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Abstract

In recent years, many packet fair queueing algorithms have been proposed to approximate generalized processor

sharing (GPS). Most of them provide a low end-to-end delay bound and ensure that all connections share the link in a

fair manner. However, scalability and simplicity are two signi®cant issues in practice. De®cit Round Robin (DRR)

requires only O(1) work to process a packet and is simple enough to be implemented in hardware. However, its large

latency and unfair behavior are not tolerated. In this work, a new scheme, Pre-order De®cit Round Robin, is described,

which overcomes the problems of DRR. A limited number, Z, of priority queues are placed behind the DRR structure to

reorder the transmission sequence to approximate packet by packet generalized processor sharing (PGPS). We provide

an analysis on latency and fairness, which shows our scheme as a better alternative to DRR. In most cases PDRR has a

per-packet time complexity of O(1), and O�log Z� in other speci®c cases. Simulation results are also provided to further

illustrate its average behavior. Ó 2001 Elsevier Science B.V. All rights reserved.

Keywords: Packet scheduling; Fair queueing; Round robin; De®cit

1. Introduction

In recent years, many packet scheduling algorithms, which aim to approximate generalized processor
sharing (GPS) [1] have been proposed [2±7]. Stiliadis and Verma [8] presented a broad class of schedulers to
describe their common architecture and provided a systematic analysis regarding their latency and fairness
properties. Generally, for the class of schedulers, there are two major operations, which are the key factors
in determining the implementation complexity. One is the maintainence of virtual time and the other selects
the most eligible packet to send out next among all active ¯ow queues.
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To reduce the complexity of the above two major operations in this class of schedulers, many scheduling
algorithms were proposed [3±7,9±11]. Some algorithms can reduce complexity to O(1) [9±11]. However,
their schemes and analytical results can only be applied to ®xed packet sizes and, hence, are only suitable
for ATM networks. Others can handle variable-length packets and o�er good scheduling properties such as
fairness and latency. However their complexities are still dependent on N, e.g., O�log N�, where N is the
number of ¯ows [3,4,7]. Among them, De®cit Round Robin (DRR) [5] (a credit-based version of Round
Robin) is an extreme case. It requires only O(1) work to process a packet and is amenable to variable-length
packets. But its latency and fairness [8] are higher than others, such as self-clocked fair queueing (SCFQ) [3]
which has O�log N� per-packet time complexity. How it performs these two operations with only O(1) work
is most interesting. In contrast, the problems cause DRR's intolerable properties in latency and fairness
which are what we have attempted to overcome.

Herein, a new scheduling algorithm, Pre-order De®cit Round Robin (PDRR), is proposed whose ob-
jective is to solve the problems of DRR while keeping the advantage of O(1) per-packet time complexity in
most cases and remaining amenable to variable-length packets. This goal is achieved through two im-
provements. First, a Pre-order Queueing module is appended to the original architecture of DRR. The new
design solves the phenomenon of small packets waiting too long to be transmitted, which is caused by
sending large packets at inappropriate time. Secondly, the quantum update operation was separated from
the dequeue operation of DRR and thereby enable the packet to be considered for sending out in this round
upon arrival. In the original DRR, the packet is refrained from being sent out until the ¯ow's turn arrives.
In the worst scenario, it might just miss the opportunity and therefore not be sent out in this round. The
above two improvements enable the server to reorder the transmission sequence of DRR in one round and
send out a packet in an eligible time as early as it may.

Next, we analyzed our PDRR algorithm with respect to three measures, including latency, fairness and
per-packet time complexity. The analysis con®rms that PDRR o�ers better performance in latency and
fairness than DRR and lower time complexity than SCFQ. Finally, through simulation results, we also
demonstrate the average behavior of PDRR.

The rest of the paper is organized as follows. Section 2 illustrates the problems of DRR. Section 3
presents a new scheme, PDRR, to resolve these problems. Section 4 gets the analytical results of PDRR on
latency, fairness, and per-packet time complexity, and Section 5 presents simulation results demonstrating
the average behaviors. Section 6 describes some related works and ®nally, in Section 7 we summarize our
work and illustrate future directions.

2. Motivation

2.1. De®cit Round Robin

DRR [5], proposed by Shreedhar and Varghese is a simple scheduling algorithm. Herein, its structure is
conceptually depicted. For additional details, readers are referred to [5]. Examples to explain what its
problems are and solutions are also provided.

The server in DRR rotationally selects packets to send out from all ¯ows that have queued packets. DRR
maintains a service list to keep the ¯ow sequence being served in a round and to avoid examining empty
queues. If a ¯ow has no packets in its queue, its identi®er will be deleted from the service list. The next time
a packet arrives to the ¯ow that has an empty queue, the identi®er of the ¯ow will be added to the tail of the
list.

We now come to see the number of packets can that be sent once a ¯ow is served. For each ¯ow, two
variables, Quantum and De®citCounter, are maintained. Quantum is the amount of credits in byte allocated
to a ¯ow within the period of one round. Quantumi for ¯ow i can be derived as
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Quantumi � ri

C
� F ; �1�

where ri is the rate allocated to ¯ow i, C the link service rate, and F is the frame size that represents the
summation of Quantum's for all ¯ows. DeficitCounterjÿ1

i accumulates the residual Quantumi of ¯ow i in the
�jÿ 1�th round. The next time that ¯ow i is served, it can send out additional DeficitCounterjÿ1

i bytes of
data in the jth round. By this rule, once ¯ow i is served, two steps are performed. First, the server updates
DeficitCounterj

i as

DeficitCounterj
i � DeficitCounter jÿ1

i � Quantumi:

Second, it veri®es the size of the packet at the queue head of ¯ow i. If the size is smaller than
DeficitCounterj

i ; DeficitCounterj
i is decreased by this packet size and the packet is sent out. The server

repeats to execute this operation until the size of the head packet is larger than DeficitCounterj
i , that is there

are insu�cient credits to serve the subsequent packet, or there are no remaining packets in the queue of ¯ow
i. In the former case, the time it takes to transmit this packet is delayed and the residual value in
DeficitCounterj

i is held until the subsequent turn arrives. Again, the next time ¯ow i gets its turn, it can send
out additional DeficitCounterj

i bytes of data in addition to Quantumi bytes. In the latter case, DeficitCounterj
i

is reset to zero, that is the residual credits remaining from the previous round cannot be carried over to
serve the following burst. Or it may delay the service to other ¯ows.

2.2. Quantum size

Deciding Quantum size is an important issue. According to Shreedhar and Varghese [5], if we expect that
the work for DRR is O(1) per packet, then the Quantum for a ¯ow should be larger than the maximum
packet size within the ¯ow so that at least one packet per backlogged ¯ow can be served in a round. Besides,
according to the meaning of Quantum, for any two ¯ows i and j, we have

Quantumi

Quantumj
� ri

rj
: �2�

To satisfy the above two constraints for all ¯ows, the Quantum of a ¯ow might be very large and many
times its maximum packet size.

An example is used to further illustrate the above problem. Assume that there are four ¯ows, sharing the
same link, whose tra�c parameters are depicted in Table 1 and the link capacity is 160 Mbps (megabits per
second). Let us consider the determination of Quantum. Under the above two constraints, ¯ow B that has
the maximum ratio of maximum packet size to reserved rate was selected as the base and its Quantum was
set to its maximum packet size, 640. The Quantum of alternate ¯ows are set according to (2). Notably, the
Quantum size of ¯ow D is 25.6 times of the maximum packet size of ¯ow D.

Table 1

The tra�c parameters and quantum size of four ¯ows

Flow ID Reserved rate

(Mbps)

Tra�c type Maximum

packet size (byte)

Ratio of max packet

size to reserved rate

Quantum size

(byte)

A 12.8 CBR 400 250 512

B 16 CBR 640 320 640

C 64 CBR 800 100 2560

D 64 CBR 100 12.5 2560
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2.3. Problems and causality of DRR

Fig. 1 depicts the problems as the Quantum size reaches many times the size of the maximum packet.
Suppose that there are four ¯ows requesting the same amount of bandwidth and have ®xed, but hetero-
geneous packet sizes. The same Quantum is assigned to all of them and, according to the rules in Section 2.2,
the Quantum should be equal to the largest maximum packet size among all ¯ows. Assume that packets 1, 4,
6, and B arrive at the same time and all have greedy ¯ow sources. Namely, all ¯ows are heavily backlogged.
By comparing the output pattern in DRR with that in WFQ, three problems are observed. First, packets 1, 4
and 6 should be transmitted according to the sequence of service completions in the ¯uid server such as 6, 1
and 4. However, DRR only considers whether a packet could be sent out in a round and does not care for
their eligible transmission sequence. Second, packets 6, 7, 8 and 9 are sent out in a batch, which in terms of
latency and fairness is not a well behavior. Third, the transmission time of packet B with size slightly greater
than the residual credits of this round is delayed until the next turn of this ¯ow, after all other ¯ows ®nish
their transmissions in the second round. In fact, in contrast with the result in WFQ, it may wait too long.
The delay increases with the frame size and a larger Quantum size produces larger frame size.

Thus, all three above mentioned problems are due to the large Quantum size, as compared with the
maximum packet size. Reducing the Quantum size is an intuitive solution. However, it is ine�ective as it
would often cause the server to discover nothing to send out after querying all ¯ows. Thus, the Quantum
size is not reduced. Instead, a Pre-order Queueing module is appended to the original DRR scheduler to
divide Quantum into several parts, which makes the ¯ow to spend its Quantum in pieces within a round.
Furthermore, for the packet described in the third problem, its transmission sequence is decided only ac-
cording to the size of its portion over the residual credit of the previous round, which enables the server to
treat it as fair as those packets of smaller size than Quantum.

3. Pre-order De®cit Round Robin

3.1. Architecture

A new algorithm, Pre-order De®cit Round Robin (PDRR), is presented herein. Fig. 2 illustrates
an overview of the PDRR architecture. An additional module, Pre-order Queueing, which consists of a

Fig. 1. Input and output patterns of packets in DRR and WFQ. Packets on the right-hand side of the broken line are allowed to be

sent out in the ®rst round. Packet B is excluded in the ®rst round.
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classi®er sub-module and a priority queueing sub-module, is appended to the original architecture of DRR
so as to pre-order the service order of DRR and overcome the problems described in Section 2.3. Fig. 2
shows that the priority queueing sub-module has a limited number of priority queues, Z. Let Pq1;
Pq2; . . . ; PqZ denote the priority queues. As the server is ready to transmit, it picks up one packet from Pqj

with the smallest j among all nonempty priority queues. In one round, even when the server has sent out all
packets in Pqj�1, if one packet arrives at Pqj, this packet is sent out before any other packets in Pql where l is
larger than j.

The classi®er sub-module decides which priority queue a packet should enter. Since the server picks
packets from Pqj with the smallest j among all nonempty ones, Pre-order Queueing in e�ect determines the
order of packets in a round that appear in the output link. Prior to describing our classi®er, we show why
PDRR can approximate PGPS. Assume that all ¯ows begin heavily backlogged at time t and review the
output pattern of WFQ (Fig. 1). The server in WFQ selects packets to send out according to the sequence of
service completions within the ¯uid server. That is, the packet with the smallest virtual ®nishing timestamp
among the packets at the heads of all ¯ow queues can be sent out ®rst. Under the above heavy backlog
assumption, the virtual ®nishing timestamp of a packet is computed as

TSm
i � TSmÿ1

i � Lm
i

ri
; �3�

where TSm
i denotes the timestamp of the mth packet of ¯ow i after time t and, for all i, TS0

i is set to zero at
time t, ri denotes the allocated rate of ¯ow i, and Lm

i denotes the size of the mth packet of ¯ow i after time t.
Eq. (3), by substituting Accm

i for TSm
i � ri, is equivalent to

Accm
i

Quantumi
� Accmÿ1

i � Lm
i

Quantumi
; �4�

where Accm
i denotes the accumulated amount of data with in a byte that ¯ow i has sent out after trans-

mitting the mth packet after time t. Assume that all m packets could be transmitted in the kth round.
Eq. (4), by replacing Accm

i with DeficitCounter0
i ÿ DeficitCounterm

i , is equivalent to

Fig. 2. The architecture of PDRR. Fqi denotes the queue of ¯ow i. Pqj denotes the priority queue j in Pre-order Queueing. Di denotes

the DeficitCounteri. S is the server.
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DeficitCounterm
i

Quantumi
� DeficitCountermÿ1

i ÿ Lm
i

Quantumi
; �5�

where DeficitCounterm
i denotes the residual credits of ¯ow i in this round after it puts the mth packet into

the Pre-order Queueing. To further illustrate the equivalence, the following de®nition is required:

De®nition 1. The Quantum Availability, QAm
i , of the packet P m

i is the ratio of its DeficitCounterm
i to

Quantumi, i.e.,

QAm
i �

DeficitCounterm
i

Quantumi
: �6�

Lemma 1. For any packet P m
i , its Quantum Availability, QAm

i , satisfies

06QAm
i < 1:

Proof. Readers are referred to Appendix A. �

Lemma 2. For the packet with the smallest timestamp in one round, its QA is the largest.

Proof. Readers are referred to Appendix A. �

According to the Smallest virtual Finishing time First policy [12], to approximate the sequence of service
completions in GPS, the server should select the packet with the smallest timestamp to send out. From the
Lemma 2, our architecture selects the packet with the largest QA within one round to send out. However, it
costs too much time to ®nd the packet with the largest QA among all packets that could be sent out in this
round. Thus, our classi®er only classi®es packets to several classes according to their QA and places them
into the corresponding priority queues. Assume that there are Z priority queues and, hence, Z classes. For
the mth packet of ¯ow i that can be sent out in this round, its class nm

i can be derived as

nm
i � Z ÿ QAm

i

� � Z
� � Z ÿ DeficitCounterm

i

Pqgi

� �
; �7�

where DeficitCounterm
i denotes the residual credits in byte for ¯ow i in the kth round after the mth packet is

placed into a priority queue, and Pqgi denotes the granularity of priority queue for ¯ow i derived as

Pqgi � Quantumi

Z
: �8�

3.2. Algorithm

Our scheduling algorithm is described formally herein. That is, it repeatedly performs the following three
modules: PKT_Pass, PKT_Arrival and PKT_Departure. PKT_Pass manages the update of the Deficit-
Counter for each ¯ow and classi®es eligible packets into the priority queueing sub-module from their Fq.
PKT_Arrival simply places each arrival packet into its corresponding Fq. PKT_Departure declares the
beginning of a new round and noti®es PKT_Pass to process non-empty Fq's. Once there are packets in the
priority queueing sub-module, it repeatedly picks the packet from Pqj with the smallest j, among non-empty
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priority queues, to serve. A min heap, a complete binary tree in which the key value in each node is no larger
than the key values in its children (if any), is used to enable PKT_Departure to e�ciently obtain the in-
formation about the smallest j.

Prior to examining these pseudo codes of the three operations, Tables 2 and 3 contain some necessary
de®nitions.

Below is our PKT_Pass and PKT_Arrival pseudo code:

On arrival of packet p, PKT_Arrival obtains its ¯ow identi®cation i and places it into Fqi. It then noti®es
PKT_Pass if there are no other packets in Fqi. For each packet that could be sent out in this round,
PKT_Pass decides to which class j it belongs and takes it into the corresponding priority queue Pqj from its

Table 2

The operations used in PKT_Arrival and PKT_Departure and PKT_Pass procedures

Operation Description

Enqueue, Dequeue, NonEmpty, Empty, Head The standard Queue operations

NumItem(A) Return the number of entries in the A

MH_Insert(x), MH_Delete(), MH_Empty() The standard operations of the min heap

MinHeapRoot The minimum value among nodes of the min heap

MH_Lock, MH_Unlock After locking, only one module can access the min heap

SetEvent(ev) Signal the event ev. The event will remain until signaled someone releases it

EventCase�WaitEvents(ev1; ev2; . . .) Once any event is in the signaled state, return it to EventCase and release it. Note

ev1 is prior to ev2

SendMsg(x; y) Send message along with value y to x
y�WaitMsg() Wait message and store the received value in y
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Fq. If it is the ®rst packet of Pqj, the function MH_Insert along with parameter j is called to indicate that Pqj

is not empty. Alternately, if there are packets which cannot be sent out in this round, due to the insu�cient
value of DeficitCounter, a ¯ow identi®er is inserted into AckList. PKT_Departure knows, from ActList,
which ¯ow queues have remaining packets in this round and accumulate their residual credits for the next
round.

We now describe our PKT_Departure as the following pseudo codes

Once packets are pushed into the priority queueing sub-module by PKT_Pass, the status of the event
EVminheap is also be signaled to noti®y PKT_Departure to send out a packet drawn from PqMinHeapRoot. After
the transmission is complete, ServerIdle is signaled and PKT_Departure repeats the last action until the
PqMinHeapRoot is empty. At this point, the function MH_Delete deletes the root node of the min heap and sets
MinHeapRoot to the smallest j among residual nodes. When the min heap is empty, i.e., all Pqj's are empty,
PKT_Departure declares the arrival of a new round by adding 1 to Roundsys. For all non-empty Fq's, i.e.,

Table 3

The variables used in PKT_Arrival and PKT_Departure and PKT_Pass procedures

Variable Description

Fqi The queue of ¯ow i; i � 1; . . . ;N
Pqj Priority queue j; j � 1; . . . ;Z
Quantumi The created allocated to ¯ow i in one round

DCi The De®citCounter of that ¯ow i

Pqgi The granularity of priority queue for ¯ow i

Z The number of priority queues

Roundsys The identi®cation of the system current round

Roundi The identi®cation of the round of ¯ow i

EVminheap A event signaled as one key was placed into the empty min heap

EVactlist A event signaled as one item was placed into the empty ActList
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¯ows with packets remaining in the last round, it updates their DeficitCounter's according to their sequence
in the AckList and requests that PKT_Pass classify the eligible packets into the priority queueing sub-
module. Then, it waits again until new packets are inserted to the priorityqueueing sub-module.

3.3. Example

An example that uses the same input pattern and assumption as in Fig. 1 is given to show that our
algorithm can overcome the problems of DRR in Section 2.3. In this example, packets are classi®ed into 4
classes, Z� 4. Suppose that for all ¯ows their Quantum's are equal to 400 and the size of packet B is 500.
Clearly, packet B could not be sent out in the ®rst round. However, in the next round, DeficitCounterB

would be equal to 300, i.e., 400� 400ÿ 500. According to (7), the packet would be classi®ed into the ®rst
class, i.e., 4ÿ b300=�400=4�c and could be sent out at the beginning of the next round. Other packets are
put into the priority queueing sub-module according to the same rule. Fig. 3 presents the result, which is the
same as that in WFQ (Fig. 1) and is unlike that in DRR. Under the assumption that all ¯ows are heavily
backlogged and there are enough priority queues, our algorithm is expected to have behavior similar to that
of WFQ.

4. Analytical results

In this section, the performance of PDRR is analyzed in terms of delay bound and throughput fairness.
Finally, PDRR is revealed to have an O(1) per-packet time complexity in most cases. In high-speed net-
works, low per-packet time complexity is an important criteria for routers and switches.

4.1. Delay bound

Consider a queueing system with a single server of rate C.

De®nition 2. A backlogged period for flow i is any period of time during which ¯ow i is continuously
backlogged in the system.

Let t0 be the beginning of a backlogged period of ¯ow i and tk indicate the time that the kth round in
PDRR is completed. Wi�s; tk� denotes the service o�ered to ¯ow i in the interval �s; tk� by the server and Li is
the maximum packet size of ¯ow i.

Fig. 3. The transmission state of packets in PDRR.
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Lemma 3. Under PDRR, if flow i is continuously backlogged in the interval �t0; tk�, then at the end of the kth
round,

Wi�t0; tk�P k/i ÿ Dk
i ; �9�

where Dk
i is the value of the DeficitCounteri at the end of the kth round and /i is Quantumi.

Proof. Readers are referred to Appendix A. �

Lemma 4. Let t0 be the beginning of a backlogged period of flow i in PDRR. At any time t during the
backlogged period,

Wi�t0; t�P max 0; ri t
��
ÿ t0 ÿ �2� �1=Z��F ÿ /i

C

��
; �10�

where F is equal to
P#flow

1 /i, Z is the number of priority queues, ri is the rate allocated to the flow i.

Proof. Readers are referred to Appendix A. �

Theorem 1 (PDRR belongs to LR). The PDRR server belongs to LR with latency hPDRR less than or equal to

�2� �1=Z��F ÿ /i

C
: �11�

Proof. The proof is straightforward from Lemma 4 and the de®nition of LR server [8]. �

According to (1), replacing F with /iC=ri in (11), we also have

hPDRR6 2

�
� 1

Z

�
/i

ri
ÿ 2/i

C
: �12�

Eq. (11) shows that PDRR evidentially improves latency, as opposed to the DRR whose latency is
�3F ÿ 2/i�=C. Furthermore, in the worst case, if the form of hSCFQ [8] is translated to the form of hPDRR, the
latency of PDRR is revealed as similar to that of SCFQ, �2F ÿ /i�=C. From (12), it reveals the latency of
PDRR is inversely dependent with the allocated bandwidth, and independent of the number of actived
¯ows The major reason for DRR to have worse latency is that it only considers whether a packet could be
sent out in a round and ignores the information provided in the quantum consumed by a packet. The latter
information can be used to re-order the packets sent out in a round.

Theorem 2 (Delay bound). Suppose that the scheduling algorithm at the server is PDRR and the traffic of
flow i conforms to a leaky bucket with parameters �ri; qi�, where ri and qi denote the burstiness and average
rate of the flow i. Assume the rate allocated to the flow i is equal to qi. If Delayi is the delay of any packet of
flow i, then

Delayi6
ri

qi
� �2� �1=Z��F ÿ /i

C
: �13�

Proof. The proof is straightforward from Theorem 1 and the analysis results of LR server [8]. �
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4.2. Throughput fairness

The fairness parameter herein is based on the de®nition presented by Golestani [3]. However, derivation
skills in [8] were followed to obtain ours.

Theorem 3. For a PDRR scheduler,

FairnessPDRR � �2� �1=Z��F
C

; �14�

where FairnessPDRR is the fairness of the server PDRR.

Proof. Readers are referred to Appendix A. �

Thus, FairnessPDRR is smaller than FairnessDRR, which is 3F =C [8]. The fairness and latency of other
scheduling algorithms have been analyized in [8].

4.3. Per-packet time complexity

Table 4 summarizes the complexity of PKT_Arrival, PKT_Pass, PKT_Departure when a non-empty or
empty priority queue is accessed. For each packet, PKT_Arrival inserts it into its corresponding Fq and
PKT_Pass takes it from its Fq to the Pqj, where j is found in a constant number of operations.
PKT_Departure simply repeats to pick a packet from the PqMinHeapRoot whose MinHeapRoot always presents
the smallest j among non-empty Pqj's. As the min heap operations are not invoked under the assumption
that each accessed Pq is non-empty, all the complexities of the above operations are O(1). When the
PqMinHeapRoot is empty, a delete operation of the min heap is invoked by PKT_Departure to get the new
MinHeapRoot. Basically, we cannot continue to send out packets until the end of reheapi®cation loop
whose time complexity is O�log Z�, where Z is the maximum number of keys present in the min heap, i.e.,
the number of non-empty Pq's at that moment. A similar situation also occurs as PKT_Pass must insert a
new j into the min heap.

However, there are su�cient reasons to say that packets can be sent out individually and have low delay
possibility by operations of the min heap. First, the min heap operation in our algorithm is involved only
when the Pq, which it tries to access is empty, unlike the sorted-priority algorithms, e.g., SCFQ and WFQ,
where the two operations, insert and delete, are repeatedly invoked once the server tries to send out a
packet. Secondly, the scalar of the min heap is small whose maximum number of keys are the number of
Pq's instead of the number of ¯ows. Moreover, the approach, presented in [13], customarily allows con-
current insertions and deletions on the heap. According to the concept, PKT_Departure, after getting the
next smallest value j immediately via one comparison between the two leaf keys of the root, can start to
send out packets in the Pqj concurrently during the period of the reheapi®cation loop. In brief, the time
complexity of PDRR is O(1) in most cases and O�log Z� in some special cases. That is obviously lower than
the complexity of SCFQ, O�log N� where N is the number of ¯ows.

Table 4

The complexity of PDRR

Operation case PKT_Arrival PKT_Pass PKT_Departure

Pq non-empty O(1) O(1) O(1)

Pq empty O(1) O�log Z� O�log Z�
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5. Simulation results

Simulation results are shown in this section to compare the delay performance of PDRR with those of
DRR and SCFQ. The link bandwidth, i.e., server capacity, is assumed to be 80 Mbps, shared by 20 ¯ows.
These 20 ¯ows are divided in two groups, GA and GB. As the goal of this simulation is not to compare the
sorted-priority scheduling algorithms, which are in a di�erent class from ours, only SCFQ was choosen, which
is the easiest to implement among all sorted-priority algorithms, in addition to DRR, to compare with PDRR.

5.1. Bursty transmission

The following experiment was performed to show the problem of bursty transmission by DRR and the
improvement of PDRR. Assume that all tra�c sources are at a constant bit rate (CBR) with ®xed packet
size. Table 5 indicates the tra�c parameters of the two groups, GA and GB. As the bit rates of GA and GB
are equal and the maximum packet size among both groups is 500 bytes, the same Quantum size of 500
bytes was allocated them. Notably, the packet arrival rate of GA ¯ows is 10 times the size that GB's is. In
this experiment, 10 priority queues were placed in the Pre-order Queueing of PDRR.

The delay times of a particular GA ¯ow under DRR, PDRR, and SCFQ, respectively were measured. In
Fig. 4, it is observed that packets of ¯ow within DRR are sent out in a batch once the ¯ow is served. The
packets that just missed the transmission chance, receive the largest delay. However, in PDRR the ¯ow is able
to spend its Quantum in several pieces, so that packets could be sent out uniformly. Another observation of this
special case is that packets in SCFQ su�er high delay jitter. Due to GA ¯ows having a 10 times packet arrival
rate than GBs do. For GA packets that arrive while the server is serving a large packet of GBs, their virtual
arrival times would be equal, which causes the server not to send them out in their actual arrival sequence.

5.2. Packet size

To further discuss the average behavior of PDRR, the tra�c source is assumed to be MMPP shaped by a
leaky bucket whose on/o� rates are both 1000 1/ls and bit rate is 4 Mbps. In this experiment, GA ¯ows are

Table 5

The tra�c parameters and quantum size of two groups

Group Tra�c type Bit rate (Mbps) Packet size (byte) Quantum size (byte)

GA CBR 4 50 500

GB CBR 4 500 500

Fig. 4. Packet delay of a constant bit rate source.
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assigned a larger packet size than GB ¯ows, however, all request the same bandwidth. In Fig. 5, a GA ¯ow
in DRR has a larger average delay then that in PDRR and SCFQ is observed. The result for GB ¯ow is
similar. Additionally, with the increase of GA's packet size to that of GB's, the curve of PDRR in Fig. 5
becomes closer to that of SCFQ, which means that PDRR works like SCFQ, especially with heterogeneous
tra�c sources. This is due to the more heterogeneous the tra�c sources are, the more bursty the trans-
mission behavior of GA ¯ows are. Fig. 6 shows that as the ratio of GA's packet size to GB's is increased,
small packets in PDRR and SCFQ perform better than large packets. However, this is not so evident for
the case of DRR. That is the server in PDRR considers the information provided in the quantum consumed
by a packet and reorders the transmission sequence of packets in one round. This is similar to a server in
SCFQ considering the timestamp of a packet and then sending out the packet with the smallest timestamp.
However, in DRR, the server only considers whether a packet could be sent out and ignores the trans-
mission order of packets in one round.

5.3. Bit rate

Under the environment of ¯ows with heterogeneous bandwidth requirements, the ¯ow with high bit rate
in DRR still has the bursty transmission behavior. Thus, our algorithm also could perform better than
DRR because the Pre-order Queueing module can reduce the forenamed problem by transmitting packets

Fig. 6. The performance ratio of GA to GB ¯ows in DRR, PDRR, and SCFQ.

Fig. 5. The average delay of GA ¯ows in DRR, PDRR, and SCFQ.
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more uniformly within a round. GA ¯ows are assumed to have a higher bit rate than that of GB ¯ows.
Fig. 7 shows that the average delay of GA ¯ows in PDRR is lower than that in DRR. Furthermore, the
result for GB ¯ows is similar to that in Fig. 7.

5.4. Number of priority queues

The ideal number priority queues for a speci®c tra�c environment is discussed herein. As described in
Section 3.1, the Pre-order Queueing enables a ¯ow to use its Quantum uniformly within a round, especially
when its Quantum is several times its maximum packet size. For ¯ow i, the Pre-order Queueing with
�Quantumi=Li� priority queues can reach the above goal. Thus, for a speci®c tra�c environment, Z priority
queues are enough, where Z is equal to the maximum value of �Quantumi=Li� among all ¯ows, i.e.,
maxi�Quantumi=Li�. Fig. 8 shows, through an experiment, the relationship between Z and
maxi�Quantumi=Li�. For easier observation, all tra�c sources are assumed as CBR with ®xed packet size.
Each curve in Fig. 8 shows the average delay of the ¯ow whose �Quantumi=Li� equals to maxi�Quantumi=Li�.
For each line, this ¯ow receives the smallest average delay when Z � maxi�Quantumi=Li�, which con®rms
our hypothesis.

Fig. 7. Average delay of GA ¯ows under heterogeneous bandwidth requirements in DRR, PDRR, and SCFQ.

Fig. 8. The optimal number of pre-order queues under di�erent maxi�Quantumi=Li�.
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6. Related works

Uniform Round Robin (URR) [9] is a scheduling algorithm for ATM networks, improved from Weighted
Round Robin (WRR) [10]. Some of its goals are the same as our algorithm. However, its frame and packet
sizes are fixed. That is, within a frame there is a ®xed number of slots. For a slot allocated to one ¯ow, if the
¯ow has no data waiting to be sent out, the slot will be wasted. Namely, it is not a work-conserving
scheduling algorithm and the residual bandwidth cannot be shared by those active ¯ows. Several work-
conserving versions of WRR are designed in [11], however, their currenct schemes and analytical results are
only applicable to ®xed-length packets. In fact, latency and fairness, the two properities of scheduler, are
a�ected seriously as the packet-length is variable. That is what the PDRR has attempted to overcome.

Calendar queue [14] is a technique for reducing the implementation complexity of GPS-like schedulers.
Its concept, similar to ours, classi®es packets. However, it does so according to their timestamps. In fact, for
the packets currently in the system, the maximum interval between any two timestamps could be very large,
which depends upon the fairness behavior of the underlying scheduler. To accommodate the large time
interval, calendar queue must maintain a large number of queues to reduce the granularity of a class. In our
PDRR, however, the range of the classi®ed value is fixed and small. Thus, less memory space is needed to
obtain the same classi®cation granularity as that in the calendar queue. Concerning any GPS-like schemes
combined with calendar queue, the complexity is reduced to O(1). However their latency and fairness are
a�ected. The comparison and discussion are however, beyond the scope of this work.

7. Conclusion and future work

In this work, a rule for deciding the Quantum size of a ¯ow was o�ered and several problems in DRR
such as bursty transmission and inappropriate transmission sequence that causes a large delay bound and
serious unfair behavior, were presented. A new algorithm, PDRR, was proposed, which adds a new
structure, Pre-order Queueing, into the DRR scheduler. It reorders the transmission sequence of the packets
that could be sent out in one round, according to the quantum consumption status of its ¯ow within this
round. This thereby enables PDRR to approximate PGPS and overcome said DDR problems.

From the analysis of PDRR on delay and fairness and simulation results, our algorithm is able to avoid
bursty transmissions and overcome the serious problem of DRR. Namely, packets that cannot be sent out
within the current round may get too high a penalty. Meanwhile, PDRR still maintains the advantages of
DRR, i.e., per-packet time complexity independent from an increase in ¯ow number and ability to handle
variable-length packets. Furthermore, we have also shown that the treatment of PDRR to packets with
di�erent sizes is similar to that of the sorted-priority scheduling, such as SCFQ.

There remains work to be done in the future. First, more simulation cases, such as ¯ows with di�erent
allocated bandwidth but having the same distribution of packet sizes, are being investigated. Secondly,
tra�c types, other than CBR and MMPP, could be applied to PDRR to observe its general behavior.
Finally, we plan to implement our scheduling algorithm on a Linux-based router to further evaluate its
performance within a real environment.

Appendix A. Proofs of primary results

Proof of Lemma 1. This is proved by showing that for any packet P m
i , its DeficitCounterm

i must be positive
and smaller than Quantumi. From the description in Section 3.2, the value in DeficitCounter cannot be
negative and could only increase by Quantumi in the UpdateOneFlow procedure. Assume that there is in-
su�cient credit to send out the packet P m

i , i.e., the DeficitCountermÿ1
i is smaller than Lm

i , the size of this
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packet. After updating and sending out the packet P m
i ; DeficitCounterm

i � DeficitCountermÿ1
i �

Quantumi ÿ Lm
i . As DeficitCountermÿ1

i < Lm
i ; DeficitCounterm

i must be smaller than Quantumi. From the
above description, the lemma is proved. �

Proof of Lemma 2. According to (6), Eq. (5) is equivalent to

QAm
i � QAmÿ1

i ÿ Lm
i

Quantumi
�A:1�

and since Lm
i > 0;Quantumi > 0 and ri > 0, from (3) and (A.1) for any m

TSm
i > TSmÿ1

i and QAmÿ1
i > QAm

i :

In the same round, for the packet P m
i with the smallest timestamp, its m is smallest among all packets, and

the QAm
i of the packet with the smallest m. Thus, for the packet with the smallest timestamp in one round,

its QA is the largest. �

Proof of Lemma 3. As our algorithm only modi®es the service sequence of the packets in a DRR round, the
packets in DRR that could be sent out in a round during a backlogged period, they can still be sent out in
the same PDRR round. Thus, PDRR also has this property of DRR that has been shown in [5]. �

Proof of Lemma 4. For each time interval �tkÿ1; tk�, we can write

tk ÿ tkÿ16
1

C
F

 
�
XN

j�1

Dkÿ1
j ÿ

XN

j�1

Dk
j

!
: �A:2�

By summing over k ÿ 1,

tkÿ1 ÿ t06 �k ÿ 1� F
C
� 1

C

XN

j�1

D0
j ÿ

1

C

XN

j�1

Dkÿ1
j : �A:3�

Assume there are two packets, P A
i and P B

i , in the Fqi whose sizes are LA
i and LB

i , (LB
i � /i), respectively and

only P A
i can be sent out at the �k ÿ 1�th round. All other ¯ows exhaust their DeficitCounter. Thus,

DKÿ1
i � /i ÿ D, where 0 < D6/i; Dkÿ1

j � 0 for j 6� i, and

tkÿ1 ÿ t06 �k ÿ 1� F
C
� F ÿ /i � D

C
: �A:4�

Under this assumption, in the kth round P B
i would be placed into the Pqn where

n � Z ÿ DK
i

Pqgi

� �
� Z ÿ DKÿ1

i � /i ÿ LB
i

/i=Z

� �
� Z ÿ DKÿ1

i

/i
Z

� �
� Z ÿ /i ÿ D

/i
Z

� �
� Z ÿ Z

�
ÿ D

/i
Z
�
� D

/i
Z

� �
�A:5�

and the maximum amount of data that could be served before P B
i is ��n=Z�F ÿ /i� . Thus, for any time t

from the beginning of the kth round until the P B
i is served,

t ÿ t06
�n=Z�F ÿ /i

C
� tkÿ1 ÿ t0

6 �k ÿ 1� F
C
� F ÿ /i � D

C
� �n=Z�F ÿ /i

C
; �A:6�
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or equivalently,

k ÿ 1 P
�t ÿ t0�C

F
� 2/i ÿ D

F
ÿ n

Z
ÿ 1: �A:7�

Replacing k with k ÿ 1 in (9) and de®ning ri , the reserved rate of ¯ow i, as �/iC=F � , we have

Wi�t0; tkÿ1�P /i
�t ÿ t0�C

F

�
� 2/i ÿ D

F
ÿ n

Z
ÿ 1

�
ÿ Dkÿ1

i

� ri t
�
ÿ t0 � 2/i ÿ D

C
ÿ n

Z
� F

C
ÿ F

C
ÿ Dkÿ1

i

ri

�
� ri t

�
ÿ t0 ÿ 1

�
� n

Z
� Dkÿ1

i

/i

�
F
C
� 2/i ÿ D

C

�
� ri t

�
ÿ t0 ÿ �1� �n=Z� � �Dkÿ1

i =/i��F ÿ 2/i � D
C

�
: �A:8�

Replacing Dkÿ1
i with /i ÿ D and since

n
Z
ÿ D

/i
� D

/i
Z

� �
6 1

Z
ÿ D

/i

1

Z

for any D,

Wi�t0; tkÿ1�P ri t
�
ÿ t0 ÿ 2� �n=Z� ÿ �D=/i�� �F ÿ 2/i � D

C

�
;

P ri t
�
ÿ t0 ÿ �2� �1=Z��F ÿ /i

C

�
:

�A:9�

In the worst case, ¯ow i was the last to be updated during the kth round and its packet Li is inserted into the
tail of Pqn. We distinguish two cases:

Case 1. At time t before the time that ¯ow i is served in the kth round, i.e.,

tkÿ1 < t6 tkÿ1 � n
Z

F ÿ /i;

we obtain

Wi�t0; t� � Wi�t0; tkÿ1�: �A:10�

Case 2. At time t after the time that ¯ow i starts being served in the kth round, i.e.,

tkÿ1 � n
Z

F ÿ /i < t6 tki;

we obtain

Wi�t0; t� � Wi�t0; tkÿ1� � Wi�tkÿ1; t�P Wi�t0; tkÿ1�: �A:11�

Thus, for any time t,

Wi�t0; t�P max 0; ri t
��
ÿ t0 ÿ �2� �1=Z��F ÿ /i

C

��
: � �A:12�
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Proof of Theorem 3. Assume that it is at the beginning of the kth round and there are two packets P A
i and

P B
i , in the Fqi whose sizes are LA

i and /i, respectively and only P A
i can be sent out at the kth round. The

packet P B
i 's class is n, which implies it will enter the nth priority queue. In the (k � 1) round, all packets of

another ¯ow j whose classes are larger than n, could not be sent out before the time t when P B
i is sent out,

as the server always selects packets from the nonempty Pqj with the smallest j. Thus, before t, for another
¯ow j,

Wj�t0; t�6 k/j �
n
Z

/j: �A:13�

Also as tk < t < tk�1, from (9) for ¯ow i,

Wi�t0; t�P �k ÿ 1�/i � D: �A:14�
From (A.5), (A.13) and (A.14) we can easily conclude that

Wi�t0; t�
ri

���� ÿ Wj�t0; t�
rj

����
6 k
�
� n

Z

�/j

rj
ÿ �k ÿ 1�/i

ri
ÿ D

ri

6 1

�
� n

Z
ÿ D

/i

�
F
C
6 1

�
� 1

Z

�
F
C
: �A:15�

This bound applies to time intervals that began at t0. For any arbitrary interval,

Wi�t1; t2�
ri

���� ÿ Wj�t1; t2�
rj

����6 2

�
� 1

Z

�
F
C
: �A:16�

Thus, for any two ¯ows i and j,

FairnessPDRR � 2� �1=Z�� �F
C

: � �A:17�
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