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A Recurrent Neural Fuzzy Network for Word
Boundary Detection in Variable Noise-Level
Environments

Gin-Der Wu and Chin-Teng LinSenior Member, IEEE

Abstract—This paper discusses the problem of automatic is the inaccurate detection of the beginning and ending bound-
word boundary detection in the presence of variable-level back- aries. In many applications, the problem is further complicated
ground noise. Commonly used robust word boundary detection ., honstationary backgrounds where there may exist concurrent
algorithms always assume that the background noise level is .
fixed. In fact, the background noise level may vary during the noises due_ to movements of desks, _d_oor_slams, etc. These back-
procedure of recording_ This is the major reason that most ground Nnoises can be broadly ClaSSIerd into thl’ee ClasseS:

i the condiion of varable background noise.level. I order 1) MPulse noise;
to solve this problem, we first propose arefined time—frequency 2) f|xgd—level n0|se;.
(RTF) parameter for extracting both the time and frequency 3) variable-level noise.

features of noisy speech signals. The RTF parameter extends the|n order to solve this problem, many researchers proposed robust
(time—frequency) TF parameter proposed by Junquaet al. from 54 hoyndary detection algorithms in the presence of noise.

single band to multiband spectrum analysis, where the frequency H hev f donl hei | . d fixed-level
bands help to make the distinction between speech signal and TOWEVer, they focused only onthe impulse noise and fixed-leve

noise clear. The RTF parameter can extract useful frequency background noise.
information. Based on this RTF parameter, we further propose Among the three classes of background noises, the impulse
a new word boundary detection algorithm by using a recurrent  noise can be solved by the parameter of time duration. The
zelf'organ'z'ng neural fuzzy inference network (RSONFIN). . hiem of fixed-level background noise was first attacked by
ince RSONFIN can process the temporal relations, the proposed . .
RTF-based RSONFIN algorithm can find the variation of the cOmmonly used robust word boundary detection algorithms
background noise level and detect correct word boundaries in [1]-[4]. These algorithms usually use energy (in time domain),
the condition of variable background noise level. As compared zero crossing rate, and time duration to find the boundary
to normal neural net\ll(vor_ks, th_ctethSC%I\llFlN can a|Waé/5 g”d ittsetlrfl between the word signal and background noise. However, it
an economic network size with high-learning speed. Due to the -
self-learning ability of RSONFIN. this RTE-based RSONFIN 1S been found that the energy and zero-crossing rate are not
algorithm avoids the need for empirically determining ambiguous  Sufficient to get reliable word boundaries in noisy environ-
decision rules in normal word boundary detection algorithms. ments, even if more complex decision strategies are used [5].
Experimental results show that this new algorithm achieves higher To date, several other parameters were proposed such as linear
zhown' to outp_erform several com_monly used word boundary [7] and pitch information [8]. Although the LPCs are quite
etection algorithms by about 12% in variable background noise : . .
level condition. It also reduces the recognition error rate due to Successful in modeling vowels [9], they are not particularly
endpoint detection to about 23%, compared to an average of 47% Suitable for nasal sounds, fricatives, etc. The reliability of the
obtained by the TF-based algorithm in the same condition. LPC parameter depends on the noisy environments. The pitch
Index Terms—Cepstrum, linear prediction coefficient (LPC), information can help to detect the word boundary, but it is not
mel-scale filter bank, recurrent network, space partition, time—fre- ~ easy to extract the pitch period correctly in noisy environments.
quency (TF). Four endpoint detection algorithms were compared in [5]:
an energy-based algorithm with automatic threshold adjustment
[3], [4], use of pitch information [8], a noise adaptive algorithm,
) _ o and a voiced activation algorithm. These four algorithms are
A N important problem in speech processing is to detect thgongly dependent on the noise condition. The reliability of
presence of speech in noisy environments. A major SOURgg: parameters used by the four algorithms also depends on the
of errors in isolated-word automatic speech recognition systefi§ise condition. In the connection, Jungetaal. [5] proposed
the time—frequency (TF) parameter. They used the frequency
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cludes noise classification, a refinement procedure, and sotively choosing proper frequency bands. The RTF parameter is
preset thresholds. the result obtained after smoothing the sum of the time energy
However, the TF-based robust algorithm in [5] needs to erand frequency energy. It makes the word signal more obvious
pirically determine thresholds and ambiguous rules which atean the TF parameter that uses a single frequency band.
not easily determined by humans. Some researchers used thHeased on the RTF parameter, we further propose a new word
neural network’s learning ability to solve this problem. In [6]poundary detection algorithm by using a recurrent self-orga-
[7], and [10], multilayer neural networks are used to classify th@zing neural fuzzy inference network (RSONFIN) that we pro-
speech signal into voiced, unvoiced, and silence segmentspbsed in [11]. Since this RSONFIN can process the temporal
the neural network approach, the decision rules are in the forelations automatically and implicitly, the proposed RTF-based
of input—output (I/O) layer mappings and can be learned by tRSONFIN algorithm can find the variation of the background
training procedure (supervised learning). However, the propavise level and detect correct word boundaries in the condition
structure of the network (including numbers of hidden layersf variable background noise level. The temporal relations em-
and nodes) is not easy to decide. bedded in the network are built by adding some feedback con-
Although the aforementioned TF-based algorithm outpemections representing the memory elements to a feedforward
forms several commonly used algorithms for word boundaneural fuzzynetwork.
detection in the presence of noise, it could work well only Due to the self-learning ability of RSONFIN, the proposed
for the impulse noise and fixed-level background noise. F&TF-based RSONFIN algorithm avoids the need of empiri-
variable-level background noise, this TF-based algorithm ustelly determining ambiguous decision rules in normal word
ally results in inaccurate detection of the beginning or endifgundary detection algorithms. The RSONFIN can always
boundaries in the recording interval. There was little researfihd itself an economic network size with high learning speed,
about specific algorithms for processing the variable-levahd so it avoids the need for empirically determining the
background noise. The reason may be that most laboratoymber of hidden layers and nodes in normal neural networks.
systems used reasonafikedbackground noise level in a givenAlso, since the RSONFIN houses the human-like IF-THEN
recording interval. The desired spoken word is present in théles in its network structure, expert knowledge can be put
recording interval. The existing robust algorithms usually seito the network as a priori knowledge, which can usually
thresholds from the first few frames of the recording intervaincrease its learning speed and detection accuracy [12], [13].
Then the algorithms used these preset thresholds to determiihés new algorithm has been tested over a variety of noise
the word boundary of the speech signal. These thresholditions and has been found to perform well not only in a
are fixed during the recording interval. In the real world, theariable background noise level condition but also in a fixed
background noise level is not always fixed and may gradualiyackground noise level condition. Our results also showed that
vary over the recording interval. It is not reasonable to makke RSONFIN’s performance is not significantly affected by
these preset thresholds fixed over the recording interval. If thiee size of the training set.
variation of background noise level is large, these fixed presetThis paper is organized as follows. The RTF parameter is de-
thresholds will result in incorrect location of word boundariesrived in Section Il. The structure and function of the RSONFIN
The main aim of this paper is to develop a new robust woate briefly introduced in Section Ill. In Section IV, the RTF-
boundary detection algorithm to attack the problem in variableased RSONFIN word boundary detection algorithm is pro-
level background noise condition. To develop a more robuysbsed. The performance evaluation and comparisons of the pro-
word boundary detection algorithm and avoid the problems pbsed algorithm using RSONFIN are performed extensively in
the above approaches, this paper first proposes a modified Séction V. Finally, the conclusions of our work are summarized
parameter and then uses a recurrent neural fuzzy networkin@ection VI.
detect word boundaries based on this parameter. In the TF pa-
rameter proposed by Junqgegal. [5], the frequency informa-
tion is extracted on a single frequency band (250-3500 Hz).
Since the frequency energy, i.e., magnitudes of the spectrumAccurate location of the endpoint of an isolated word is im-
of different speech signals focus on different frequency bangmrtant for reliable and robust word recognition. In general, the
more accurate frequency information can be obtained by camerd boundary is susceptible to noise corruption because the
sidering multiband analysis of noisy speech signals. With théglditive noise obscures the distinction between the word signal
motivation, we propose a hew robust parameter, calledehe and noise. The general solution is to compensate the strength of
fined time—frequencfRTF) parameter, for word boundary dethe word signal in noisy environments. It has been found that the
tection in noisy environments. Like the TF parameter, the RTfFrequency energy of a noisy speech signal can enhance the nor-
parameter represents both the time and frequency featuresnally used time energy to make the distinction between word
noisy speech signals. However, the RTF parameter extendsshgmal and background noise more obvious. In [5], Jungua
TF parameter from single-band to multiband spectrum analysils extracted the frequency energy of the signal on a single fre-
based on the mel-scale frequency bank (20 bands). The 20 flraency band (250-3500 Hz) to form the TF parameter. In this
quency bands are spaced on a nonlinear frequency scale (geefion, we generalize the single-band analysis of the TF pa-
scale). A procedure is proposed such that the RTF parameter aneter to multiband analysis based on the mel-scale frequency
extract more informative frequency energy than the single-bahdnk and propose a new RTF parameter. The RTF parameter
approach to compensate the time—energy informatioadap- is obtained by smoothing the sum of the time energy and fre-

Il. RTF PARAMETER
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guency energy, where the frequency energy is contributed Wwhere

several adaptively chosen frequency bands. i filter band index;
k spectrum index;
A. Auditory-Based Mel-Scale Filter Bank m  frame number;

Loosely speaking, it has been found that the perception of a4~ number of frames for analysis.
particular frequency by the auditory system is influenced by We found in our experiments that the energfn,i) ob-
the energy in a critical band of frequencies aroyifiti4]. Hence, tained in (4) usually had some undesired impulse noise and was
an auditory-based spectrum obtained by summing the enerdig¥ered by the energy of background noise. Hence, we further
in each critical band is a perceptually relevant characterizatiinooth it by using a three-point median filter to gétn, i)
It is also known that critical band filtering of the speech spec- 1 B B
trum using parallel band-pass filters functionally represents an ~ &(m, ) = zim = 1,0 + a:(7z, ) +a(m+1, L). (5)
aspect of auditory processing. There is evidence from auditory
psychophysics that the human ear perceives speech along a frgmally, the smoothed energym, ) is normalized by removing
linear scale in the frequency domain. One approach to simulatitiig frequency energy of the beginning interval Ndiisag) to get
the subjective spectrum is to use a filter bank, spaced uniform¥(m, ) where the energy of the beginning interval is estimated
on a nonlinear, warped frequency scale, such as the mel schleaveraging the frequency energy of the first five frames of the
The relation between mel-scale frequency and frequency (Hzjgsording
described by the following equation [15]:

X (m,?) = &(m, ) — Noisefreq
mel = 2595 log(1 + f/700) (1) S d(m, i)

= &(m,5) — 4"':05”” : 6)

where mel is the mel-frequency scale ghtb in Hz. The filter
bank is then designed according to the mel scale as shown isince our goal is to extract the word signal information from
Fig. 1(a), where the filters of 20 bands are approximated by sithe noisy speech waveform as much as possible so that we can
ulating 20 triangular bandpass filter&i, k) (1 <4 < 20,0 < use itto make the distinction between the word signal and back-
k < 63), over a frequency range of 0-4000 Hz. Hence, ea@found noise clear, we need a parameter to stand for the amount
filter band has a triangular bandpass frequency response, 8h#vord signal information of each band. It is understood that
the spacing as well as the bandwidth is determined by a constdrigr, ¢) in (6) cannot represent the frequency energy of exactly
mel frequency interval by(1). The value of the triangular fund2ure speech signal, since the part of the word signal covered by
tion, f(i, k) in the figure, also represents the weighting factdrackground noise is a_lso _removed_ m_the normalization proce-
of the frequency energy at tigh point of theith band. dure. HoweverX (m, ) is stillagood indicator for the amount of
With the mel-scale frequency bank given in Fig. 1(a), W_@peech information_, since the more the wo_rd signal information
can now calculate the energy of each frequency band for edgRovered by thenoise, the smaller figm, ) is. In otherwords,
time frame of a speech signal. Consider a given time—domailf 1arger theX (m, i) is, the more word signal information the
noisy speech signakme(m, n), representing the magnitude“h band has. Hence, we use the smoothed and normalized energy
of the nth point of themth frame. We first find the spectrum ©f theith band of thenth frame.X (i, <) to stand for the amount

Zreq(m, k) Of this signal by Discrete Fourier Transform (1289fthe word signal informa_tion in bgn‘ubfthemth frame. We can
point DFT) extract useful frequency information for word boundary detec-
tion by adopting the bands having latgém, ¢).
N-1
Trreq(m, k) = Y Tegme(m, n) WA B. Effect of Additive Noise

n=0 Before we consider the adaptive choices of suitable bands for
O<ksN-1, 0=sm=M-1 (2 extracting useful frequency information from word signals, we
Wy = exp(—j2n/N) (3) first make some observations on the effect of additive noise on
each frequency band. In Fig. 2(a), we try to add white noise (0
dB) to the clean speech signal to see the effects of adding white
noise on each band. For illustration, the smoothed and normal-
ized frequency energies of a speech sigkiéin, 7) in (6) for 20

where
Treq(m, k)  magnitude of théth point of the spectrum of
the mth frame;

N 128 in our system, _ bands(i = 1,2,...,20) and 166 frameém = 0, 1,...,165)
M number of frames of the speech signal fo5.q shown in Figs. 2(b) and 2(c). We found that the energy of the
analysis. first word signal(m = 30,41, ...,50) mainly focuses on the

We then multiply the spectrumscq(m, k) by the weighting fih pands. Since the 8th—20th bands are seriously corrupted by
factors f(i, k) on the mel-scale frequency bank and sum thge aqgitive white noise, these bands have little information of

products for allk to get the energy:(m. :) of each frequency \yord signal. In order to detect the boundaries of the first word

band: of the mth frame signal correctly, we shall adopt the fifth band to make the distinc-
N—1 tion between the first word signal and noise clear. In addition, the
w(m, i) = > |Theq(m, k)| f(i, k) energy of second word signah = 70, 71,...,90) mainly fo-
k=0 cuses on the seventh band, and the energy of third word signal

0<m<M-1 1<i<20 (4 (m = 120,121,...,140) mainly focuses on ninth band. We
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Fig. 1. (a) Flowchart for computing the RTF parameter. (b) Procedure for producing the frequency energy in (a).

Y

shall adopt the seventh and ninth bands to make the second &hd proposed RTF parameter of theh frame is the result ob-
third word signals clear from the noise. Obviously, some bantiined after smoothing the sum of the frequency enérgy:)
have large frequency energ¥(m, ¢) and should be adopted to bein (7) and time energ{’(m)

useful bands. However, these useful bands may change under dif-

ferent word signals. This is because different word signals focus RTF(m) = SMOOTHING(T'(m) + cF'(m)) (8)

their frequency energy on differentband:s;somefocusonIowfr\ﬁhere SMOOTHING is performed by a three-point median

qugncyctj)andti, anl()j otheczjr.s on h|'gh fregqﬁn? bt‘?‘”ds- filter as in (5), and the constaais set as 0.8. The evaluation of
asedon € above discussion and USIrations, We Now Pigig weighting factok is given in Subsection. The time energy
pose a way to adaptively extract helpful frequency mformatlop(m) is given by smoothing and normalizing the logarithm of

from word S|gnals: Smcé((m,i) is a good |nd|c§tor for Fhe the root-mean-square (rms) energy of the time—domain speech
amount of speech information, we adopt the maximXigm., ¢) signal

to get the final frequency energy(m) of framem

0 Thine(m, )
F(m) = max[X (m, D]izro..._20- ) a:rms(m)zlog\/ — ©)
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Fig. 2. (a) Speech waveform recorded in additive white noise of 0 dB. (b) Smoothed and normalized frequency &rfergigson 20 frequency bands.
(c) Contour of (b).

Trans (M — 1) + Zyans (M) + Tems(m + 1) (10) via concurrent structure identification (the construction of dy-
3 namic fuzzy IF-THEN rules) and parameter identification (the
T'(m) = Zems(m) — Noisetime tuning of the free parameters of membership functions). The
. Efnzo Zyms(m) structure learning together with the parameter learning forms

= Zpms(m) — S a fast-learning algorithm for building a small, yet powerful, dy-

9
) o ~namic neural fuzzy network. The number of generated rules and
whereL is the length of the frame, which is 120 (15 ms) in ouUmembership functions is small even for modeling a sophisti-
system. The procedure to calculate the RTF parameter is illggted system.

trated in Fig. 1(a). The details of the block with label “Produce
frequency energy” of this figure are shown in Fig. 1(b). A. Structure of the RSONFIN

Up to now, we have proposed the RTF parameter to indicatey, thjs section, the structure of the RSONFIN shown in Fig. 3
the amount of word signal information. Based on this RTF pgs introduced. The RSONFIN consists of nodes, each of which
rameter, we further propose a new word boundary detection ghs some finite fan-in of connections from other nodes and some
gorithm by using a RSONFIN. Since RSONFIN can process thg,_oyt of connections to other nodes. Basically, it is a five-lay-
temporal relations, it can find the variation of the backgroungleq neural fuzzy network embedded with dynamic feedback
noise level and detect correct word boundaries in the conditiggnections (the feedback layer in Fig. 3 ) that bring the tem-
of variable background noise level. poral processing ability into a feedforward neural fuzzy net-

work. To give a clear understanding of the network structure,
Ill. RECURRENT SELF-ORGANIZING NEURAL Fuzzy the function of the node in each layer is described below. In the
INFERENCENETWORK (RSONFIN) following descriptions, the symbaxlgk) denotes théth input of

The recurrent neural fuzzy network that we used for word node in thekth Iayer;_correspondlngly, the symbaof*) de-
boundary detection is called the RSONFIN that we propos@&tes the node output in Ia_yer_ o
previously in [11]. The RSONFIN is constructed from a series _Layer 1 No computgtmn IS dope_ in this layer. Each node
of dynamic fuzzy rules. The temporal relations embedded in tktis layer is called an input linguistic node and corresponds
network are built by adding some feedback connections re&?‘_one Input var_lable. The n_ode only transmits input values to
resenting the memory elements to a feedforwaedral fuzzy e next layer directly. That is
network. Each weight as well as node in the RSONFIN has its @
own meaning and represents a special element in a fuzzy rule.
There are no hidden nodes, i.e., no membership functions and Layer 2: Nodes in this layer are called input term nodes,
fuzzy rules, initially in the RSONFIN. They are created onlineach of which corresponds to one linguistic label (small, large,

-i'rms (m) =

(11)

=V, (12)
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Fig. 3. Structure of the RSONFIN.

etc.) of an input variable. Each node in this layer calculatesatching of a rule. The fan-in of a fuzzy node comes from two
the membership value specifying the degree to which an inmdurces: 1) from layer 2; and 2) from the feedback layer. The
value belongs to a fuzzy set. A local membership function fermer represents the rule’s spatial firing degree, and the latter
used in this layer. There are many qualified candidates for ttie rule’'s temporal firing degree. We use the following AND
types of membership functions, such as triangular-, trapezoidalperation on each rule node to integrate these fan-in values:
or Gaussian-membership functions. Here, a Gaussian- member-

ship function is employed. The reason is that a multidimensional a® =a®. H ug,g)
Gaussian- membership function can be easily decomposed into @
the product of one-dimensional (1-D) membership functions. = q©) . =D =m)]" [D; (x—m)] (14)
With this choice, the operation performed in this layer is
where .D7 = diag(l/aﬂ,l/aig,...,l/am), m; =
(u@) _mi])? (mi1, Mz, .. .,min)Y, and a® is the output of the feed-
a? = exp _Z—2 (13) back term node which will be described in the feedback layer
o part in this section. Obviously, the output® of a rule node

represents the firing strength of its corresponding rule.
wherem,; ando;; are, respectively, the center and the width  Layer 4: This layer is called the consequent layer and the
of the Gaussian-membership function of itk term of theith nodes in this layer are called output term nodes. Each output
input variabler;. term node represents a multidimensional fuzzy set (described by
Layer 3: Nodes in this layer are called rule nodes. A rula multidimensional Gaussian function) obtained during the clus-
node represents one fuzzy logic rule and performs preconditi@ning operation in the structure learning phase. Only the center
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of each Gaussian membership function is delivered to the néxtthe use of the LMOM defuzzification operation, where only
layer for the local mean of maximum (LMOM) defuzzificationthe center of the Gaussian membership function is used. This is
operation [16], so the width is used for output clustering onlgifferent from the situation for the input and output linguistic
Different nodes in Layer 3 may be connected to a same nodiables, where the widths of fuzzy membership functions are
in this layer, meaning that the same consequent is specified fised for clustering the input and output training data. In (17), the
different rules. The function of each output term node perfornsgmple weighted sumis calculated [17], [18]. Instead of using the

the following fuzzy OR operation: weighted sum of each rule’s outputs as the inference result, the
@ conventional average weighted sin= 3. a§4)wji /> a§4)
a® = "u (15) canalso be used [18], [19].

As to the feedback term node, unlike the case in the space

to integrate the fired rules which have the same consequent pﬂﬁ'.“a'” where a chal. membership functlor_l Is used, a global
membership function is adopted on the universe of discourse

Layer 5: Each node in this layer is called an output lin- the int | variable to simol work struct d ¢
guistic node and corresponds to one output linguistic variabpﬁ. € internal variable to simplify network structure and mee
This layer performs the defuzzification operation. The nodes‘i

e global property of the temporal history. Here, the global
this layer together with the links attached to them accompliﬂﬁOperty means that for a cluster in the space domain its history
this task. The function performed in this layer is

path (memorized by the internal variables) can be anywhere in
the space at different times, and so a global membership func-

S O tion, which covers the universe of discourse of the internal vari-
y; = a® = % (16) able, is used to rank the influence degree each internal variable
2 U contributes to a rule. In this paper, the membership function

f(w) = 1/(1 4+ e~ ™) is used for each internal variable. With

G) _ o ands ik weight. i
wherew;™ = a; " andri;;, the link weight, is the center of the s choice, the feedback term node evaluates the output by
membership function of th&h term of thejth output linguistic

variable. RO S (18)
Feedback Layer:This layer calculates the value of the in- 14 e M

ternal variablé:; and the firing strength of the internal variable torp;g output is connected to the rule nodes in Layer 3, which con-

its corresponding membership function, where the firing strengifa ct to the same output term node in Layer 4. The outputs of feed-

contributes to the matching degree of a rule node in Layer 3. fgck term nodes contain the firing history of the fuzzy rules.

shown in Fig. 3, two types of nodes are used in this layer: 1)\wjith the aforementioned node functions in each layer, the

the square node named esntext nodeand 2) the circle node RSONFIN realizes the following dynamic fuzzy reasoning [20]
named aseedback term nodevhere each context node is assosee the equation at the bottom of the page), where

ciated with a feedback term node. The number of context nodes;. input variable;
(and thus the number of feedback term nodes) are the same a3 output variable;
that of output term nodes in Layer 4. Each contextnode andits4. 4. @, B,;,andB,  fuzzy sets:
associated feedback term node corresponds to one output terp). internal variable:
node. The inputs to a context node are from all the output term,, . andyy,. are fuzzy singletons, and
nodes, and the output of its associated feedback term node is feg g, are the numbers ofinputand in-
to the rule nodes whose consequent is the output term node cor- ternal variables, respectively.
responded to this context node. The context node functions as a
defuzzifier B. Learning Algorithms for the RSONFIN
hy = Z a§4)wﬁ (17) Two types of learning, structure and parameter learning, are

used concurrently for constructing the RSONFIN. The structure

learning includes the precondition, consequent, and feedback
where the internal variabl; is interpreted as the inference restructure identification of a fuzzy IF-THEN rule. Here the pre-
sult of the hidden (internal) rule, and; is the link weight from  condition structure identification corresponds to the input space
theithnodein Layer4tothghinternal variable. The link weight partitioning. The consequent structure identification is to decide
wj; represents a fuzzy singleton in the consequent part of a rulhen to generate a new membership function for the output vari-
and also a fuzzy term of the internal variable For an internal able based upon clustering. As to the feedback structure identifi-
variable, a fuzzy singleton instead of a fuzzy membership funcation, the main task is to decide the number of internal variables
tionis used as its fuzzy term; a fuzzy membership function on avith its corresponding feedback fuzzy terms and the connection
internal variable does not make much sense in the network difehese terms to each rule. For the parameter learning, based

Rulei: IF z1(t) is A;; and ... andz,(¢) is A;, andh;(t) is G
THEN v (t + 1) is Byy andy,(t 4 1) is B;z andhy (t + 1) iswy; and ... andhy, (t + 1) is wy
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word boundary detection l;:)cl'l‘ng‘:r;mfd The RSONFIN was trained by a speech waveform with 15 s.
window(15ms) fs:8kHz This speech waveform is added by white noise with increasing
: and decreasing energy, and then each frame is transformed to be

St the desired input feature vector of the RSONFIN (Ndisee,

Filter RTF parameter, and zero-crossing rate). These training vectors
are classified as word signal or noise by using waveform,
spectrum displays, and audio output. Among these training
vectors, some are word sounds with the desired RSONFIN
output vector beind1,0), and all others are noises with the

Nobetime - 001--- desired RSONFIN output vector beir(@,1). Although the
Feature RTF Decoder zero-crossing rate (ZCR) is not reliable for speech segmenta-
extraction RSONFIN 110+ tion in noisy environments, it is still an important parameter

Zeto-crossing Lk%l&' in clean environments. Hence, we also adopt it as an input

rate oise parameter of RSONFIN. In the training phase, the RSONFIN

_ _ _ will tune the proper weighting of ZCR automatically to reach
Fig. 4. RTF-based RSONFIN algorithm for automatic word boundarﬁ,] . . .
detection. e optimum performance of speech segmentation not only in

noisy environments but also in clean environments.

upon supervised learning, an ordered derivative learning algo-1 e RSONFIN after training is ready for word boundary
rithm is derived to update the free parameters in the RSONFIRELECioN. As shown in Fig. 4, the outputs of RSONFIN are
There are no rules, i.e., no nodes in the network except the PEPCessed by a decoder. The decoder decodes the RSONFIN's
linguistic nodes, in the RSONFIN initially. They are created dyRUtPUt vector(1,0) as value 100 standing for word signal
namically as learning proceeds upon receiving online incomi d(0,1) as value 0 standing for noise. We observed that the

training data by performing the following learning processes €coding waveform, i.e., the outputs of the decoder, contains
multaneously. impulse noise sometimes. Hence, we let the output waveform

. of the decoder pass through a three-point median filter to elim-
A. Input—Output space partitioning. . . .o . .
. inate the isolated “impulse” noise. Finally, we recognize the
B.  Construction of fuzzy rules. . . .
; . word-signal island as the part of the filtered waveform whose

C. Feedback structure identification. ; : S
D Parameter identification magnitude is greater than 30, and duration is long enough (by

' ' setting a threshold value). We then regard the parts of original

| In t.he art?ove, pr(;)cesses Ab E land c berllong to the stlructléﬁ nal corresponding to the allocated word-signal island as the
earning phase and process D belongs to the parameter leartyjigy signal, and the other ones as the background noise.
phase. The details of these learning processes are described In

[11]. B. TF-Based Algorithm

In this section, we introduce the TF-based algorithm pro-
posed in [5] for performance comparison with the proposed

In this section, we shall develop a robust algorithm based BONFIN-based algorithm. TF-based algorithm used the TF
the RSONFIN to find the word boundary in the variable backsarameter and was shown to outperform several commonly used
ground noise level condition by using this network’s learningigorithms for word boundary detection in the presence of noise.
ability for temporal relationships. We shall also introduce arfhe TF parameter uses the frequency energy in the fixed fre-
other existing word boundary detection algorithm for perfoguency band 250-3500 Hz to enhance the time—energy infor-
mance comparisons in the next section. mation. The TF parameter is the result obtained after smoothing

) the sum of the time energy and frequency energy. This fre-

A. RTF-Based RSONFIN Algorithm quency energy helps us to make the distinction between speech

With the learning ability of temporal relations, a procedurand noise. The TF-based robust algorithm first performs a noise
of using the RSONFIN for word boundary detection in variablelassification procedure to determine noise level (high, medium,
background noise level condition is illustrated in Fig. 4. Ther low) and the noise category (high or low zero-crossing rate)
input feature vector of the RSONFIN consists of the average oy using ten frames of “relative” silence at the beginning of the
the logarithmic root-mean-square (rms) energy on the first fivecording, and computing an average of the logarithmic rms en-
frames of recording interval (Noisgme), RTF parameter, and ergy and the zero-crossing rate on these frames. A set of em-
zero-crossing rate (ZCR). The three parameters in an input fe&ically determined threshold values are used to perform the
ture vector are obtained by analyzing a frame of signal. Henemise classification. After noise classification, the TF-based ro-
there are three (input) nodes in Layer 1 of RSONFIN. Before ebust algorithm applies a noise adaptive procedure to determine
tering the RSONFIN, the three input parameters are normaliziag word boundary. It uses the TF parameter with some thresh-
to be in[0, 1]. For each input vector (corresponding to a framedlds to find the islands of reliability boundary. Finally, the re-
the output of RSONFIN indicates whether the correspondifigement procedure, which also depends on the noise classifica-
frame is a word signal or noise. For this purpose, we used twon results, is applied to the initial boundary. It tries to find the
(output) nodes in Layer 5 of RSONFIN, where the output vectearliest boundary by subtracting an adjustment value (typically
of (1, 0) standing for word signal an@, 1) for noise. 20 ms) from the beginning boundary to obtain a new boundary

IV. RSONFINFORWORD BOUNDARY DETECTION
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Fig. 5. Speech waveforms recorded in additive increasing-level white noise (12000 speech sampléR ard> dB). (a) Word boundaries detected by the
TF-based algorithm are shown by solid lines. Segment B is detected as word signal incorrectly, and the ending boundary is missing. (b) Worddetertedries
by the RTF-based RSONFIN algorithm (ten rules) are shown by solid lines. Segment B is detected as background noise correctly.

(maximum up to 100 ms from the beginning island of the relianterval, and its word boundaries detected by the TF-based al-
bility boundary). Some thresholds are then used to determine githm are shown by solid lines. Although this algorithm out-
final beginning boundary. It tries to find the latest boundary byerforms several commonly used algorithms for word boundary
adding an adjustment value (typically 50 ms) from the endirdgtection in the presence of noise, we found that the located be-
boundary to obtain a new boundary (maximum up to 150 nggnning boundary is wrong, and the ending boundary is missing.
from the ending island of the reliability boundary). Then, th&he major reason is that the TF-based algorithm always sets
refinement procedure uses some thresholds to determine ttivesholds from the first few frames of the recording interval
final ending boundary. The thresholds in the refinement prodsegment A in Fig. 5(a)]. These preset thresholds determined by
dure include the logarithm of the time—domain rms energy aségment A are used to stand for the background noise level in
zero-crossing rate. all the recording interval and to find the word boundaries. In
other words, segment B in Fig. 5(a) is determined to be word
signal according to the noise property in segment A. In fact,
segment B is the background noise. Since the background noise
In the word boundary detection procedure, the frame lengtHével changes in all the recording interval, it is not reasonable to
setto 15 msin order to get more accurate endpoint location. Tiee these preset thresholds determined by segment A to judge
sampling rate of our system is 8 KHz. We take the white noisghether segment B is word signal or background noise. In addi-
from the NATO Research Study Group on Speech Processtian, this TF-based algorithm cannot tune the preset thresholds
(RSG.10) NOISE-ROM-O0 [21] for speech contamination in owtetermined by segment A properly according to the variation
experiments. The original NOISE-ROM-0 data were sampled background noise level, so the preset thresholds are proper
at 19.98 KHz and stored as 16-bit integers. In our experimenits,segment A and improper in segment B. Improper thresholds
they are prepared for use by downsampling to 8 KHz and apil result in incorrect location of word boundaries.
plying attenuation to them. The attenuation was applied to en-Now, we use the proposed RTF-based RSONFIN algorithm
able the addition of noise without causing an overflow of th® repeat the same experiment. After training, there were only
16-bit integer range. The speech data used for our experimetisrules generated in the RTF-based RSONFIN algorithm [see
are the set of isolated Mandarin digits. The recording samplikgg. 6(a)]. The number of fuzzy sets on the variables, RTF pa-
rate is 8 KHz and stored as 16-bit integer. rameter, zero-crossing rate and Naisee, are seven, seven,
and five, respectively see [Figs. 6(b)—(d)]. The word boundaries
detected by the RTF-based RSONFIN algorithm are shown by
solid lines in Fig. 5(b). We found that the beginning and ending
Fig. 5(a) shows a typical example of the increasing backeundaries were detected properly. The major reason is that the
ground noise level. A desired spoken word is presented in tiRSONFIN can learn the temporal relations automatically and

C. Test Environments and Noise Speech Database

D. Analysis in Variable Background Noise Level Condition
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Fig. 6. (a) Input training patterns for the RTF-based RSONFIN algorithm and the final assignment of ten rules. (b) Distribution of the membe¢imhgoiunc
the dimension of “RTF” variable. (c) Distribution of the membership functions on the dimension of “ZCR” variable. (d) Distribution of the menfbacsiuips
on the dimension of “Nois¢éime” variable.

implicitly and is trained by a speech waveform which is in varivious training procedure, there were 17 rules generated in the
able background noise level condition. Based on the tempofd-based RSONFIN algorithm, and the number of fuzzy sets on
relations embedded in the RSONFIN, this algorithm can tratee variables, Noistime, TF parameter and zero-crossing rate,
the variations of the background noise level and detect corrace nine, 16 and 12, respectively. However, there were only 10
word boundaries. In other words, segment B is determined totudes generated in the RTF-based RSONFIN algorithm, and the
background noise according to the noise property in segmenbh@mnber of fuzzy sets on the variables, Natsee, TF parameter

in Fig. 5(b), where segment C is from the beginning of recordirand zero-crossing rate, are five, seven, and seven, respectively.
interval to segment B (including segment B). In the next sen this subsection, three word boundary detection algorithms
tion, we shall do experiments in several kinds of backgrourf@F-based algorithm, TF-based RSONFIN algorithm and RTF-
noise level conditions in order to show the performance of thmsed RSONFIN algorithm) are tested in two kinds of back-

RTF-based RSONFIN algorithm. ground noise level conditions; increasing and decreasing back-
ground noise level conditions. There are totally seven words in
V. EXPERIMENTS the recording interval, which are Mandarin digits of “1, 2, 3, 4,

. . 6, 7".
In this section, we te?t the_performancg ofthe proposc_ad RT%_1) Increasing Background Noise Levehn this experiment,
ba;ed RSONFIN algorithm in two experlr_‘nents. Inthe first ©the speech waveforms recorded in additive increasing-level
periment, we demonstrate the segmentation results in two kin ite noise consists of 60000 samples, and the SNR is 10 dB
of variable background noise level conditions and compare thefj, &<t make some observations on thé effect of the increasing
to those obtained by hand labeling in clean environments. In gckground noise level on the speech signal in Fig. 7(a)

second experiment, the performance of the proposed algorit ere the word boundaries detected by hand labetirgean
on a large set of speech signals is evaluated through a speggl

. d1th it i ¢ rat q r]ronmentsare shown by dotted lines. Obviously, the noise
recognizer, and the resutting recognition correct rate and erfl,q 55t half segment of recording interval is larger than the
rate are reported.

noise in the first half segment of recording interval. The noise
o ) ) makes the distinction between word signal and background
A. Spgech Segmentation in Variable Background Noise Levelyiceq ambiguous. Word boundaries detected by the TF-based
Conditions algorithm are shown by solid lines in Fig. 7(a), where two word
In order to compare the effects of the TF and RTF pararsegments are found. Since the background noise level varies
eters, we use the TF parameter instead of the RTF paramelewly in the beginning, the first word segment is determined
in the RTF-based RSFONFIN algorithm to form another worgdroperly. However, the ending boundary of the second word
boundary detection algorithm, called TF-based RSONFIN aegment is missing. In fact, there are six words in this part.
gorithm for performance comparison. Based on the same pidre major reason for this error is that the TF-based algorithm
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Fig. 7. Speech waveform recorded in additive increasing-level white noise including 60 000 samples with the SNR being 10 dB. The word bountiaties detec
by hand labeling in clean environments are shown by dotted lines. (a)Word boundaries detected by the TF-based algorithm are shown by soliclimegeand w
that the second word ending boundary is missing. (b)Word boundaries detected by the TF-based RSONFIN algorithm (17 rules) are shown by $&kidrihes. (c
boundaries detected by the RTF-based RSONFIN algorithm (ten rules) are shown by solid lines.

Wagind
oyt

=
Time indesx = 10%

Vagpine

2
Tirme inde> 10

©

Fig. 8. Speech waveform recorded in additive decreasing-level white noise including 60 000 samples with the SNR being 10 dB. The word bourtddries detec
by hand labeling in clean environments are shown by dotted lines. (a)Word boundaries detected by the TF-based algorithm are shown by soliclimegend w
that the fourth and fifth words are not detected at all. (b)Word boundaries detected by the TF-based RSONFIN algorithm (17 rules) are showreBy @lid lin
Word boundaries detected by the RTF-based RSONFIN algorithm (ten rules) are shown by solid lines.

cannot detect the variation of the background noise level asdlid lines in Fig. 7(c). These word boundaries are more accu-
does not decide proper thresholds to find word boundaries. rate than those detected by the TF-based RSONFIN algorithm.
Next, we use the TF-based and RTF-based RSONFIN aldihis is because that the RTF parameter can extract more infor-
rithms to repeat the same experiment. The word boundaries detive frequency energy than the TF parameter to compensate
tected by the TF-based RSONFIN algorithm are shown by solite time—energy information kgdaptivelychoosing proper fre-
lines in Fig. 7(b), where seven word segments are found. Baspeency bands.
on the temporal relations embedded in the RSONFIN, TF-base®) Decreasing Background Noise Levéh this experiment,
RSONFIN algorithm can find the variation of the backgrounthe speech waveforms recorded in additive decreasing-level
noise level and detect all word signals in the increasing baakhite noise consists of 60000 samples, and the SNR is 10
ground noise level condition. However, the boundaries of sordB. The effect of the decreasing background noise level on
word signals are not determined properly. The word boundarithe speech signal can be observed in Fig. 8(a). Obviously, the
detected by the RTF-based RSONFIN algorithm are shown bgise in the first half segment of recording interval is larger than
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the noise in the last half segment of recording interval. Wor:
boundaries detected by the TF-based algorithm are shown  €0f White Noise
solid linesin Fig. 8(a), where only five word segments are founc
and the fourth and fifth words are missing. Although the sevent  8of
word is detected, the beginning part of this word is missing. 3
We then use the TF-based and RTF-based RSONFIN alg .370-
rithms to repeat the same experiment again. The word boun g
aries detected by the TF-based RSONFIN algorithm are shov Eeof
by solid lines in Fig. 8(b), where seven word segments are foun §’ q
This algorithm can really sense the variation of the backgrour c£sof 0 (solid):RTF-based RSONFIN
(dashed): TF-based RSONFIN

noise level and detect all word signals. However, the boundari
of some word signals are not determined properly. The wor 49
boundaries detected by the RTF-based RSONFIN algorithm a
shown by solid lines in Fig. 8(c). These word boundaries ar g

+ :RTF-based SONFIN
x :RTF-based ANFIS
* .TF-based algorithm

more accurate than those detected by the TF-based RSONF 5 10 SN;;"( o8) 20 o
algorithm. (@

B. Speech Recognition in Variable Background Noise Level ~ °[ White Noise

Conditions 60

Since inaccurate detection of word boundary is harmful tc
recognition, the performance of the word boundary detectio
process can be also examined by the recognition rate of a spe¢
recognizer. The speech recognizer used in this experiment cc
sists of two parts, feature extractor and classifier. In the featui
extractor, the modified two-dimensional (2-D) cepstrum (modi-
fied TDC—MTDC) [22]-[25] is used as the speech feature. The
MTDC can simultaneously represent several types of informe
tion contained in the speech waveform: static and dynamic fei
tures, as well as global and fine frequency structures. To re| 10
resent an utterance, only some MTDC coefficients need to k

~ o
o <]
:

[
(=]

Recognition error rate (%)

selected to form a feature vector instead of the sequence of fe °5 1'0 1'5 2'0 o
ture vectors. The MTDC has the advantage of simple compt SNR (dB)
tation and is suitable for noisy speech recognition due to it ®

choices of robust coefficients. In the classifier, a Gaussian clus- ,_ ,

teri | ithm is used. The training is done on clean s eegﬁ' 9. (a) Recognition rates and (b) error rates of five word boundary
ering algorit - g9 PE€&dHection algorithms (RTF-based RSONFIN, TF-based RSONFIN, RTF-based
pronounced in a clean environment (without background noiS8DNFIN, RTF-based ANFIS, and TF-based algorithms) in the condition of
In the training phase, each model is trained by a mixture of fovfiable background noise level.

Gaussian distribution density functions. We use a total of 1000

utterances for training. The details of the above isolated wojigk adaptive-network-based fuzzy inference system (ANFIS)
recognition system can be found in [25]. [27]. We use the SONFIN and ANFIS to replace the RSONFIN

The speech data used for our experiment are the set of igpthe RTF-based RSONFIN algorithm to form the RTF-based
lated Mandarin digits. They are ten digits spoken by 10 speakf@NFIN and RTF-based ANFIS algorithms, respectively. As a
and each speaker pronounced 20 times of the ten digits. TRgult, there are five word boundary detection algorithms used
recording sampling rate is 8 KHz and stored as 16-bit integesy testing in the followings.
To set up the noisy speech database for testing, we add the prerhe recognition rates of the five algorithms for added white
pared noisy signals to the recorded speech signals with differggise with different SNR'’s are shown in Fig. 9(a). In addition,
signal-to-noise-ratios (SNR's) including 5 dB, 10 dB, 15 dB, 2@e also consider the error rate which is the ratio of the recog-
dB andoc dB. The duration of each utterance used for testingtion errors due to incorrect word boundary detection (taking
the performance of the word boundary detection algorithm jigcognition scores obtained with hand-labels as a reference) to
about one second (including silence). A total of 600 utterancgfe total number of recognition errors of the detection algorithm.
are used in our experiment; 300 utterances are in the conditi@are precisely, let the recognition errors obtained by using hand
of increasing background noise level, and 300 utterances ar¢dbeling beE},;, and the recognition errors obtained by using
the condition of decreasing background noise level. automatic word boundary detection algorithmg. Then the

In addition to the three word boundary detection algorithmgcognition error rate is given ¥, — Ey1)/Ea1. The resulting
used in the previous speech segmentation tests, we also compagegnition error rates of the five algorithms are givenin Fig. 9(b).
the performance of RSONFIN to that of two other neural fuzzy From the above results, we find that the performance of
networks. They are the self-constructing neural fuzzy inferenttee RTF-based SONFIN algorithm is similar to that of the
network (SONFIN) that we proposed previously in [26] an&®TF-based ANFIS algorithm, and they both outperform the
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Fig. 10. Average recognition rates of the RTF-based RSONFIN algorithm with respect to various values of the parani@Yer

TF-based algorithm by about 4%. With the temporal rela- 2) The recurrent property of the RSONFIN makes it more

tions captured and embedded in the RSONFIN, the TF-based
RSONFIN algorithm outperfoms the RTF-based SONFIN
and RTF-based ANFIS algorithms by about 3%. In addition,
since the RTF parameter can extract useful frequency energy
through multiband spectrum analysis, the RTF-based RSONFIN
algorithm outperforms the TF-based RSONFIN algorithm by

suitable for dealing with temporal problems. Since the
RSONFIN can recognize the temporal relations automat-
ically and implicitly, the proposed algorithm can find the
variation of the background noise level and detect correct
word boundaries in the condition of variable background
noise level.

about 5%. As a total, the RTF-based RSONFIN algorithm has 3) No predetermination, like the number of hidden nodes,

higher recognition rate than the TF-based algorithm in [5] by
about 12%. Also, the RTF-based RSONFIN algorithm reduces
the recognition error rate due to endpoint detection to about 23%,
compared to about 34% obtained by the TF-based RSONFIN
algorithm, about 40% obtained by the RTF-based SONFIN or
RTF-based ANFIS algorithms, and about 47% obtained by the
TF-based algorithm in [5].

Finally, to evaluate the weighting facterin (8), we show
the average recognition rates of the RTF-based RSONFIN algo-
rithm with respect to various values ofin Fig. 10. Since the
valuec = 0.8 results in the highest average recognition rate, we
sete = 0.8in (8).

VI. CONCLUSION

must be given to the RSONFIN, since it can find
its optimal structure and parameters automatically and
quickly. This avoids the need of empirically determining
the number of hidden layers and nodes in normal neural
networks. Due to this self-learning ability of RSONFIN,
our proposed RSONFIN-based algorithm avoids the
need of empirically determining ambiguous decision
rules in normal word boundary detection algorithms.
Also, since the RSONFIN houses the human-like IF-
THEN rules in its network structure, expert knowledge
can be put into the network as a priori knowledge, which
can usually increase its learning speed and detection
accuracy.

The RTF-based RSONFIN algorithm has been tested over a
Three major characteristics of the proposed RTF-basggkiety of noise conditions and has been found to perform well
RSONFIN word boundary detection algorithm can be seen. not only in variable background noise level condition but also
1) The proposed RTF parameter can extract both the tinmefixed background noise level condition. Our results show that
and frequency features of noisy speech signals throutite RTF-based RSONFIN algorithm achieved higher recogni-
multiband spectrum analysis. Since this RTF parametigon rate than the TF-based algorithm by about 12% in variable
can extract more informative frequency energy than thmckground noise level conditions. It also reduced the recogni-
TF parameter to compensate the time—energy informt@en error rate due to endpoint detection to about 23%, compare
tion by adaptivelychoosing proper frequency bands, théo about 34% obtained by the TF-based RSONFIN algorithm,
RTF-based RSONFIN algorithm with fewer (10 in our exabout 40% obtained by the RTF-based SONFIN or RTF-based
periments) rules outperforms the TF-based RSONFIN aédNFIS algorithms, and about 47% obtained by the TF-based al-
gorithm with more (17 in our experiments) rules. gorithm in the same condition.
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