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Abstract

In this article, we develop a dynamic programming model for a periodic review inventory system in which
emergency orders can be placed at the start of each period, while regular orders are placed at the beginning of
an order cycle (which consists of a number of periods). We assume that the regular and emergency supply
lead times di!er by one period. We devise a simple algorithm of computing the optimal policy parameters.
Thus, the ordering policy developed is easy to implement.

Scope and purpose

Alternative resupply modes are commonly used in inventory systems. For example, a materials manager
could choose to replenish the inventory of an item by air if its inventory position gets dangerously low. In this
article, we study a periodic review inventory system in which there is an emergency supply mode in addition
to a regular supply mode. We develop optimal ordering policies that minimize the total expected discounted
cost of procurement, holding, and shortage over a "nite planning horizon. These optimal policies are next
shown to converge as the planning horizon is extended, if some conditions that are easy to hold are satis"ed.
Finally, we derive an algorithm which involves solving only a one-order-cycle dynamic program for the
optimal policy parameters. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Inventory model; Periodic review; Dynamic programming; Optimization

1. Introduction

Alternative resupply modes are commonly used in practice. For example, a retailer could choose
to replenish the inventory of an item by a fast resupply mode (e.g., by air) if its inventory position is
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dangerously low. In this article, we study an inventory system in which there are two resupply
modes: namely a regular mode and an emergency mode. Orders placed via the emergency mode,
compared to orders placed via the regular mode, have a shorter lead time but are subject to higher
ordering costs.

Many studies in the literature address this problem. Some studies assume a particular policy
form and devise methods for evaluating it, while other studies develop the true optimal policy and
solve speci"c instances of the problem under consideration. While the policy-evaluation studies use
broader assumptions and simpler policies, the policy-optimization studies typically have stronger
results. This paper treats the problem in a periodic review setting and contributes to the optimiza-
tion literature.

The earlier research in this area are policy-optimization studies. See Barankin [1], Daniel [2],
Neuts [3], Bulinskaya [4], Fukuda [5], Veinott [6], and Wright [7]. They assume that the lead
times for regular and emergency replenishment di!er by exactly one period (whose length is one or
few working days). Whittmore and Saunders [8] extend the analysis by allowing the emergency
and regular lead times to be of arbitrary lengths. Unfortunately, the form of the optimal policy they
derive is extremely complex. They are able to obtain explicit results only for the case in which the
two lead times di!er by one period. Later works in this area are policy-evaluation studies. See, e.g.,
Moinzadeh and Nahmias [9], Moinzadeh and Schmidt [10], and Moinzadeh and Aggarwal [11]
for continuous review models.

All of the policy-optimization studies cited above assume that both regular and emergency
orders can be placed at the start of each period. In this paper, we also assume that an emergency
order can be placed at the start of a period if the inventory position of an item is dangerously low.
However, we assume that regular orders are placed at the beginning of an order cycle which
consists of a number of periods. Possible reasons for this include avoiding large "xed order costs
and achieving economies in the coordination and consolidation of orders for di!erent items. The
latter is particularly true if many items are purchased from the same source. For example, a retailer
may order hundreds of items from a distribution center every two weeks (which then is the length of
an order cycle). Also, companies in the import auto industry in Taiwan typically establish their
weekly or biweekly ordering of auto parts from abroad. In addition, they place an emergency order
if the inventory level of an item falls below a warning point at the start of a working day. The
periodic inventory system considered in this article is similar to that depicted in Chiang and
Gutierrez [12]. However, Chiang and Gutierrez assume that the regular and emergency supply
lead times di!er by more than one period but less than the order-cycle length. In this article, we
assume that the emergency supply mode has a lead time one period shorter than that of the regular
mode. This assumption is used in most of the policy-optimization studies cited above, and may
really be true in some real-world situations in which the supplier's warehouse is not too far away
from the buyer and emergency orders delivered by a faster transportation mode will arrive earlier
than regular orders by one or few working days.

We analyze the problem within the framework of a stochastic dynamic program. We assume that
emergency orders have larger variable item costs. It is possible that emergency orders also have
a "xed order cost. This paper, like Chiang and Gutierrez [12], treats only a special case, i.e., the cost
of placing an emergency order is assumed to be negligible. We will develop optimal regular and
emergency ordering policies that minimize the total expected discounted cost of procurement,
holding, and shortage over a "nite planning horizon. These optimal policies are next shown to
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converge as the planning horizon is extended, if some conditions that are easy to hold are satis"ed.
Hence, the ordering rules to which these policies respectively converge are optimal for the in"nite
horizon model.

The contribution of this paper is twofold. Firstly, we present a dynamic programming model for
the "nite horizon problem in which there is only one state variable, as opposed to two state
variables in the model of Chiang and Gutierrez [12]. We also derive the convergence conditions
(for the optimal policies) which are much simpler than those in Chiang and Gutierrez [12].
Secondly, we develop a simple algorithm, which is not available in Chiang and Gutierrez [12],
of computing the optimal policy parameters. Thus, the ordering policy developed is easy to
implement.

2. A dynamic programming model

Assume that there are two resupply modes available: namely a regular mode and an emergency
mode. The unit item costs for the regular and emergency supply modes are c

1
and c

0
, respectively,

where c
1
(c

0
. Assume that an order cycle, whose length is exogenously determined (as in Chiang

and Gutierrez [12]), consists of m periods. For notational simplicity, the lead times for the regular
and emergency modes are assumed to be one and zero periods, respectively. It can be shown that
this case can be generalized to situations where the two lead times di!er by exactly one period. See
Chiang [13] for details. Assume that all demand which is not "lled immediately is backlogged.
There is a holding cost h( ) ) based on inventory on hand and a shortage cost p( ) ) based on
backlogged demand. Both the holding cost and shortage cost are charged at the end of each period.
Let /(t) be the probability density function for demand t during a period with mean k. Demand is
assumed to be non-negative and independently distributed in disjoint time intervals.

Suppose the net inventory (i.e., inventory on hand minus backorder) at the beginning of a period
is x; then the expected holding and shortage costs incurred in that period are given by

¸(x)"P
x
`

0

h(x!t)/(t) dt#P
=

x
`

p(t!x)/(t) dt, (1)

where ( ) )` denotes maxM ) , 0N. Other functional forms of ¸(x) are allowed; however, for our
analysis we need ¸(x) to be a convex and di!erentiable function. Denote <

i,j
(x) as the expected

discounted cost with i order cycles and j periods remaining (where 0)j)m!1) until the end of
the planning horizon when the starting net inventory is x and an optimal ordering policy is used at
every review epoch. Then, <

i,j
(x) satis"es the functional equation

<
i,0

(x)" min
xxrxR

Mc
0
r#c

1
(R!r)#¸(r)#aE

t
<

i~1,m~1
(R!t)N!c

0
x, (2)

<
i,j

(x)"min
xxr

Mc
0
r#¸(r)#aE

t
<

i,j~1
(r!t)N!c

0
x, j"m!1,2, 1, (3)

where <
0,0

(x),0, a (0(a(1) is the discount factor, r is the net inventory after a possible
emergency order is placed at a review epoch, and R is the inventory position (i.e., net inventory plus
inventory on order) after a possible emergency order and a regular order are placed at the
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beginning of an order cycle (r and R are decision variables). As we see above, <
i,0

(x), for example,
consists of the purchase cost c

0
(r!x)#c

1
(R!r), one-period expected holding and shortage cost

¸(r), and the expected discounted cost aE
t
<

i~1,m~1
(R!t) from the next review epoch until the end

of the planning horizon.
De"ne the function G

i,j
(r) as

G
i,j

(r)"c
0
r#¸(r)#aE

t
<

i,j~1
(r!t), j"m!1,2, 1. (4)

Assume that G
0,1

(r)"c
0
r#¸(r) attains its minimum (this assumption is satis"ed if k(R,

lim
x?=

dh(x)/ dx'0, i.e., there is a positive holding cost, and lim
x?=

Ddp(x)/dxD'c
0
, i.e., the

shortage cost per unit is greater than c
0
. However, lim

x?=
Ddp(x)/dxD'c

0
can be relaxed to

lim
x?=

Ddp(x)/dxD'(1!a)c
0

if <
0,0

(x),!c
0
x for x(0, i.e., any unsatis"ed demand at the end

of the planning horizon has to be "lled at the unit cost of c
0
). Also, de"ne H(r) as

H(r)"c
0
r!c

1
r#¸(r). (5)

Denote by Df the "rst derivative of the function f. Let rH
0

be the value of r that minimizes H( ) ). If
rH
0

is not an unique minimum, we choose the smallest such value (i.e., DH(r)(0 for r(rH
0

and
DH(rH

0
)"0). Then <

i,0
(x) can be expressed as

<
i,0

(x)" min
xxrxR

Gc1R#aE
t
<

i~1,m~1
(R!t)# min

xxrxR

Mc
0
r!c

1
r#¸(r)NH!c

0
x

"min
xxR

Gc1R#aE
t
<

i~1,m~1
(R!t)# min

xxrxR

H(r)H!c
0
x. (6)

The result below due to Karush [14] (see also Veinott [6]) is used to simplify (6). Let
asb,maxMa, bN.

Lemma 1 (Karush [14]). Let f (y) be a convex function which is minimized by yH. Then

min
LxyxU

f (y)"f 1(¸)#f 2(;),

where f 1(¸)"f (¸syH) is convex non-decreasing in L and f 2(;)"f (;)!f (;syH) is convex non-
increasing in U.

It follows by Lemma 1 that

min
xxrxR

H(r)"H
0
(x)#HU(R), (7)

where H
0
(x)"H(xsrH

0
) is convex non-decreasing in x and HU(R)"H(R)!H(RsrH

0
) is convex

non-increasing in R. Note that (i) if R)rH
0
, H

0
(x)#HU(R)"H(R), (ii) if x*rH

0
, H

0
(x)#HU(R)"

H(x), and (iii) if x(rH
0
(R, H

0
(x)#HU(R)"H(rH

0
). Substituting (7) into (6) yields

<
i,0

(x)"min
xxR

Mc
1
R#aE

t
<

i~1,m~1
(R!t)#HU(R)N!c

0
x#H

0
(x). (8)
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De"ne the function G
i,0

(R) as

G
i,0

(R)"c
1
R#aE

t
<

i~1,m~1
(R!t)#HU(R). (9)

We next show in Lemma 2 that the cost function <
i,j

(x) is convex.

Lemma 2. <
i,j

(x) for each (i, j) is a convex function.

Proof. <
0,0

(x) is convex. Assume that <
0,j~1

(x) is convex. It follows from (4) that G
0,j

(r) is
a convex function. Thus, <

0,j
(x) is convex by Proposition B-4 of Heyman and Sobel [15]. This

implies from (9) that G
1,0

(R) is convex. Hence, <
1,0

(x) is convex again by Proposition B-4 of [15].
Convexity is established by induction for the remaining <

i,j
(x). h

Let r
i,j

be the (smallest) value minimizing G
i,j

(r). Then it follows from (3) and (4) that the optimal
policy at a review epoch with i order cycles and j ( jO0) periods remaining is (i) order up to r

i,j
if

x(r
i,j

and (ii) do not order if x*r
i,j

. Let R
i
minimize G

i,0
(R) and r

i,0
"min(rH

0
, R

i
). Then it can

be seen from (8) that the optimal policy at a review epoch with i order cycles remaining is (i) if
x(r

i,0
, order amounts r

i,0
!x and R

i
!r

i,0
at unit costs c

0
and c

1
, respectively, (ii)

if r
i,0

)x(R
i
, order an amount R

i
!x at unit cost c

1
, and (iii) if x*R

i
, do not order. Notice that

if rH
0
*R

i
(thus r

i,0
"R

i
), then the regular supply mode is never used at that review epoch with

i cycles remaining. We will elaborate on this in the next section.

3. Properties of the optimal policy

In this section, we present important properties about the regular order-up-to levels R
i

and
emergency order-up-to levels r

i,j
, j"0, 1,2, m!1.

We "rst introduce some preliminary observations that will be useful to establish the results of
this section. It follows from (3) and (4) that <

i,j
(x), jO0, can be expressed as

<
i,j

(x)"G
i,j

(xsr
i,j

)!c
0
x, j"m!1,2, 1. (10)

Similarly, from (8) and (9), <
i,0

(x) can be rewritten as

<
i,0

(x)"G
i,0

(xsR
i
)!c

0
x#H

0
(x). (11)

Thus, D<
i,j

(x)"!c
0

for x)r
i,j

, j"m!1,2, 1, and D<
i,0

(x)"!c
0
#DH

0
(x) for x)R

i
(which implies, due to r

i,0
"min(rH

0
, R

i
), that D<

i,0
(x)"!c

0
for x)r

i,0
). Also, D<

i,0
(x)*

!c
0
#DH

0
(x)*!c

0
and D<

i,j
(x)*!c

0
, j"m!1,2, 1, for all x.

We show in the following theorem that emergency order-up-to levels are non-decreasing within
an order cycle as the planning horizon is extended.

Theorem 1. r
i,m~1

*r
i,m~2

*2*r
i,1

.

Proof. We show that r
i,2

*r
i,1

. The remaining inequalities can be established similarly. To show
r
i,2

*r
i,1

, we show that DG
i,2

(r)(0 for r(r
i,1

. It follows from (4) that DG
i,1

(r)"c
0
#D¸(r)#
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aE
t
D<

i,0
(r!t)(0 for r(r

i,1
. Also, DG

i,2
(r)"c

0
#D¸(r)#aE

t
D<

i,1
(r!t)"c

0
#D¸(r)!ac

0
for r(r

i,1
. Hence, DG

i,2
(r)(!a[c

0
#E

t
D<

i,0
(r!t)])0, for r(r

i,1
. h

We next show that if c
1
(ac

0
, the regular order-up-to level at the beginning of an order cycle is

greater than or equal to the emergency order-up-to level at the next review epoch.

Lemma 3. If c
1
(ac

0
, then R

i`1
*r

i,m~1
for all i.

Proof. We show that if c
1
(ac

0
, DG

i`1,0
(R)(0 for R(r

i,m~1
, implying that R

i`1
*r

i,m~1
. It

follows from (9) that for R(r
i,m~1

, DG
i`1,0

(R)"DHU(R)#c
1
#aE

t
D<

i,m~1
(R!t)"

DHU(R)#c
1
!ac

0
. As DHU( ) ))0, if c

1
(ac

0
, DG

i`1,0
(R)(0 for R(r

i,m~1
. h

The condition c
1
(ac

0
is usually true; otherwise, the regular supply mode never will be used.

This is shown in the following theorem.

Theorem 2. If c
1
*ac

0
, then rH

0
*R

i
for all i.

Proof. We show that if c
1
*ac

0
, DG

i,0
(R)*0 for R*rH

0
and thus rH

0
*R

i
. It follows from (9) that

DG
i,0

(R)"DHU(R)#c
1
#aE

t
D<

i~1,m~1
(R!t). As DHU(R)"0 for R*rH

0
, DG

i,0
(R)"

c
1
#aE

t
D<

i~1,m~1
(R!t)*c

1
!ac

0
*0 for R*rH

0
. h

The most important result of this section is stated in Theorem 3, which shows that if two
consecutive regular order-up-to levels are equal to each other, and greater than or equal to all
intermediate emergency order-up-to levels, then both the regular and emergency order-up-to levels
have converged.

Theorem 3. If R
i`1

"R
i
*r

i,m~1
, then r

n`1,1
"r

i,1
, r

n`1,2
"r

i,2
,2, r

n`1,m~1
"r

i,m~1
, and

R
n`2

"R
i`1

, for n*i.

Proof. We show that if R
i`1

"R
i
*r

i,m~1
, then r

i`1,1
"r

i,1
, r

i`1,2
"r

i,2
,2, r

i`1,m~1
"r

i,m~1
,

and R
i`2

"R
i`1

, and thus similarly, the equalities hold for all n*i#1. If
R

i`1
"R

i
*r

i,m~1
, R

i`1
"R

i
*r

i,1
by Theorem 1. Notice that D<

i`1,0
(x)"D<

i,0
(x) for

x)R
i`1

"R
i
. Also, DG

i,1
(r)"c

0
#D¸(r)#aE

t
D<

i,0
(r!t) and DG

i`1,1
(r)"c

0
#D¸(r)#

aE
t
D<

i`1,0
(r!t). Hence, DG

i,1
(r)"DG

i`1,1
(r) for r)R

i`1
"R

i
. As r

i,1
minimizes G

i,1
(r), it

follows that it also minimizes G
i`1,1

(r), i.e., r
i`1,1

"r
i,1

. In addition, for x'r
i`1,1

"r
i,1

,
D<

i`1,1
(x)"D¸(x)#aE

t
D<

i`1,0
(x!t) and D<

i,1
(x)"D¸(x)#aE

t
D<

i,0
(x!t). Thus

D<
i`1,1

(x)"D<
i,1

(x) for x3(r
i,1

,R
i
]. Also, D<

i`1,1
(x)"D<

i,1
(x)"!c

0
for x)r

i,1
. As a

result, D<
i`1,1

(x)"D<
i,1

(x) for x)R
i
. By the same logic, we can show that r

i`1,j
"r

i,j
for j"2,2,m!1 and D<

i`1,j
(x)"D<

i,j
(x), j"2,2, m!1, for x)R

i
"R

i`1
.

Moreover, DG
i`1,0

(R)"DHU(R)#c
1
#aE

t
D<

i,m~1
(R!t) and DG

i`2,0
(R)"DHU(R)#c

1
#

aE
t
D<

i`1,m~1
(R!t). As D<

i`1,m~1
(x)"D<

i,m~1
(x) for x)R

i
"R

i`1
, DG

i`2,0
(R)"

DG
i`1,0

(R) for R)R
i`1

. As R
i`1

minimizes G
i`1,0

(R), it follows that it also minimizes G
i`2,0

(R),
i.e., R

i`2
"R

i`1
. h
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We see from Theorem 3 that if for some i, R
i`1

"R
i
*r

i,m~1
, then the sequences MR

n
N and

Mr
n,j

N, j"1, 2,2, m!1, converge, respectively, to RH"R
i`1

and rH
j
"r

i,j
, j"1,2,m!1. The

condition of R
i`1

"R
i
*r

i,m~1
for some i usually holds if c

1
(ac

0
, as implied by Lemma 3.

Consequently, RH, rH
j

for j"1,2, m!1, and minMrH
0
, RHN are, respectively, the optimal regular and

emergency order-up-to levels for the in"nite horizon model.
To illustrate, consider the example (referred to as the base case thereafter):

m"10, c
1
"$10, c

0
"$15, k"2 (with Poisson demand), h(x)"0.01x and p(x)"20x (both for

x*0) (this choice of the holding and shortage cost functions implies that holding and shortage are
charged at $0.01 and $20 per unit, respectively), and a"0.999. After solving, we "nd that
rH
0
"3, r

0,1
"1, r

0,2
"3, r

0,3
"4, r

0,4
"5, r

0,5
"6, r

0,6
"2"r

0,9
"7, R

1
"19; r

1,1
"4, r

1,2
"r

1,3
"6, r

1,4
"2"r

1,9
"7,R

2
"32; and r

i,1
"4, r

i,2
"r

i,3
"6, r

i,4
"2"r

i,9
"7 for

i*2, and R
i
"32 for i*3. Thus, we see that the sequences MR

n
N, Mr

n,1
N, Mr

n,2
N, Mr

n,3
N, and

Mr
n,j

N, j"4, 5,2, 9, converge, respectively, to RH"32, rH
1
"4, rH

2
"rH

3
"6, and

rH
4
"2"rH

9
"7 after just two order cycles.

4. Discussion

We brie#y compare the results derived in Section 3 to those in Chiang and Gutierrez [12]. As
mentioned in Section 1, both this paper and Chiang and Gutierrez [12] study the same periodic
inventory system, except that this paper assumes that the regular and emergency lead times di!er
by one period, while Chiang and Gutierrez [12] assumes that the two lead times di!er by more
than one period (but less than the order-cycle length).

The non-decreasingness property of emergency order-up-to levels within an order cycle in
Theorem 1 and the convergence conditions for the optimal policy parameters in Theorem 3 are
similar to those in Chiang and Gutierrez [12]. However, the convergence conditions in Theorem
3 are simpler and easier to hold than their counterpart in Chiang and Gutierrez [12].

In addition, the emergency order-up-to levels derived in Chiang and Gutierrez [12] are
a function of inventory on order (if there is any at a review epoch), while they are not in this paper.
Moreover, the optimal regular order-up-to level RH derived in this paper is a "xed level, while it is
a variable level in Chiang and Gutierrez [12] (depending on the inventory position after a possible
emergency order is placed at the beginning of an order cycle). As a result, the optimal policy
developed in this paper consists of only a few parameters (i.e., rH

j
, j"0,2, m!1, and RH), while it

contains a lot many in Chiang and Gutierrez [12].
Take the base case in Section 3 for example: m"10, c

1
"$10, c

0
"$15, k"2 (Poisson

demand), h(x)"0.01x and p(x)"20x (for x*0), and a"0.999. If the emergency and regular
supply lead times are one and two periods, respectively (note in this case that expressions (2) and
(3) would have ¸(r) replaced by aE

t
¸(r!t) [13]), we obtain after solving that rH

0
"5, rH

1
"7,

rH
2
"8, rH

3
"9, rH

4
"10, rH

5
"2"rH

9
"11, and RH"35. On the other hand, if the two lead times

are one and six periods, respectively, it is found in Chiang and Gutierrez [12] that
rH
0
"rH

1
"2"rH

4
"11 (rH

j
for j"5,2, 9 are a function of inventory on order), and the optimal

regular order-up-to level is between 41 and 45. As we see, the emergency order-up-to levels in the
former situation are smaller than their counterpart levels in the latter. This is because the more we
are close to the time of the arrival of a regular order, the less inventory we need to carry on hand
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(against possible stockouts) and thus the smaller the emergency order-up-to levels. For example, if
we are at the beginning of an order cycle, there are only two periods till the time of the arrival of
a regular order in the former situation, while there are six periods in the latter; hence, rH

0
"5 in the

former while rH
0
"11 in the latter. Also, the optimal regular order-up-to level is lower when the

di!erence between the two lead times is only one period. The reason for this is simple. As we know,
the regular order-up-to level should be large enough to cover demand over an order cycle plus the
regular lead time since it will take such time for the next regular order to arrive. Hence, a larger
regular lead time (other things being equal) will yield a higher order-up-to level.

5. A simple method

In this section, we develop a simple method for computing RH and rH
j
, j"1,2,m!1. While

solving<
i,j

(x) until R
i`1

"R
i
*r

i,m~1
is satis"ed may take little time, this simple method obtains

RH and rH
j
's by solving only a m-stage dynamic program.

Assume that there exists some i such that R
i`1

"R
i
*r

i,m~1
, and thus RH"R

i`1
and

rH
j
"r

i,j
, j"1,2, m!1. Let Q

i,0
(x)"G

i,0
(xsR

i
)"G

i,0
(xsRH), which is convex non-decreas-

ing and equal to G
i,0

(RH) for x)RH. Thus, it follows from (11) that <
i,0

(x) can be expressed as

<
i,0

(x)"Q
i,0

(x)!c
0
x#H

0
(x). (12)

Then,

<
i,1

(x)"min
xxr

Mc
0
r#¸(r)#aE

t
<

i,0
(r!t)N!c

0
x

"min
xxr

Mc
0
r#¸(r)#aE

t
Q

i,0
(r!t)#aE

t
H

0
(r!t)!ac

0
r#ac

0
kN!c

0
x.

Let

J
1
(r)"(1!a)c

0
r#¸(r)#aE

t
H

0
(r!t). (13)

Thus G
i,1

(r)"J
1
(r)#aE

t
Q

i,0
(r!t)#ac

0
k. For r)RH, DG

i,1
(r)"DJ

1
(r), since DQ

i,0
(x)"0

for r)RH. As rH
1
"r

i,1
)r

i,m~1
)R

i
"RH, rH

1
can be obtained by solving DJ

1
(r)"0. Let

H
1
(x)"J

1
(xsrH

1
) and Q

i,1
(x)"aE

t
Q

i,0
((xsrH

1
)!t), which are both convex and non-decreasing.

Then,

<
i,1

(x)"G
i,1

(xsrH
1
)!c

0
x"Q

i,1
(x)#ac

0
k!c

0
x#H

1
(x).

Note that for x)RH, Q
i,1

(x)"aE
t
Q

i,0
((xsrH

1
)!t)"aE

t
G

i,0
(((xsrH

1
)!t)sRH)"aG

i,0
(RH).

Similarly, we can repeat the above logic and show that if we let

J
j
(r)"(1!a)c

0
r#¸(r)#aE

t
H

j~1
(r!t), j"2,2, m!1 (14)

which is minimized by rH
j
"r

i,j
and de"ne

H
j
(x)"J

j
(xsrH

j
), (15)

Q
i,j

(x)"aE
t
Q

i,j~1
((xsrH

j
)!t) (16)
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which are both convex and non-decreasing, then

<
i,j

(x)"Q
i,j

(x)#
j
+
k/1

akc
0
k!c

0
x#H

j
(x), j"1,2, m!1, (17)

where Q
i,j

(x)"ajG
i,0

(RH) for x)RH.
We "nally show in this section that RH can be obtained by solving DJ

0
(R)"0, where J

0
(R) is

de"ned as

J
0
(R)"(c

1
!ac

0
)R#HU(R)#aE

t
H

m~1
(R!t). (18)

It follows from (16) and (17) that <
i`1,0

(x) can be written as

<
i`1,0

(x)"min
xxR

MHU(R)#c
1
R#aE

t
<

i,m~1
(R!t)N!c

0
x#H

0
(x)

"min
xxR

GJ0
(R)#aE

t
Q

i,m~1
(R!t)#

m
+
k/1

akc
0
kH!c

0
x#H

0
(x),

where G
i`1,0

(R)"J
0
(R)#aE

t
Q

i,m~1
(R!t)#+m

k/1
akc

0
k is minimized by the value R

i`1
"RH,

i.e., DG
i`1,0

(RH)"DJ
0
(RH)#aE

t
DQ

i,m~1
(RH!t)"0. However, aE

t
DQ

i,m~1
(RH!t)"0 since

Q
i,m~1

(x)"am~1G
i,0

(RH) for x)RH. Thus, it follows that DJ
0
(RH)"0.

6. Algorithm

In this section, we present an algorithm which summarizes the simple method described in
Section 5 for computing the optimal policy parameters rH

j
, j"0,2,m!1, and RH. We also

investigate the sensitivity of several important parameters towards the optimal solution.
Note that all the functions involved are convex when computing rH

j
, j"0,2, m!1, and RH in

Section 5. Hence, the following algorithm can be easily implemented.
Step 1: Compute rH

0
by using (5), and let H

0
(x)"H(xsrH

0
).

Step 2: Compute rH
1

by di!erentiating J
1
(r) in (13) and solving DJ

1
(r)"0, and let

H
1
(x)"J

1
(xsrH

1
). Similarly, compute rH

j
for j"2,2, m!1 by alternatively using J

j
(r) and

H
j
(x), j"2,2, m!1, which are de"ned in (14) and (15), respectively.
Step 3: Finally, compute RH by di!erentiating J

0
(R) in (18) and solving DJ

0
(R)"0.

This algorithm involves solving only a one-order-cycle dynamic program with m stages.
Consider the base case in Section 3: m"10, c

1
"$10, c

0
"$15, k"2 (with Poisson demand),

h(x)"0.01x and p(x)"20x (for x*0) (holding and shortage are charged at $.01 and $20 per unit,
respectively), and a"0.999. Using the above algorithm, we obtain the same emergency and regular
order-up-to levels rH

j
's and RH (i.e., rH

0
"3, rH

1
"4, rH

2
"rH

3
"6, rH

4
"2"rH

9
"7, and RH"32).

We next investigate the sensitivity of several important parameters towards the optimal solution.
First, as the emergency unit cost c

0
increases (other things being equal), the emergency order-up-to

levels rH
j
's are likely to decrease and the regular order-up-to level RH is likely to increase, re#ecting

the fact that we employ the emergency supply mode less often and tend to order more quantity via
the regular mode. For example, compared to the base case, if c

0
"$12.5, then rH

0
"4, rH

1
"5,
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rH
2
"6, rH

3
"2"rH

9
"7, and RH"31; and if c

0
"$20.0, then rH

0
"2, rH

1
"4, rH

2
"5, rH

3
"rH

4
"6,

rH
5
"2"rH

9
"7, and RH"33.

Second, as the shortage cost per unit increases (other things being equal), rH
j
's are likely to

increase (and thus RH may also increase), implying that we need to provide more inventory against
possible stockouts. For example, compared to the base case, if p(x)"10x, then
rH
0
"2, rH

1
"4, rH

2
"5, rH

3
"rH

4
"6, rH

5
"2"rH

9
"7, and RH"32; and if p(x)"40x, then

rH
0
"4, rH

1
"5, rH

2
"6, rH

3
"rH

4
"7, rH

5
"2"rH

9
"8, and RH"33.

Finally, as the holding cost per unit increases (other things being equal), RH is likely to decrease
(rH
j
's may also decrease), since it is economical to carry less inventory on hand. For example,

compared to the base case, if h(x)"0.005x, then rH
0
"3, rH

1
"4, rH

2
"rH

3
"6, rH

4
"rH

5
"7,

rH
6
"2"rH

9
"8, and RH"33; and if h(x)"0.02x, then rH

0
"3, rH

1
"4, rH

2
"5, rH

3
"6,

rH
4
"2"rH

9
"7, and RH"31.

7. Conclusion

In this paper, we develop a dynamic programming model for an inventory system in which while
emergency orders can be placed at the beginning of each period, regular orders are placed at the
beginning of order cycles. Such inventory systems are found in the import auto industry in Taiwan.
We assume that the regular and emergency channel lead times di!er by one period. We develop
optimal ordering policies as well as a simple algorithm for computing the optimal policy para-
meters. We hope that these results will help material managers decide how to use the emergency
supply mode when this alternative option is available.
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