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In the ordinary application of the time-lag method to the measurement of the diffusion
coefficient of a gas passing through a plane sheet of an inert solid, the gas is pressurized
on one side of the sheet and evacuated on the other. After decay of transients, the
cumulative amount, Q(t), of gas diffused through the sheet in time, ¢, assumes the
“time-lag” form, Q(t) = A(t — L). Measurements of the slope, A, and the intercept, L,
can be used to determine the diffusion coefficient and the solubility of the gas in the
solid. We have rederived this law for the case of a solid that is actively evolving this
same gas at an arbitrary rate and have used it to predict the rate of outgassing of the solid
upon standing. Practical applications of the theory include radioactive decay of minerals,
rejection of plasticizers by plastics, and the decomposition of solid rocket propellants.

I. INTRODUCTION

The diffusion coefficients of gases passing through
inert solids are often measured by the time-lag method.!?
In this well-established technique, the gas is pressurized
to a concentration, ¢, on one side of a plane sheet of
the solid, while the other side is evacuated. The buildup
of gas on the evacuated side is measured as a function
of the time, t. After decay of transients, the amount of
gas accumulated, Q(¢), per unit area of the solid follows
the law,

Q) = At - L) 1)

where the intercept, L, on the #-axis is called the time-lag
and gives the method its name. Figure 1 illustrates the
relationship between Q(¢) and its long-time asymptote
given by Eq. (1).

The theory of Q(t), which is based upon solution
of Fick’s second law, provides expressions for L and
the slope, A."* When these are combined with the
experimental measurements of Q(¢) vs ¢, the diffusion
coefficient and other properties of the gas-solid system
can be evaluated. The method has proved to be applica-
ble to a number of problems, including diffusion of gases
through metals,>® polymers,'®'® oxide films,"” rocks,®
and zeolites.!®

In some cases, the solids are not inert but in-
stead actively evolve various gases. Examples include
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FIG. 1. Dependence of the amount of accumulated gas, Q(¢), upon
time, t. The solid curve is Q(z) vs ¢ for all ¢, while the dashed line
represents the long-time asymptote, Q(r) = A(t — L), having slope,
A, and time-lag, L.

>t

radioactive decay of minerals to form a gaseous daugh-
ter (emanation),? rejection of plasticizer from polymer
films,'? and the decomposition of solid rocket propellants
in storage. Solid propellants are especially interesting be-
cause, as complex mixtures, they are capable of evolving
more than one gas.

Below, we develop the time-lag method for the
diffusion of a gas through a planar sheet of solid, which
is simultaneously evolving the same gas. We also give a
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formula for the rate of evolution of a gas from the sheet
upon passive standing. The latter is useful in assessing
the shelf life of the propellant.

Il. INTEGRATION OF FICK’'S SECOND LAW
A. Conversion to an ordinary differential equation

Consider a slab of thickness, #, in the x-direction. In
order to ignore edge effects, the slab will be considered
to be infinite in both directions perpendicular to its
thickness. The instantaneous concentration of gas at
position x within the slab is c(x, t).

In the case of active gas evolution, Fick’s second
law takes the form

dc(x, 1) 9%c(x, 1)

o D Frcants (), 0
where D is the coefficient of gas diffusion through
the solid and f(¢) is the volume rate of internal gas
production, which is assumed to be spatially uniform.

The gas just outside the face at x = 0 has the
concentration, ¢;. The gas concentration associated with
the solid just inside the face is kc¢;, where k is the
thermodynamic distribution coefficient. On the face at
x = h, the analogous concentrations are ¢, and kcj,
respectively. At ¢ = 0, the bulk solid contains gas at
concentration, ¢, which, depending upon the immediate
past history of the solid, can be equal to or different
from the thermodynamic solubility of the gas. These
statements, illustrated in Fig. 2, are summarized by the
equations,

N

xsh (2

c(x,0) = co 3
C(O, t) = kc; (4)
c(h,t) = ke (5)

Equations (2)—(5) define a boundary value prob-
lem for the function, c(x,t). The problem is readily
solved by introducing the Laplace transform,?! which
for an arbitrary function, w(t), we denote as L[w(z)] =
w(s), where

() = f dt exp(=st)w(?) ©)
0

Forming the Laplace
and (5) gives

Culx,s) = (s/D)é(x,s) = —(co/D) = f(s)/D (7)

20, s) = kci/s 8)

é(h,s) = kcafs 9)

integrals of Egs. (2), (4),

where in Eq. (7) & (x, s) = d%&(x, s)/dx?, and we have

used the theorem, Lc(x,t)] = sé(x,s) — .2
Equation (7) is an ordinary differential equation

in x with boundary conditions specified by Eqgs. (8)
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FIG. 2. Solid slab illustrating the initial and boundary conditions
applying to the gas concentration.

and (9). Since the right-hand side of Eq. (6) is inde-
pendent of x, it can be integrated most easily by the
operator method?® to obtain

g = sinh] |54~ )|
| ’ sinh<\/gh)
+ (c2 — co) :::E\/\/i; + % — f(s)
y {sinh{\/g(h - x):] sinh (ng) | }

s sinh<\/_ls):h) ’ s sinh(\/_%—a s

(10)

B. Inversion to the time domain

To invert &(x,s) to obtain c(x,?), we need the
integral,

a+iw

clx,t) = L ds &(x,s) exp(st) (11)
27

a—iw

where a >0 and i = (—1)"*2! The evaluation of
Eq. (11) proceeds by way of the residue theorem,** for
which purpose we catalog the analytic properties of the
following complex valued functions:
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(i) Analytic properties of the function, s~! exp(st)
X sinh[y/(s/D) x]/ sinh[y/(s/D) h]. Despite the ./s
which appears in the arguments of the hyperbolic sines,
their ratio is single valued in the vicinity of s = 0. For
small s, the function approaches (x/hs) exp (st), which
has only a simple pole. The residue at s = 0 is

res(0) = x/h, t=0 (12)

An infinite sequence of poles is associated with the zeros
of sinh[+/(s/D)h]. These occur along the real axis in the
left half-plane at the points, s, = —n2w7?/Dh?, where
n = 1 is an integer. The residuc associated with one of
these poles is

22

2(-1)" . vn7rx -
res(s,) = o sin{ — | exp D

(if) Analytic properties of the function, s~! exp(st)

X sinh[y/(s/D)(h — x)]/sinh[/(s/D)h]. The poles of
this function are the same as those listed above. The
residue at s = 0, however, is

) (13)

res(0) = (h — x)/h, t=0 (14)
while the residues at s, = —n2?7w?/Dh? are
res(s,) = 2= sin (__mr(h — x)) e <_n2ﬂ-2t)
" nw h *P\ " n2
(15)
(iii) Analytic properties of the function s™! exp(st).

This function has a simple pole at s = 0, where the resi-
due is

res(0) = t=0 (16)

After substituting Eq. (10) into Egq. (11) and
evaluating the integral using the Bromwhich contour,?!
we find

c(x,t) = ke, + klc, —~ Cl)<%) + <£>{i key(=1)" — key

kul n

n=1

< s ) oo ()| + ()
“ [ (2 1+ 1)Sm[(zm ;1)7”}
o oxo] M hl) wzmﬂ /dtf(t,)< >

Xl 0(2m1+ 1) sin,:(zm -il-ll)wx:,
« exp[ Qm + 17Dt — t/)“
h2

To obtain Eq. (17), we have used the identity,
sin[nm(h — x)/h] = —(—1)" sin(nwx/h), and the fact

o ‘|:|>M8

iMs

a7
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that 1 — (—1)" is zero when n is even and 2 when n
is odd. The integral in Eq. (17) follows by application
of the convolution theorem to the term involving f (s)
in Eq. (10).?! Equation (17) is the general solution for
c(x,t) from which our subsequent results follow.

lll. RATE OF OUTGASSING

The flux of gas molecules in the x-direction at any
point within the slab is given by Fick’s first law,

dclx, 1)

,t) = —D
I (x, 1) Jx

(18)

The sum of the fluxes exiting both sides of the slab is

Jo(t) = —JO,1) + J(h,1) (19)

where the minus sign accounts for the fact that the
positive x-axis runs from x = 0 to x = A.

In the case of a slab of solid propellant under
shelf storage conditions, it is likely that the steady state
concentrations of gas on either face will be zero or close
to it. The concentration of gas anywhere within the slab
is then given by settling ¢; = ¢; = 0 in Eq. (17). By
combining Eqgs. (17)—(19), one obtains

Y 2
7D (CO ZO exp[ —(@2m +h21) 772Dt:|
: L oone | —Cm + 1)’7D( — 1)
o[ g [Pt
0

(20)

Jtot(t) =

For times ¢ > h2/#*D, the terms proportional to ¢, in
Eq. (20) will be small, and Jy, takes on the asymp-
totic form

Ji(2) =
8D [ N e —@2m + 17Dt — 1)
—h—fdtf(t)”;o exp]: = h;T }

0

€4y

IV. TIME-LAG METHOD
A. Cumulative mass transported

If the gas concentration on the high pressure side at
x = h is ¢y, while on the low pressure side at x = 0 it
is ¢y, then the cumulative amount of gas passed through
the slab after a time, ¢, is

t

o) = — ] " 7(0, ")

0

(22)
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After substituting Eq. (17) into Eq. (18) and the resulting
equation into Eq. (22), we obtain

_ Dk(02h~ c)t N <%>{i k[(=1)¢c;, — ¢1]

? n?

()

n=1

x 1 — exp(—nzszt/hz)]}

" (4;02}1) i 2m L 1)?

m=0

X {1 — exp[—(2m + 1’@*Dt/n*]}

+ <47D>ZO! dt" f dt' f(t')

X exp[—(2m + 1*7D(" - t')/h?]
If we define

(23)

a® = Q2m + 1°#*D/h? (24)

the double integral in Eq. (23) can be rewritten as

I= ! ar” Of dt' f(t') exp[—a*(t" — )] (25

By exploiting a change in variables, the exponential
function in 7 can be integrated exactly. In Eq. (25), the
domain of integration in the ¢ vs t” plane covers a
triangular region bounded by ¢ = 0, " = tand t" = ¢/,
as illustrated in Fig. 3(a). By substitutionof § = ¢/, o =
" —t'=1"— 0, and dt'dt" = do d@ (the Jacobian
of the transformation is unity), this region is shifted to
the triangle in the 6 vs o plane bounded by the lines
0 =0,0=0,and o =t — 6, as shown in Fig. 3(b).
After integration over do, Eq. (25) becomes

— (1/a?) [ 46 )1 — expl—a’t — O (26)
0

Substitution of Egs. (24) and (26) into Eq. (23) gives

o) Dk(Czh_ ci)t n (%)lg k[(~1)';1c22 - ¢1]
X [1- exp(—nzﬂth/hz)]}
deh\[ & 1
* ( 2 ){m;) @m + 1)?
X (1 — exp[-2m + l)zﬁth/hz])}
4h\| < 1 :
+ (;){”’;————(m T Of do f(6)
X (1 —exp[-C2m + 1)’7*D(t — 9)/’12])} 27
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FIG. 3. (a) Domain of integration for Eq.(25) in the ¢ vs ¢”
plane. (b) Domain of integration after transformation to the 6 vs
o plane.

The exponentials in Eq. (27) are the transient parts of
Q(t) associated with the relaxation of the diffusive flow
toward a steady state. In the limit, t > h?/#?D, the
exponentials in the second and fourth lines of Eq. (27)
can be dropped. Use of the sums’

- 1 m?
; pinirs (28)
- (1" ?
n; = —717—2 (29)
- 1 ?
,;) (n + 1) 8 (30)
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then allows us to compute the limiting form for the mass
transported:

Dk(c, — ¢1)
h

h2
oo
6Dk(c; — ¢1)

e Py

X (1 — exp[—@m + 1)’#*D(t — 0)/}12])}
(1)

The first term in Eq. (31) has the standard form of the
time-lag law expressed by Eq. (1). The sum of integrals
involving f(8), however, is more complex. Depending
upon the form of f(6), this sum may contribute to either
or both of the constants in Eq. (1); it may even introduce
terms that are nonlinear in #, so that Eq. (1) fails to
apply at all.

o) =

[k(cz + 2¢1) — 300]}

f deé £(6)

B. Constant rate of gas evolution

In the special case that the rate of gas evolution is
independent of time,

f®) =R (32)
where R is a constant. Substitution of Eq. (32) into

Eq. (31) followed by use of the condition ¢ > h%/7w*D
and the sum®

i _ (33)
= Cm + 1)4 9
yields,
Dkc, hR) 1 |: h3Rj|
ne={=2+")-— +
00) = (252 4 22— Ll ke, - 3ep) + 2K

(34

where we have also set ¢; = 0 as is customary in the
case of time-lag experiments.

Equation (34) has the general time-lag form given
by Eq. (1). By comparison of these two equations, one
may write

hA = Dkc, + h®R/2 (35)
AL/h = kc,/6 + h*R/24D — c¢o/2 (36)

Experimental data involving Q(¢) vs t can be fit to
Eq. (34) by treating hA and AL/h as least squares
adjustable parameters.

V. DISCUSSION
A. Analysis of experimental data

Equations (35) and (36) have been left in forms
convenient for the analysis of experimental data so as
to obtain values for D, k, R, and c,. If it is assumed
that k is directly measurable, then a plot of hA vs ¢, as
shown in Fig. 4(a) should form a straight line with slope,
Dk, and intercept, h*R/2. From the value of A and the
intercept, R can be obtained. By comparison, a plot of
AL/h vs ¢, as shown in Fig. 4(b) should form a straight
line with slope k/6 and intercept (h’R/24D — co/2).
The slope of this line determines k directly, and when
combined with the value of Dk, the value of D can be
computed. Once D and R are determined, the value of
co can be obtained from the value of (h?R/24D — co/2).

B. Calculation of A and L from Q(s)

Under certain conditions, it is possible to make
theoretical calculations of A and L in Eq. (1) without the
effort of direct inversion of &(x, s) to the time domain as

hA

A

>
0 g’
(@
AL/h
A
Y _k
h’R ¢ 6
24D 2| —»
0 =,
(b)

FIG. 4. (a) Graph of Eq. (35). (b) Graph of Eq. (36).
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was done in Sec. II. B. In cases where direct inversion
is unnecessary,?® the Laplace transforms,

J(x,5) = —Dé (x,s) (37
and
Qs) =

of Eqs. (18) and (22), respectively, can be combined with
¢(x, s) to obtainQ(s) in the general form,

—J(0,s)/s (38)

O(s) = A(l —~ £> + 2(s) (39)

52 s

The function Z(s) accounts for the transient terms in
Q(¢) and has the properties,

lina s?Z(s) =0 (40)
and
lim i[SZZ(S)] =0 (41)
5—0 J§

Given Egs. (40) and (41), A and L can be computed
from Eg. (39) as the limits,

A = lim [s°0(s)] (42)
and
_ Ll 0,
=~ lim —[s*0(s)] (43)

respectively. In the important special case where an
active solid outgasses exponentially with time at the spe-
cific rate A, so that f(¢) = const. X exp(—At)[f(s) =
const./(s + A)], this procedure is possible.

For arbitrary f(z), however, rtesorting to the time
domain is necessary. For this reason (plus the fact that
the singularities of é(x,s) given by Eq. (10) permit it
to be readily inverted), we have chosen to obtain the
explicit form of ¢(x, ) and use Egs. (17), (18), and (22)
to compute Q).

C. Hydrogen trapping in metals

lino* has provided a time-lag theory for the problem
of hydrogen trapping in metals, in which H atoms
diffusing through a metal are assumed to undergo the
homogeneous, reversible reaction,

H + S+ HS

where S is an empty site and HS is an occupied site. To
preserve the linearity of Fick’s second law, Iino treats
the case where the concentration of trapping sites is
in vast excess over that of the diffusing H atoms. In
this circumstance, the rate law for the forward reaction
becomes zeroth order in S and first order in H while the
rate law for the reverse reaction is first order in HS.

The theory we have presented above ignores the
details of the chemical kinetics associated with the solid
and the dissolved gas by representing them by the
general function f(¢). This would seem to be appropriate
in the case of rocket propellants, for example, where the
mechanism of gas evolution is not yet understood.

D. Summary

Equations (21), (27), and (34) have been written
with the case of a single diffusing gas in mind. If more
than one species is being considered, then subscripts, “i”,
running over the number of species need to be appended
to the symbols D, k, ci, c3, co, f(2), Jiu(t), and
Q(1). When it is then required to compute the total gas
evolution by including the effects of all species involved,
the appropriate equation selected from Egs. (21), (27),
(31), and (34) need only be summed over “i” to get the
desired result.

Equations (17) and (27) have appeared previously
for the special case f(¢) = 0.7 The present work gener-
alizes these equations to an outgassing solid [f(¢) # 0].
The specific new results are summarized by Egs. (17),
(20), (21), (27), (31), and (34). Once D has been
determined in a time-lag experiment as described above,
Eqgs. (20) and (21) (as applicable) can be used to predict
the rate of gas evolution per unit area of an active solid.
These formulas should have special utility in predicting
the shelf life of solid rocket propellants.
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