syndrome Calculator

By definition the syndrome polynomial is
, , where

is a received polynomial and
is the first received symbol into a syndrome cell illustrated in
Fig. 4(a).

As shown in Fig. 4(a), at each cycle, the partial syndrome is
multiplied with and accumulated with the received symbol.
After all the received symbols are processed, the accumulated
result is the th syndrome. The upper side of Fig. 4(a) indicates
a way to connect multiple syndrome cells to generate a control-
lable sequence of syndrome results.

Fig. 4(b) shows how the 16 syndrome cells (for ) are or-
ganized in our chip. By controlling the multiplexer in Fig. 4(b),
we can generate different syndrome sequences for the calcula-
tion of the discrepancy in the key equation solver. Table I
shows all 16 different syndrome sequences.

B. Key Equation Solver

The techniques frequently used to solve the key equation in-
clude the Berlekamp–Massey algorithm [1], [5], the Euclidean
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(a)

(b)

Fig. 4. (a)Syndrome cellS . (b) Syndrome calculator cell structure and its buffer. Note that for simplification, we taket = 8.

TABLE I
THE 16 SYNDROME SEQUENCESREQUIRED TOCALCULATE �

algorithm [2], and the continuous-fraction algorithm [3].
Compared to the other two algorithms, the Berlekamp–Massey
algorithm is generally considered to be the one with the
least hardware complexity [6]. Another advantage of the
Berlekamp–Massey algorithm is that it can be formulated to
compute only and the computation of is similiar to
discrepancy , thus saving a portion of the hardware used to
compute .

Existing architectures to implement the Berlekamp–Massey
algorithm in hardware were proposed by Berlekamp [7], Liu [8],
and Oh and Kim [9]. These proposals require finite-field
multiplications (FFMs) whereis the number of correctable er-
rors. In addition, they all require an FFI to implement the divi-
sion operation. An inversionless Berlekamp–Massey algorithm
was proposed by Burton [10] for BCH decoders, and was imple-
mented by Reed, Shih, and Truong [6] for BCH and RS codes.

However, more FFMs are required in the existing implementa-
tion of the inversionless Berlekamp–Massey algorithm [6].

1) Decomposed Inversionless Berlekamp–Massey Algo-
rithm: An inversionless Berlekamp–Massey algorithm is
adopted in our architecture that is a-step iterative algorithm,
as shown in the following:

Initial condition:

for ( to )

If ( or ) then

else

where is the th step error locator polynomial and
's are the coefficients of ; is the th step dis-

crepancy and is a previous nonzero discrepancy; is an
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TABLE II
DATA DEPENDENCY OF THEINVERSIONLESSBERLEKAMP–MASSEY ALGORITHM AFTER DECOMPOSITION

auxiliary polynomial and is an auxiliary degree variable in
th step.

Define

for

for
(2)

for

for
(3)

where , ’s are the

coefficients of , and ’s are thepartial resultsin
computing . At the first cycle of th step, we get

(4)

In other words, we candecomposethe th iteration into cy-
cles. In each cycle requires at most two FFMs and
requires only one FFM. The data dependency of the decom-
posed algorithm can be seen in Table II.

It is evident from Table II that, at cycle, the computation
of requires and , which have been com-
puted at cycle . Similarly, at cycle , the computation
of requires and , which have been computed
at cycle 0 and the th step, respectively. Note that the
original Berlekamp–Massey algorithm cannot be scheduled as
efficiently because the computation,

, requires twosequentialmultiplica-
tions and one inversion. The inversionless Berlekamp–Massey
algorithm provides the necessary parallelism to allow our effi-
cient scheduling. The scheduling and data dependency of the
decomposedalgorithm are further illustrated in Fig. 5.

The decomposed algorithm shown above suggests
a three-FFM implementation of the inversionless
Berlekamp–Massey algorithm, which is shown in Fig. 6.
Compared to the previously proposed parallel architectures
[6]–[9] our architecture reduces the hardware complexity
significantly. Compared to a previously proposed serial
architecture [11], our architecture reduces the time complexity
significantly because of the reduction of cycle time and the
number of clock cycles. Therefore, our proposed architecture
achieves an optimization in the area-delay product.

Fig. 5. Scheduling and data dependency of the decomposed inversionless
Berlekamp–Massey algorithm. The dotted line represents the data dependency.

Dual-basisfinite-field arithmetic is adopted in the key equa-
tion solver for lower gate count [12]. A dual-basis FFM takes
one input in standard basis and the other input in dual basis to
produce a dual-basis output. In Fig. 6, the dotted lines corre-
spond to the data symbols in dual basis while the solid lines
correspond to the data symbols in standard basis, and D2S is a
dual-to-standard basis converter.

2) Efficient Computation of : The conventional
way to compute the error evaluator polynomial is to
do it in parallel with the computation of . Using the
Berlekamp–Massey algorithm, this involves an iterative algo-
rithm to compute . However, if

is first obtained, from the key equation and the Newton’s
identity we could derive as follows:

(5)

(6)

That is, the computation of can be performeddirectlyafter
is computed. Note that the direct computation requires

fewer multiplications than the iterative algorithm which com-
putes manyunnecessaryintermediate results. The penalty of
this efficient computation is the additional latency because
and are computed in sequence.

Furthermore, it can be seen that the computation of is
very similar to that of except for some minor differences.
Therefore, the same hardware used to compute can bere-
configuredto compute after is computed. Like ,
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Fig. 6. Three-FFM architecture for implementing the decomposed inversionless Berlekamp–Massey algorithm. Note that the�(x) buffer stores final coefficients
of �(x) for the standard basis.

Fig. 7. Three-FFM architecture reconfigured to compute
(x). Note the labels in this figure are different from those in Fig. 6.

’s are the partial results in computing and we could de-
rive it as follows:

for

for
(7)

At the last cycle of the th iteration in (7),
. In Fig. 7, we show how the same three-FFM

architecture can be reconfigured to compute .
3) Application Conditions for Errors and Erasures:For

decoding errors and erasures, the key equation is modified
to , where is the errata
evaluator polynomial, is the
Forney syndrome polynomial, and
and is the erasure set [1]. Furthermore, we could rewrite the
inversionless Berlekamp–Massey algorithm as follows:

Initial condition:

for to

If or

else

where is the number of erasures, is the th step errata
locator polynomial with degree, and ’s are the coefficients
of .

Let us now calculate the total number of cycles required to
compute and using our decomposed architecture. It
is clear that the degree of at most increases by one during
each iteration. Therefore, we use to set the upper
bound of .

Because both errors and erasures are corrected, we need
cycles to compute the initial and we have

for

for .
(8)
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TABLE III
NUMBER OF CYCLES REQUIRED TO IMPLEMENT THE INVERSIONLESS

BERLEKAMP–MASSEY ALGORITHM FOR AN (N; K) RS CODE USING

OUR DECOMPOSEDALGORITHM

The number of cycles to compute is

(9)

The number of cycles required to compute is

(10)

Hence the total number of cycles is less than
.

Table III shows the maximum number of cycles for different
RS codes with ranging from 4 to 16. If is

larger than the number of cycles required, then our area-efficient
architecture can be applied to reduce the hardware complexity
while maintaining the overall decoding speed.

C. Chien Search

In an RS decoding algorithm, a Chien search is used to check
whether the error locator polynomial equals zero or not
while , . If , it
means there is an error at , where the received polynomial is
defined as and

is the first received symbol. Fig. 8(a) shows the circuit of
the th Chien search cell. The upper side of the Chien search cell
accumulates the result of this and the previous cell, and sends
the sum to the next cell.

Fig. 8(b) shows the structure of the Chien search module with
eight Chien scarce cells. AnXOR gate is used to check if the final
sum is zero.

It is instructional to observe the similarity between the syn-
drome cell and the Chien search cell in our architecture. The
only difference is that the location of the finite-field adder and
the multiplexer is interchanged. In a fully custom layout, such
similarity is very helpful to reduce chip area.

D. Error Value Evaluator

For calculating the error value, there are two popular
methods, namely the transform decoding process in the fre-
quency domain and the Forney algorithm in the time domain.
Although the transform decoding process does not need any FFI
and Chien search, it requiresvariable–variable FFMs and
constant–variable FFMs. While and are large, the Forney
algorithm is preferred because of its lower circuit complexity.

(a)

(b)

Fig. 8. (a) Chien search cellC . (b) Chien search structure fort = 8.

Fig. 9. Error value evaluator structure fort = 8.

In the Forney algorithm, the error value becomes

(11)

where indicates the root of , for . Be-
cause of the fact that any element will be zero while
multiplying an even constant value, and will be its original value
while multiplying an odd constant, the first derivative of
can be represented as

(12)

Note that is the largest odd number less than or equal to
, and .

So we rewrite the Forney’s algorithm as

(13)

In Fig. 9, we calculate error values in parallel with the com-
putation of the Chien search. Note that cells C1C8 in Fig. 9
are all the same as the Chien search cells in Fig. 8(a). The only
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Fig. 10. RS-PC decoder chip architecture.

difference is the loaded coefficients are instead of
. While the computation of the Chien search is into

th iteration, the value of in Fig. 8(b) is , and the
value of in Fig. 9 is

. In other words, , theactivesignal
goes to high, and the output of FFM in Fig. 9 is the error value
of the received codeword .

III. FRAME BUFFERCONTROLLER

The DVD RS-PC decoder can be implemented by a pair of
dedicatedrow ( ) and column ( ) RS decoders, or
by aprogrammable( ) RS decoder. Through some added
control logic, a programmable RS decoder with can sup-
port both row and column RS decoding. The main drawback
of using one RS decoder is that the throughput rate is reduced.
In our work, we used two dedicated row and column RS de-
coders to maximize the throughput rate. Taking advantage of
the area-efficient architecture mentioned in the previous section,
our two-RS-decoder architecture is both feasible in complexity
and fast in speed.

In RS-PC decoding, each symbol is subject to a row RS
decoding and a column RS decoding. There are two pos-
sible frame-buffer architectures—single and dual. In the
single-frame-buffer architecture, theth incoming row of
frame is stored at the location of theth outgoing column
of frame . In other words, each adjacent frame is
stored in atransposedfashion. The frame-buffer size in the
single-frame-buffer architecture for DVD RS-PC is
[max (row, column)]. The drawback of the single-frame-buffer
architecture is that the RS-PC decoder output sequence is
different from the input sequence. The former is column-wise
while the latter is row-wise. This effect is similar to passing
the input data through aninterleaver. To deinterleave the
data, a frame buffer is also required. Therefore, unless the
downstream processing (e.g., MPEG decoding) can be done
using the interleaved data directly, the single-frame-buffer

RS-PC decoder architecture is not preferred because it simply
transfersthe storage requirement to downstream processing.

In our design, we use a dual-frame-buffer architecture. Each
frame buffer is controlled by a frame-buffer controller. The
RS-PC decoder architecture is illustrated in Fig. 10 which
contains two frame-buffer controllers that interface with two
off-chip frame buffers, a (182, 172) row RS decoder and a (208,
192) column RS decoder. At any time, one (primary) frame
buffer is serving the incoming data, the outgoing data, and the
(182, 172) row RS decoder, and the other (secondary) frame
buffer is serving the (208, 192) column RS decoder. The error
locations and error values computed by the RS decoders are
sent to the frame-buffer controllers to update the frame-buffer
content accordingly. This parallel architecture minimizes the
amount of frame-buffer access and timing constraint on the RS
decoders. The architecture also allows the frame buffers to be
incorporated as on-chip embedded SRAMs or DRAMs, which
are not yet realized in the current chip.

Since we only need to correct the user data part of the frame,
for each input row, the last ten parity checking bytes are used
only by the row RS decoder and not stored in the primary frame
buffer. The size of the frame buffer is therefore . The
remaining memory bandwidth is used by the row RS decoder
for error correction. Likewise, in the column RS decoding, only
172 columns are processed.

The frame-buffer controller consists of an address plane and
a data plane, as shown in Fig. 11. The address plane consists of
a row address generator and a column address generator, each
selecting one out of three possible addresses: counter, counter

, and the error location address. The data plane provides a
great number of different data routes: input to buffer, buffer to
output, buffer to column RS decoder input, and error correction.

The detailed symbol and memory interface timing for the row
and column decoders is illustrated in Figs. 11 and 12, respec-
tively. During each DVD symbol time, each frame buffer under-
goes one read and one write operation, both at the same address.
For the row decoder and the primary frame buffer, as shown
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Fig. 11. Frame-buffer controller diagram.

Fig. 12. Frame-buffer controller control signals.

in Fig. 12, in the first 172 symbol times, the (decoded) output
of frame is read out immediately before the incoming
symbol is stored. The DVD timing specification demands two
sync symbols every 91 data symbols per row. After the 172 data
symbols, the memory bandwidth is used to perform error cor-
rection of the second previous row. Since for row RS
decoder, it takes up to five symbol times to finish the error cor-
rection. For error correction, the frame-buffer content is read
out,XOR-ed with the row or column error value and then written
back in the same DVD symbol time.

For the column RS decoder and the secondary frame buffer,
as shown in Fig. 12, in the first 208 symbol times, the corre-
sponding data symbols are read out in the memory read cycle.
The memory write cycle in this period is idle. After the first
208 symbol times, the memory bandwidth is used to perform
error correction of the second previous column. Since for

column RS decoder, it takes up to eight symbol times to finish
the error correction. The total time to process one column is
therefore 216 symbol times. The total time to finish the column
RS decoding is symbol times.

The two frame-buffer controllers change their roles by the
control of a number of externally or internally generated control
signals, illustrated in Fig. 12. Theselectsignal selects the pri-
mary frame buffer, and is derived from thesyncsignal defined
in DVD. Due to the pipeline latency, the secondary frame buffer
does not start the column RS decoding until two row delays, in-
dicated by themodesignal. Thecorrectionsignal indicates the
time period within which the error correction is performed.

IV. CHIP IMPLEMENTATION AND TESTING

We implement the RS-PC decoder chip by Verilog and all of
modules designed by gate-level description. The total Verilog
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Fig. 13. Chip die photo.

code takes about 3000 lines. In our design, the delay time be-
tween two registers is restricted to only permit one FFM and one
finite-field adder for speed consideration. For complexity con-
sideration, we choose constant–variable FFMs to implement the
syndrome calculator, the Chien search, and the error value eval-
uator. Note that the constant–variable FFM only needs
XOR gates while the variable–variable FFM requires 73XOR

gates and 64AND gates [12].
The chip was designed using the Compass cell library in a

0.6- m single-poly double-metal (SPDM) CMOS process. The
chip size is with a core size of

. The chip die photo is shown in Fig. 13. The total gate
count is about 26K, including 14K for the (208, 192) column RS
decoder and 9K for the (182, 172) row RS decoder. The 99-pin
chip is packaged in a 100 LD CQFP package, where 48 pins are
for frame-buffer interface and can be eliminated with embedded
frame buffers. In the test mode, the column RS decoder can op-
erate on the input data directly and bypass the frame buffer (a
connection not shown in Fig. 10). While operating at 3 V, the
row and column RS decoders have been tested to work success-
fully at 33 MHz. The RS-PC decoder, however, is currently lim-
ited in speed by the off-chip frame buffer to about 18 MHz. The
power dissipation of the chip is 102 mW at 33 MHz.

As the DVD symbol rate is less than 4 Mbytes/s, our RS-PC
decoder can support a speed of DVD with off-chip frame
buffers or DVD with embedded frame buffers. The improved
speed performance is attributed to the parallel RS decoder archi-
tecture, which is made feasible by the proposed area-efficient
key equation solver.

V. CONCLUSION

In this paper, the design and implementation of an area-ef-
ficient RS-PC decoder chip for DVD applications is pre-
sented. Based on a modified decomposed inversionless
Berlekamp–Massey algorithm, more optimal hardware struc-
ture for the key solver equation can be achieved. Moreover,
the derived structure can be applied to other functional blocks,
leading to a very regular structure for the area-delay product.
As a result, an area-efficient solution for RS-PC decoder chip
can be obtained.

The proposed chip solution contains two frame-buffer con-
trollers, a row RS decoder, and a column RS decoder. Imple-
mented in a 0.6-m CMOS SPDM standard cells, measurement
results show that DVD speed can easily be achieved.
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