
84 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 1, FEBRUARY 2001
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Boundary Detection in Variable Noise-Level
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Abstract—This paper discusses the problem of automatic
word boundary detection in the presence of variable-level back-
ground noise. Commonly used robust word boundary detection
algorithms always assume that the background noise level is
fixed. In fact, the background noise level may vary during the
procedure of recording. This is the major reason that most
robust word boundary detection algorithms cannot work well
in the condition of variable background noise level. In order
to solve this problem, we first propose arefined time–frequency
(RTF) parameter for extracting both the time and frequency
features of noisy speech signals. The RTF parameter extends the
(time–frequency) TF parameter proposed by Junquaet al. from
single band to multiband spectrum analysis, where the frequency
bands help to make the distinction between speech signal and
noise clear. The RTF parameter can extract useful frequency
information. Based on this RTF parameter, we further propose
a new word boundary detection algorithm by using a recurrent
self-organizing neural fuzzy inference network (RSONFIN).
Since RSONFIN can process the temporal relations, the proposed
RTF-based RSONFIN algorithm can find the variation of the
background noise level and detect correct word boundaries in
the condition of variable background noise level. As compared
to normal neural networks, the RSONFIN can always find itself
an economic network size with high-learning speed. Due to the
self-learning ability of RSONFIN, this RTF-based RSONFIN
algorithm avoids the need for empirically determining ambiguous
decision rules in normal word boundary detection algorithms.
Experimental results show that this new algorithm achieves higher
recognition rate than the TF-based algorithm which has been
shown to outperform several commonly used word boundary
detection algorithms by about 12% in variable background noise
level condition. It also reduces the recognition error rate due to
endpoint detection to about 23%, compared to an average of 47%
obtained by the TF-based algorithm in the same condition.

Index Terms—Cepstrum, linear prediction coefficient (LPC),
mel-scale filter bank, recurrent network, space partition, time–fre-
quency (TF).

I. INTRODUCTION

A N important problem in speech processing is to detect the
presence of speech in noisy environments. A major source

of errors in isolated-word automatic speech recognition systems
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is the inaccurate detection of the beginning and ending bound-
aries. In many applications, the problem is further complicated
by nonstationary backgrounds where there may exist concurrent
noises due to movements of desks, door slams, etc. These back-
ground noises can be broadly classified into three classes:

1) impulse noise;
2) fixed-level noise;
3) variable-level noise.

In order to solve this problem, many researchers proposed robust
word boundary detection algorithms in the presence of noise.
However, they focused only on the impulse noise and fixed-level
background noise.

Among the three classes of background noises, the impulse
noise can be solved by the parameter of time duration. The
problem of fixed-level background noise was first attacked by
commonly used robust word boundary detection algorithms
[1]–[4]. These algorithms usually use energy (in time domain),
zero crossing rate, and time duration to find the boundary
between the word signal and background noise. However, it
has been found that the energy and zero-crossing rate are not
sufficient to get reliable word boundaries in noisy environ-
ments, even if more complex decision strategies are used [5].
To date, several other parameters were proposed such as linear
prediction coefficient (LPC), linear prediction error energy [6],
[7] and pitch information [8]. Although the LPCs are quite
successful in modeling vowels [9], they are not particularly
suitable for nasal sounds, fricatives, etc. The reliability of the
LPC parameter depends on the noisy environments. The pitch
information can help to detect the word boundary, but it is not
easy to extract the pitch period correctly in noisy environments.

Four endpoint detection algorithms were compared in [5]:
an energy-based algorithm with automatic threshold adjustment
[3], [4], use of pitch information [8], a noise adaptive algorithm,
and a voiced activation algorithm. These four algorithms are
strongly dependent on the noise condition. The reliability of
the parameters used by the four algorithms also depends on the
noise condition. In the connection, Junquaet al. [5] proposed
the time–frequency (TF) parameter. They used the frequency
energy in the fixed frequency band 250–3500 Hz to enhance
the time–energy information. The TF parameter is the result ob-
tained after smoothing the sum of the time energy and frequency
energy. The frequency energy helps us to make the distinction
between speech and noise. Based on the TF parameter, a robust
algorithm was proposed in [5] to get more precise word bound-
aries in noisy environments. This TF-based robust algorithm in-
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cludes noise classification, a refinement procedure, and some
preset thresholds.

However, the TF-based robust algorithm in [5] needs to em-
pirically determine thresholds and ambiguous rules which are
not easily determined by humans. Some researchers used the
neural network’s learning ability to solve this problem. In [6],
[7], and [10], multilayer neural networks are used to classify the
speech signal into voiced, unvoiced, and silence segments. In
the neural network approach, the decision rules are in the form
of input–output (I/O) layer mappings and can be learned by the
training procedure (supervised learning). However, the proper
structure of the network (including numbers of hidden layers
and nodes) is not easy to decide.

Although the aforementioned TF-based algorithm outper-
forms several commonly used algorithms for word boundary
detection in the presence of noise, it could work well only
for the impulse noise and fixed-level background noise. For
variable-level background noise, this TF-based algorithm usu-
ally results in inaccurate detection of the beginning or ending
boundaries in the recording interval. There was little research
about specific algorithms for processing the variable-level
background noise. The reason may be that most laboratory
systems used reasonablyfixedbackground noise level in a given
recording interval. The desired spoken word is present in the
recording interval. The existing robust algorithms usually set
thresholds from the first few frames of the recording interval.
Then the algorithms used these preset thresholds to determine
the word boundary of the speech signal. These thresholds
are fixed during the recording interval. In the real world, the
background noise level is not always fixed and may gradually
vary over the recording interval. It is not reasonable to make
these preset thresholds fixed over the recording interval. If the
variation of background noise level is large, these fixed preset
thresholds will result in incorrect location of word boundaries.

The main aim of this paper is to develop a new robust word
boundary detection algorithm to attack the problem in variable-
level background noise condition. To develop a more robust
word boundary detection algorithm and avoid the problems of
the above approaches, this paper first proposes a modified TF
parameter and then uses a recurrent neural fuzzy network to
detect word boundaries based on this parameter. In the TF pa-
rameter proposed by Junquaet al. [5], the frequency informa-
tion is extracted on a single frequency band (250–3500 Hz).
Since the frequency energy, i.e., magnitudes of the spectrum
of different speech signals focus on different frequency bands,
more accurate frequency information can be obtained by con-
sidering multiband analysis of noisy speech signals. With this
motivation, we propose a new robust parameter, called there-
fined time–frequency(RTF) parameter, for word boundary de-
tection in noisy environments. Like the TF parameter, the RTF
parameter represents both the time and frequency features of
noisy speech signals. However, the RTF parameter extends the
TF parameter from single-band to multiband spectrum analysis
based on the mel-scale frequency bank (20 bands). The 20 fre-
quency bands are spaced on a nonlinear frequency scale (mel
scale). A procedure is proposed such that the RTF parameter can
extract more informative frequency energy than the single-band
approach to compensate the time–energy information byadap-

tively choosing proper frequency bands. The RTF parameter is
the result obtained after smoothing the sum of the time energy
and frequency energy. It makes the word signal more obvious
than the TF parameter that uses a single frequency band.

Based on the RTF parameter, we further propose a new word
boundary detection algorithm by using a recurrent self-orga-
nizing neural fuzzy inference network (RSONFIN) that we pro-
posed in [11]. Since this RSONFIN can process the temporal
relations automatically and implicitly, the proposed RTF-based
RSONFIN algorithm can find the variation of the background
noise level and detect correct word boundaries in the condition
of variable background noise level. The temporal relations em-
bedded in the network are built by adding some feedback con-
nections representing the memory elements to a feedforward
neural fuzzynetwork.

Due to the self-learning ability of RSONFIN, the proposed
RTF-based RSONFIN algorithm avoids the need of empiri-
cally determining ambiguous decision rules in normal word
boundary detection algorithms. The RSONFIN can always
find itself an economic network size with high learning speed,
and so it avoids the need for empirically determining the
number of hidden layers and nodes in normal neural networks.
Also, since the RSONFIN houses the human-like IF–THEN
rules in its network structure, expert knowledge can be put
into the network as a priori knowledge, which can usually
increase its learning speed and detection accuracy [12], [13].
This new algorithm has been tested over a variety of noise
conditions and has been found to perform well not only in a
variable background noise level condition but also in a fixed
background noise level condition. Our results also showed that
the RSONFIN’s performance is not significantly affected by
the size of the training set.

This paper is organized as follows. The RTF parameter is de-
rived in Section II. The structure and function of the RSONFIN
are briefly introduced in Section III. In Section IV, the RTF-
based RSONFIN word boundary detection algorithm is pro-
posed. The performance evaluation and comparisons of the pro-
posed algorithm using RSONFIN are performed extensively in
Section V. Finally, the conclusions of our work are summarized
in Section VI.

II. RTF PARAMETER

Accurate location of the endpoint of an isolated word is im-
portant for reliable and robust word recognition. In general, the
word boundary is susceptible to noise corruption because the
additive noise obscures the distinction between the word signal
and noise. The general solution is to compensate the strength of
the word signal in noisy environments. It has been found that the
frequency energy of a noisy speech signal can enhance the nor-
mally used time energy to make the distinction between word
signal and background noise more obvious. In [5], Junquaet
al. extracted the frequency energy of the signal on a single fre-
quency band (250–3500 Hz) to form the TF parameter. In this
section, we generalize the single-band analysis of the TF pa-
rameter to multiband analysis based on the mel-scale frequency
bank and propose a new RTF parameter. The RTF parameter
is obtained by smoothing the sum of the time energy and fre-
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quency energy, where the frequency energy is contributed by
several adaptively chosen frequency bands.

A. Auditory-Based Mel-Scale Filter Bank

Loosely speaking, it has been found that the perception of a
particular frequency by the auditory system is influenced by
the energy in a critical band of frequencies around[14]. Hence,
an auditory-based spectrum obtained by summing the energies
in each critical band is a perceptually relevant characterization.
It is also known that critical band filtering of the speech spec-
trum using parallel band-pass filters functionally represents an
aspect of auditory processing. There is evidence from auditory
psychophysics that the human ear perceives speech along a non-
linear scale in the frequency domain. One approach to simulating
the subjective spectrum is to use a filter bank, spaced uniformly
on a nonlinear, warped frequency scale, such as the mel scale.
The relation between mel-scale frequency and frequency (Hz) is
described by the following equation [15]:

(1)

where mel is the mel-frequency scale andis in Hz. The filter
bank is then designed according to the mel scale as shown in
Fig. 1(a), where the filters of 20 bands are approximated by sim-
ulating 20 triangular bandpass filters,

, over a frequency range of 0–4000 Hz. Hence, each
filter band has a triangular bandpass frequency response, and
the spacing as well as the bandwidth is determined by a constant
mel frequency interval by(1). The value of the triangular func-
tion, in the figure, also represents the weighting factor
of the frequency energy at theth point of the th band.

With the mel-scale frequency bank given in Fig. 1(a), we
can now calculate the energy of each frequency band for each
time frame of a speech signal. Consider a given time–domain
noisy speech signal, , representing the magnitude
of the th point of the th frame. We first find the spectrum

of this signal by Discrete Fourier Transform (128-
point DFT)

(2)

(3)

where
magnitude of the th point of the spectrum of
the th frame;
128 in our system;
number of frames of the speech signal for
analysis.

We then multiply the spectrum by the weighting
factors on the mel-scale frequency bank and sum the
products for all to get the energy of each frequency
band of the th frame

(4)

where
filter band index;
spectrum index;
frame number;
number of frames for analysis.

We found in our experiments that the energy ob-
tained in (4) usually had some undesired impulse noise and was
covered by the energy of background noise. Hence, we further
smooth it by using a three-point median filter to get

(5)

Finally, the smoothed energy is normalized by removing
the frequency energy of the beginning interval Noisefreq to get

where the energy of the beginning interval is estimated
by averaging the frequency energy of the first five frames of the
recording

Noise freq

(6)

Since our goal is to extract the word signal information from
the noisy speech waveform as much as possible so that we can
use it to make the distinction between the word signal and back-
ground noise clear, we need a parameter to stand for the amount
of word signal information of each band. It is understood that

in (6) cannot represent the frequency energy of exactly
pure speech signal, since the part of the word signal covered by
background noise is also removed in the normalization proce-
dure. However, is still a good indicator for the amount of
speech information, since the more the word signal information
iscoveredby thenoise, thesmaller the is. Inotherwords,
the larger the is, the more word signal information the
th band has. Hence, we use the smoothed and normalized energy

of the th band of the th frame to stand for the amount
of the word signal information in bandof the th frame. We can
extract useful frequency information for word boundary detec-
tion by adopting the bands having large .

B. Effect of Additive Noise

Before we consider the adaptive choices of suitable bands for
extracting useful frequency information from word signals, we
first make some observations on the effect of additive noise on
each frequency band. In Fig. 2(a), we try to add white noise (0
dB) to the clean speech signal to see the effects of adding white
noise on each band. For illustration, the smoothed and normal-
ized frequency energies of a speech signal in (6) for 20
bands and 166 frames
are shown in Figs. 2(b) and 2(c). We found that the energy of the
first word signal mainly focuses on the
fifth bands. Since the 8th–20th bands are seriously corrupted by
the additive white noise, these bands have little information of
word signal. In order to detect the boundaries of the first word
signal correctly, we shall adopt the fifth band to make the distinc-
tion between the first word signal and noise clear. In addition, the
energy of second word signal mainly fo-
cuses on the seventh band, and the energy of third word signal

mainly focuses on ninth band. We
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Fig. 1. (a) Flowchart for computing the RTF parameter. (b) Procedure for producing the frequency energy in (a).

shall adopt the seventh and ninth bands to make the second and
third word signals clear from the noise. Obviously, some bands
have large frequencyenergy and should beadopted tobe
useful bands. However, theseusefulbandsmay changeunderdif-
ferent word signals. This is because different word signals focus
their frequency energy on different bands; some focus on low fre-
quency bands, and others on high frequency bands.

Based on the above discussion and illustrations, we now pro-
pose a way to adaptively extract helpful frequency information
from word signals. Since is a good indicator for the
amount of speech information, we adopt the maximum
to get the final frequency energy of frame

(7)

The proposed RTF parameter of theth frame is the result ob-
tained after smoothing the sum of the frequency energy
in (7) and time energy

SMOOTHING (8)

where SMOOTHING is performed by a three-point median
filter as in (5), and the constantis set as 0.8. The evaluation of
this weighting factor is given in Subsection. The time energy

is given by smoothing and normalizing the logarithm of
the root-mean-square (rms) energy of the time–domain speech
signal

(9)
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Fig. 2. (a) Speech waveform recorded in additive white noise of 0 dB. (b) Smoothed and normalized frequency energiesX(m; i) on 20 frequency bands.
(c) Contour of (b).

(10)

Noise time

(11)

where is the length of the frame, which is 120 (15 ms) in our
system. The procedure to calculate the RTF parameter is illus-
trated in Fig. 1(a). The details of the block with label “Produce
frequency energy” of this figure are shown in Fig. 1(b).

Up to now, we have proposed the RTF parameter to indicate
the amount of word signal information. Based on this RTF pa-
rameter, we further propose a new word boundary detection al-
gorithm by using a RSONFIN. Since RSONFIN can process the
temporal relations, it can find the variation of the background
noise level and detect correct word boundaries in the condition
of variable background noise level.

III. RECURRENTSELF-ORGANIZING NEURAL FUZZY

INFERENCENETWORK (RSONFIN)

The recurrent neural fuzzy network that we used for word
boundary detection is called the RSONFIN that we proposed
previously in [11]. The RSONFIN is constructed from a series
of dynamic fuzzy rules. The temporal relations embedded in the
network are built by adding some feedback connections rep-
resenting the memory elements to a feedforwardneural fuzzy
network. Each weight as well as node in the RSONFIN has its
own meaning and represents a special element in a fuzzy rule.
There are no hidden nodes, i.e., no membership functions and
fuzzy rules, initially in the RSONFIN. They are created online

via concurrent structure identification (the construction of dy-
namic fuzzy IF–THEN rules) and parameter identification (the
tuning of the free parameters of membership functions). The
structure learning together with the parameter learning forms
a fast-learning algorithm for building a small, yet powerful, dy-
namic neural fuzzy network. The number of generated rules and
membership functions is small even for modeling a sophisti-
cated system.

A. Structure of the RSONFIN

In this section, the structure of the RSONFIN shown in Fig. 3
is introduced. The RSONFIN consists of nodes, each of which
has some finite fan-in of connections from other nodes and some
fan-out of connections to other nodes. Basically, it is a five-lay-
ered neural fuzzy network embedded with dynamic feedback
connections (the feedback layer in Fig. 3 ) that bring the tem-
poral processing ability into a feedforward neural fuzzy net-
work. To give a clear understanding of the network structure,
the function of the node in each layer is described below. In the
following descriptions, the symbol denotes theth input of
a node in the th layer; correspondingly, the symbol de-
notes the node output in layer.

Layer 1: No computation is done in this layer. Each node
in this layer is called an input linguistic node and corresponds
to one input variable. The node only transmits input values to
the next layer directly. That is

(12)

Layer 2: Nodes in this layer are called input term nodes,
each of which corresponds to one linguistic label (small, large,
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Fig. 3. Structure of the RSONFIN.

etc.) of an input variable. Each node in this layer calculates
the membership value specifying the degree to which an input
value belongs to a fuzzy set. A local membership function is
used in this layer. There are many qualified candidates for the
types of membership functions, such as triangular-, trapezoidal-,
or Gaussian-membership functions. Here, a Gaussian- member-
ship function is employed. The reason is that a multidimensional
Gaussian- membership function can be easily decomposed into
the product of one-dimensional (1-D) membership functions.
With this choice, the operation performed in this layer is

(13)

where and are, respectively, the center and the width
of the Gaussian-membership function of theth term of the th
input variable .

Layer 3: Nodes in this layer are called rule nodes. A rule
node represents one fuzzy logic rule and performs precondition

matching of a rule. The fan-in of a fuzzy node comes from two
sources: 1) from layer 2; and 2) from the feedback layer. The
former represents the rule’s spatial firing degree, and the latter
the rule’s temporal firing degree. We use the following AND
operation on each rule node to integrate these fan-in values:

(14)

where
, and is the output of the feed-

back term node which will be described in the feedback layer
part in this section. Obviously, the output of a rule node
represents the firing strength of its corresponding rule.

Layer 4: This layer is called the consequent layer and the
nodes in this layer are called output term nodes. Each output
term node represents a multidimensional fuzzy set (described by
a multidimensional Gaussian function) obtained during the clus-
tering operation in the structure learning phase. Only the center
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of each Gaussian membership function is delivered to the next
layer for the local mean of maximum (LMOM) defuzzification
operation [16], so the width is used for output clustering only.
Different nodes in Layer 3 may be connected to a same node
in this layer, meaning that the same consequent is specified for
different rules. The function of each output term node performs
the following fuzzy OR operation:

(15)

to integrate the fired rules which have the same consequent part.
Layer 5: Each node in this layer is called an output lin-

guistic node and corresponds to one output linguistic variable.
This layer performs the defuzzification operation. The nodes in
this layer together with the links attached to them accomplish
this task. The function performed in this layer is

(16)

where and , the link weight, is the center of the
membership function of theth term of the th output linguistic
variable.

Feedback Layer:This layer calculates the value of the in-
ternal variable and the firing strength of the internal variable to
itscorrespondingmembership function,where the firingstrength
contributes to the matching degree of a rule node in Layer 3. As
shown in Fig. 3, two types of nodes are used in this layer: 1)
the square node named ascontext node; and 2) the circle node
named asfeedback term node, where each context node is asso-
ciated with a feedback term node. The number of context nodes
(and thus the number of feedback term nodes) are the same as
that of output term nodes in Layer 4. Each context node and its
associated feedback term node corresponds to one output term
node. The inputs to a context node are from all the output term
nodes, and the output of its associated feedback term node is fed
to the rule nodes whose consequent is the output term node cor-
responded to this context node. The context node functions as a
defuzzifier

(17)

where the internal variable is interpreted as the inference re-
sult of the hidden (internal) rule, and is the link weight from
the thnode inLayer4 to theth internal variable.The linkweight

represents a fuzzy singleton in the consequent part of a rule,
and also a fuzzy term of the internal variable. For an internal
variable, a fuzzy singleton instead of a fuzzy membership func-
tion is used as its fuzzy term; a fuzzy membership function on an
internal variable does not make much sense in the network due

to the use of the LMOM defuzzification operation, where only
the center of the Gaussian membership function is used. This is
different from the situation for the input and output linguistic
variables, where the widths of fuzzy membership functions are
used for clustering the input and output training data. In (17), the
simple weighted sum is calculated [17], [18]. Instead of using the
weighted sum of each rule’s outputs as the inference result, the
conventional average weighted sum
can also be used [18], [19].

As to the feedback term node, unlike the case in the space
domain where a local membership function is used, a global
membership function is adopted on the universe of discourse
of the internal variable to simplify network structure and meet
the global property of the temporal history. Here, the global
property means that for a cluster in the space domain its history
path (memorized by the internal variables) can be anywhere in
the space at different times, and so a global membership func-
tion, which covers the universe of discourse of the internal vari-
able, is used to rank the influence degree each internal variable
contributes to a rule. In this paper, the membership function

is used for each internal variable. With
this choice, the feedback term node evaluates the output by

(18)

This output is connected to the rule nodes in Layer 3, which con-
nect to the same output term node in Layer 4. The outputs of feed-
back term nodes contain the firing history of the fuzzy rules.

With the aforementioned node functions in each layer, the
RSONFIN realizes the following dynamic fuzzy reasoning [20]
(see the equation at the bottom of the page), where

input variable;
output variable;

and fuzzy sets;
internal variable;

and are fuzzy singletons, and
and are the numbers of input and in-

ternal variables, respectively.

B. Learning Algorithms for the RSONFIN

Two types of learning, structure and parameter learning, are
used concurrently for constructing the RSONFIN. The structure
learning includes the precondition, consequent, and feedback
structure identification of a fuzzy IF–THEN rule. Here the pre-
condition structure identification corresponds to the input space
partitioning. The consequent structure identification is to decide
when to generate a new membership function for the output vari-
able based upon clustering. As to the feedback structure identifi-
cation, the main task is to decide the number of internal variables
with its corresponding feedback fuzzy terms and the connection
of these terms to each rule. For the parameter learning, based

Rule IF is and and is and is

THEN is and is and is and and is
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Fig. 4. RTF-based RSONFIN algorithm for automatic word boundary
detection.

upon supervised learning, an ordered derivative learning algo-
rithm is derived to update the free parameters in the RSONFIN.
There are no rules, i.e., no nodes in the network except the I/O
linguistic nodes, in the RSONFIN initially. They are created dy-
namically as learning proceeds upon receiving online incoming
training data by performing the following learning processes si-
multaneously,

A. Input–Output space partitioning.
B. Construction of fuzzy rules.
C. Feedback structure identification.
D. Parameter identification.
In the above, processes A, B, and C belong to the structure

learning phase and process D belongs to the parameter learning
phase. The details of these learning processes are described in
[11].

IV. RSONFINFORWORD BOUNDARY DETECTION

In this section, we shall develop a robust algorithm based on
the RSONFIN to find the word boundary in the variable back-
ground noise level condition by using this network’s learning
ability for temporal relationships. We shall also introduce an-
other existing word boundary detection algorithm for perfor-
mance comparisons in the next section.

A. RTF-Based RSONFIN Algorithm

With the learning ability of temporal relations, a procedure
of using the RSONFIN for word boundary detection in variable
background noise level condition is illustrated in Fig. 4. The
input feature vector of the RSONFIN consists of the average of
the logarithmic root-mean-square (rms) energy on the first five
frames of recording interval (Noisetime), RTF parameter, and
zero-crossing rate (ZCR). The three parameters in an input fea-
ture vector are obtained by analyzing a frame of signal. Hence,
there are three (input) nodes in Layer 1 of RSONFIN. Before en-
tering the RSONFIN, the three input parameters are normalized
to be in . For each input vector (corresponding to a frame),
the output of RSONFIN indicates whether the corresponding
frame is a word signal or noise. For this purpose, we used two
(output) nodes in Layer 5 of RSONFIN, where the output vector
of standing for word signal and for noise.

The RSONFIN was trained by a speech waveform with 15 s.
This speech waveform is added by white noise with increasing
and decreasing energy, and then each frame is transformed to be
the desired input feature vector of the RSONFIN (Noisetime,
RTF parameter, and zero-crossing rate). These training vectors
are classified as word signal or noise by using waveform,
spectrum displays, and audio output. Among these training
vectors, some are word sounds with the desired RSONFIN
output vector being , and all others are noises with the
desired RSONFIN output vector being . Although the
zero-crossing rate (ZCR) is not reliable for speech segmenta-
tion in noisy environments, it is still an important parameter
in clean environments. Hence, we also adopt it as an input
parameter of RSONFIN. In the training phase, the RSONFIN
will tune the proper weighting of ZCR automatically to reach
the optimum performance of speech segmentation not only in
noisy environments but also in clean environments.

The RSONFIN after training is ready for word boundary
detection. As shown in Fig. 4, the outputs of RSONFIN are
processed by a decoder. The decoder decodes the RSONFIN’s
output vector as value 100 standing for word signal
and as value 0 standing for noise. We observed that the
decoding waveform, i.e., the outputs of the decoder, contains
impulse noise sometimes. Hence, we let the output waveform
of the decoder pass through a three-point median filter to elim-
inate the isolated “impulse” noise. Finally, we recognize the
word-signal island as the part of the filtered waveform whose
magnitude is greater than 30, and duration is long enough (by
setting a threshold value). We then regard the parts of original
signal corresponding to the allocated word-signal island as the
word signal, and the other ones as the background noise.

B. TF-Based Algorithm

In this section, we introduce the TF-based algorithm pro-
posed in [5] for performance comparison with the proposed
RSONFIN-based algorithm. TF-based algorithm used the TF
parameter and was shown to outperform several commonly used
algorithms for word boundary detection in the presence of noise.
The TF parameter uses the frequency energy in the fixed fre-
quency band 250–3500 Hz to enhance the time–energy infor-
mation. The TF parameter is the result obtained after smoothing
the sum of the time energy and frequency energy. This fre-
quency energy helps us to make the distinction between speech
and noise. The TF-based robust algorithm first performs a noise
classification procedure to determine noise level (high, medium,
or low) and the noise category (high or low zero-crossing rate)
by using ten frames of “relative” silence at the beginning of the
recording, and computing an average of the logarithmic rms en-
ergy and the zero-crossing rate on these frames. A set of em-
pirically determined threshold values are used to perform the
noise classification. After noise classification, the TF-based ro-
bust algorithm applies a noise adaptive procedure to determine
the word boundary. It uses the TF parameter with some thresh-
olds to find the islands of reliability boundary. Finally, the re-
finement procedure, which also depends on the noise classifica-
tion results, is applied to the initial boundary. It tries to find the
earliest boundary by subtracting an adjustment value (typically
20 ms) from the beginning boundary to obtain a new boundary
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Fig. 5. Speech waveforms recorded in additive increasing-level white noise (12000 speech samples andSNR = 5 dB). (a) Word boundaries detected by the
TF-based algorithm are shown by solid lines. Segment B is detected as word signal incorrectly, and the ending boundary is missing. (b) Word boundariesdetected
by the RTF-based RSONFIN algorithm (ten rules) are shown by solid lines. Segment B is detected as background noise correctly.

(maximum up to 100 ms from the beginning island of the relia-
bility boundary). Some thresholds are then used to determine the
final beginning boundary. It tries to find the latest boundary by
adding an adjustment value (typically 50 ms) from the ending
boundary to obtain a new boundary (maximum up to 150 ms
from the ending island of the reliability boundary). Then, the
refinement procedure uses some thresholds to determine the
final ending boundary. The thresholds in the refinement proce-
dure include the logarithm of the time–domain rms energy and
zero-crossing rate.

C. Test Environments and Noise Speech Database

In the word boundary detection procedure, the frame length is
set to 15 ms in order to get more accurate endpoint location. The
sampling rate of our system is 8 KHz. We take the white noise
from the NATO Research Study Group on Speech Processing
(RSG.10) NOISE-ROM-0 [21] for speech contamination in our
experiments. The original NOISE-ROM-0 data were sampled
at 19.98 KHz and stored as 16-bit integers. In our experiments,
they are prepared for use by downsampling to 8 KHz and ap-
plying attenuation to them. The attenuation was applied to en-
able the addition of noise without causing an overflow of the
16-bit integer range. The speech data used for our experiments
are the set of isolated Mandarin digits. The recording sampling
rate is 8 KHz and stored as 16-bit integer.

D. Analysis in Variable Background Noise Level Condition

Fig. 5(a) shows a typical example of the increasing back-
ground noise level. A desired spoken word is presented in this

interval, and its word boundaries detected by the TF-based al-
gorithm are shown by solid lines. Although this algorithm out-
performs several commonly used algorithms for word boundary
detection in the presence of noise, we found that the located be-
ginning boundary is wrong, and the ending boundary is missing.
The major reason is that the TF-based algorithm always sets
thresholds from the first few frames of the recording interval
[segment A in Fig. 5(a)]. These preset thresholds determined by
segment A are used to stand for the background noise level in
all the recording interval and to find the word boundaries. In
other words, segment B in Fig. 5(a) is determined to be word
signal according to the noise property in segment A. In fact,
segment B is the background noise. Since the background noise
level changes in all the recording interval, it is not reasonable to
use these preset thresholds determined by segment A to judge
whether segment B is word signal or background noise. In addi-
tion, this TF-based algorithm cannot tune the preset thresholds
determined by segment A properly according to the variation
of background noise level, so the preset thresholds are proper
in segment A and improper in segment B. Improper thresholds
will result in incorrect location of word boundaries.

Now, we use the proposed RTF-based RSONFIN algorithm
to repeat the same experiment. After training, there were only
10 rules generated in the RTF-based RSONFIN algorithm [see
Fig. 6(a)]. The number of fuzzy sets on the variables, RTF pa-
rameter, zero-crossing rate and Noisetime, are seven, seven,
and five, respectively see [Figs. 6(b)–(d)]. The word boundaries
detected by the RTF-based RSONFIN algorithm are shown by
solid lines in Fig. 5(b). We found that the beginning and ending
boundaries were detected properly. The major reason is that the
RSONFIN can learn the temporal relations automatically and
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Fig. 6. (a) Input training patterns for the RTF-based RSONFIN algorithm and the final assignment of ten rules. (b) Distribution of the membership functions on
the dimension of “RTF” variable. (c) Distribution of the membership functions on the dimension of “ZCR” variable. (d) Distribution of the membershipfunctions
on the dimension of “Noisetime” variable.

implicitly and is trained by a speech waveform which is in vari-
able background noise level condition. Based on the temporal
relations embedded in the RSONFIN, this algorithm can trace
the variations of the background noise level and detect correct
word boundaries. In other words, segment B is determined to be
background noise according to the noise property in segment C
in Fig. 5(b), where segment C is from the beginning of recording
interval to segment B (including segment B). In the next sec-
tion, we shall do experiments in several kinds of background
noise level conditions in order to show the performance of the
RTF-based RSONFIN algorithm.

V. EXPERIMENTS

In this section, we test the performance of the proposed RTF-
based RSONFIN algorithm in two experiments. In the first ex-
periment, we demonstrate the segmentation results in two kinds
of variable background noise level conditions and compare them
to those obtained by hand labeling in clean environments. In the
second experiment, the performance of the proposed algorithm
on a large set of speech signals is evaluated through a speech
recognizer, and the resulting recognition correct rate and error
rate are reported.

A. Speech Segmentation in Variable Background Noise Level
Conditions

In order to compare the effects of the TF and RTF param-
eters, we use the TF parameter instead of the RTF parameter
in the RTF-based RSFONFIN algorithm to form another word
boundary detection algorithm, called TF-based RSONFIN al-
gorithm for performance comparison. Based on the same pre-

vious training procedure, there were 17 rules generated in the
TF-based RSONFIN algorithm, and the number of fuzzy sets on
the variables, Noisetime, TF parameter and zero-crossing rate,
are nine, 16 and 12, respectively. However, there were only 10
rules generated in the RTF-based RSONFIN algorithm, and the
number of fuzzy sets on the variables, Noisetime, TF parameter
and zero-crossing rate, are five, seven, and seven, respectively.
In this subsection, three word boundary detection algorithms
(TF-based algorithm, TF-based RSONFIN algorithm and RTF-
based RSONFIN algorithm) are tested in two kinds of back-
ground noise level conditions; increasing and decreasing back-
ground noise level conditions. There are totally seven words in
the recording interval, which are Mandarin digits of “1, 2, 3, 4,
5, 6, 7”.

1) Increasing Background Noise Level:In this experiment,
the speech waveforms recorded in additive increasing-level
white noise consists of 60 000 samples, and the SNR is 10 dB.
We first make some observations on the effect of the increasing
background noise level on the speech signal in Fig. 7(a),
where the word boundaries detected by hand labelingin clean
environmentsare shown by dotted lines. Obviously, the noise
in the last half segment of recording interval is larger than the
noise in the first half segment of recording interval. The noise
makes the distinction between word signal and background
noise ambiguous. Word boundaries detected by the TF-based
algorithm are shown by solid lines in Fig. 7(a), where two word
segments are found. Since the background noise level varies
slowly in the beginning, the first word segment is determined
properly. However, the ending boundary of the second word
segment is missing. In fact, there are six words in this part.
The major reason for this error is that the TF-based algorithm
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Fig. 7. Speech waveform recorded in additive increasing-level white noise including 60 000 samples with the SNR being 10 dB. The word boundaries detected
by hand labeling in clean environments are shown by dotted lines. (a)Word boundaries detected by the TF-based algorithm are shown by solid lines, and we notice
that the second word ending boundary is missing. (b)Word boundaries detected by the TF-based RSONFIN algorithm (17 rules) are shown by solid lines. (c) Word
boundaries detected by the RTF-based RSONFIN algorithm (ten rules) are shown by solid lines.

Fig. 8. Speech waveform recorded in additive decreasing-level white noise including 60 000 samples with the SNR being 10 dB. The word boundaries detected
by hand labeling in clean environments are shown by dotted lines. (a)Word boundaries detected by the TF-based algorithm are shown by solid lines, and we notice
that the fourth and fifth words are not detected at all. (b)Word boundaries detected by the TF-based RSONFIN algorithm (17 rules) are shown by solid lines. (c)
Word boundaries detected by the RTF-based RSONFIN algorithm (ten rules) are shown by solid lines.

cannot detect the variation of the background noise level and
does not decide proper thresholds to find word boundaries.

Next, we use the TF-based and RTF-based RSONFIN algo-
rithms to repeat the same experiment. The word boundaries de-
tected by the TF-based RSONFIN algorithm are shown by solid
lines in Fig. 7(b), where seven word segments are found. Based
on the temporal relations embedded in the RSONFIN, TF-based
RSONFIN algorithm can find the variation of the background
noise level and detect all word signals in the increasing back-
ground noise level condition. However, the boundaries of some
word signals are not determined properly. The word boundaries
detected by the RTF-based RSONFIN algorithm are shown by

solid lines in Fig. 7(c). These word boundaries are more accu-
rate than those detected by the TF-based RSONFIN algorithm.
This is because that the RTF parameter can extract more infor-
mative frequency energy than the TF parameter to compensate
the time–energy information byadaptivelychoosing proper fre-
quency bands.

2) Decreasing Background Noise Level:In this experiment,
the speech waveforms recorded in additive decreasing-level
white noise consists of 60 000 samples, and the SNR is 10
dB. The effect of the decreasing background noise level on
the speech signal can be observed in Fig. 8(a). Obviously, the
noise in the first half segment of recording interval is larger than
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the noise in the last half segment of recording interval. Word
boundaries detected by the TF-based algorithm are shown by
solid lines in Fig. 8(a), where only five word segments are found,
and the fourth and fifth words are missing. Although the seventh
word is detected, the beginning part of this word is missing.

We then use the TF-based and RTF-based RSONFIN algo-
rithms to repeat the same experiment again. The word bound-
aries detected by the TF-based RSONFIN algorithm are shown
by solid lines in Fig. 8(b), where seven word segments are found.
This algorithm can really sense the variation of the background
noise level and detect all word signals. However, the boundaries
of some word signals are not determined properly. The word
boundaries detected by the RTF-based RSONFIN algorithm are
shown by solid lines in Fig. 8(c). These word boundaries are
more accurate than those detected by the TF-based RSONFIN
algorithm.

B. Speech Recognition in Variable Background Noise Level
Conditions

Since inaccurate detection of word boundary is harmful to
recognition, the performance of the word boundary detection
process can be also examined by the recognition rate of a speech
recognizer. The speech recognizer used in this experiment con-
sists of two parts, feature extractor and classifier. In the feature
extractor, the modified two-dimensional (2-D) cepstrum (modi-
fied TDC—MTDC) [22]–[25] is used as the speech feature. The
MTDC can simultaneously represent several types of informa-
tion contained in the speech waveform: static and dynamic fea-
tures, as well as global and fine frequency structures. To rep-
resent an utterance, only some MTDC coefficients need to be
selected to form a feature vector instead of the sequence of fea-
ture vectors. The MTDC has the advantage of simple compu-
tation and is suitable for noisy speech recognition due to its
choices of robust coefficients. In the classifier, a Gaussian clus-
tering algorithm is used. The training is done on clean speech
pronounced in a clean environment (without background noise).
In the training phase, each model is trained by a mixture of four
Gaussian distribution density functions. We use a total of 1000
utterances for training. The details of the above isolated word
recognition system can be found in [25].

The speech data used for our experiment are the set of iso-
lated Mandarin digits. They are ten digits spoken by 10 speakers
and each speaker pronounced 20 times of the ten digits. The
recording sampling rate is 8 KHz and stored as 16-bit integer.
To set up the noisy speech database for testing, we add the pre-
pared noisy signals to the recorded speech signals with different
signal-to-noise-ratios (SNR’s) including 5 dB, 10 dB, 15 dB, 20
dB and dB. The duration of each utterance used for testing
the performance of the word boundary detection algorithm is
about one second (including silence). A total of 600 utterances
are used in our experiment; 300 utterances are in the condition
of increasing background noise level, and 300 utterances are in
the condition of decreasing background noise level.

In addition to the three word boundary detection algorithms
used in the previous speech segmentation tests, we also compare
the performance of RSONFIN to that of two other neural fuzzy
networks. They are the self-constructing neural fuzzy inference
network (SONFIN) that we proposed previously in [26] and

Fig. 9. (a) Recognition rates and (b) error rates of five word boundary
detection algorithms (RTF-based RSONFIN, TF-based RSONFIN, RTF-based
SONFIN, RTF-based ANFIS, and TF-based algorithms) in the condition of
variable background noise level.

the adaptive-network-based fuzzy inference system (ANFIS)
[27]. We use the SONFIN and ANFIS to replace the RSONFIN
in the RTF-based RSONFIN algorithm to form the RTF-based
SONFIN and RTF-based ANFIS algorithms, respectively. As a
result, there are five word boundary detection algorithms used
for testing in the followings.

The recognition rates of the five algorithms for added white
noise with different SNR’s are shown in Fig. 9(a). In addition,
we also consider the error rate which is the ratio of the recog-
nition errors due to incorrect word boundary detection (taking
recognition scores obtained with hand-labels as a reference) to
the total number of recognition errors of the detection algorithm.
More precisely, let the recognition errors obtained by using hand
labeling be , and the recognition errors obtained by using
automatic word boundary detection algorithm be. Then the
recognition error rate is given by . The resulting
recognitionerror ratesof the fivealgorithmsaregiven inFig.9(b).

From the above results, we find that the performance of
the RTF-based SONFIN algorithm is similar to that of the
RTF-based ANFIS algorithm, and they both outperform the
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Fig. 10. Average recognition rates of the RTF-based RSONFIN algorithm with respect to various values of the parameterc in (8).

TF-based algorithm by about 4%. With the temporal rela-
tions captured and embedded in the RSONFIN, the TF-based
RSONFIN algorithm outperfoms the RTF-based SONFIN
and RTF-based ANFIS algorithms by about 3%. In addition,
since the RTF parameter can extract useful frequency energy
through multiband spectrum analysis, the RTF-based RSONFIN
algorithm outperforms the TF-based RSONFIN algorithm by
about 5%. As a total, the RTF-based RSONFIN algorithm has
higher recognition rate than the TF-based algorithm in [5] by
about 12%. Also, the RTF-based RSONFIN algorithm reduces
the recognition error rate due to endpoint detection to about 23%,
compared to about 34% obtained by the TF-based RSONFIN
algorithm, about 40% obtained by the RTF-based SONFIN or
RTF-based ANFIS algorithms, and about 47% obtained by the
TF-based algorithm in [5].

Finally, to evaluate the weighting factorin (8), we show
the average recognition rates of the RTF-based RSONFIN algo-
rithm with respect to various values ofin Fig. 10. Since the
value results in the highest average recognition rate, we
set in (8).

VI. CONCLUSION

Three major characteristics of the proposed RTF-based
RSONFIN word boundary detection algorithm can be seen.

1) The proposed RTF parameter can extract both the time
and frequency features of noisy speech signals through
multiband spectrum analysis. Since this RTF parameter
can extract more informative frequency energy than the
TF parameter to compensate the time–energy informa-
tion by adaptivelychoosing proper frequency bands, the
RTF-based RSONFIN algorithm with fewer (10 in our ex-
periments) rules outperforms the TF-based RSONFIN al-
gorithm with more (17 in our experiments) rules.

2) The recurrent property of the RSONFIN makes it more
suitable for dealing with temporal problems. Since the
RSONFIN can recognize the temporal relations automat-
ically and implicitly, the proposed algorithm can find the
variation of the background noise level and detect correct
word boundaries in the condition of variable background
noise level.

3) No predetermination, like the number of hidden nodes,
must be given to the RSONFIN, since it can find
its optimal structure and parameters automatically and
quickly. This avoids the need of empirically determining
the number of hidden layers and nodes in normal neural
networks. Due to this self-learning ability of RSONFIN,
our proposed RSONFIN-based algorithm avoids the
need of empirically determining ambiguous decision
rules in normal word boundary detection algorithms.
Also, since the RSONFIN houses the human-like IF-
THEN rules in its network structure, expert knowledge
can be put into the network as a priori knowledge, which
can usually increase its learning speed and detection
accuracy.

The RTF-based RSONFIN algorithm has been tested over a
variety of noise conditions and has been found to perform well
not only in variable background noise level condition but also
in fixed background noise level condition. Our results show that
the RTF-based RSONFIN algorithm achieved higher recogni-
tion rate than the TF-based algorithm by about 12% in variable
background noise level conditions. It also reduced the recogni-
tion error rate due to endpoint detection to about 23%, compare
to about 34% obtained by the TF-based RSONFIN algorithm,
about 40% obtained by the RTF-based SONFIN or RTF-based
ANFIS algorithms, and about 47% obtained by the TF-based al-
gorithm in the same condition.
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