
210 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001

A New Approach of Group-Based VLC Codec
System with Full Table Programmability

Bai-Jue Shieh, Yew-San Lee, and Chen-Yi Lee

Abstract—In this paper, the algorithm and architecture of a
variable-length-code (VLC) codec system using a new group-based
approach and achieving full table programmability are presented.
According to the proposed codeword grouping and symbol
memory mapping, both group searching and encoding/decoding
procedures are completed by applying numerical properties and
arithmetic operations to codewords and symbol addresses. By a
novel symbol conversion, the memory requirement of the encoding
process is reduced and the programmability of codewords and
symbols is achieved. For MPEG applications, a 0.6-m CMOS
design that performs concurrent VLC codec processes is shown.
This VLSI implementation occupies an area of 5.0 4.5 mm2

with 110 k transistors and satisfies a coding table up to 256-entry
12-bit symbols and 16-bit codewords. In addition, both encoding
and decoding throughputs of this design achieve 100 Msymbols/s
at a 100-MHz clock rate. Therefore, the proposed VLC codec
system is suitable for applications which require high operation
throughput, such as HDTV, and simultaneous compression and
decompression, such as videoconferencing.

Index Terms—Group-based, HDTV, Huffman coding, VLC
codec, VLC/VLD.

I. INTRODUCTION

W ITH THE ADVANCES of technologies in multimedia
and communication, pictures, photographs, and video-

films are used in many applications. Meanwhile, the supported
images and motion pictures are asked to enhance qualities and
resolutions. This request results in higher data rates and more
complex data types. Efficient data compression techniques that
satisfy the requirements of various applications and save the
costs of transmission and storage are demanded. The Huffman
code [1], also called the variable-length code (VLC), is the most
popular lossless data compression technique which is recom-
mended by many image and video standards, such as JPEG,
MPEG, and H.263. The Huffman coding reduces data redun-
dancy based on assigning shorter codewords to more frequent
symbols, and vice versa. Hence, the compression result is very
close to the entropy of source messages.

Recently, progressive applications such as HDTV, videocon-
ferencing, and user-defined table systems are design challenges
for VLC codec technologies. To achieve high-quality and high-

Manuscript received April 27, 1999; revised June 12, 2000. This work was
supported by the National Science Council of Taiwan, R.O.C., under Grant
NSC88-2218-E-009-022. This paper was recommended by Associate Editor N.
Ranganathan.

The authors are with the Department of Electronics Engineering, Na-
tional Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
titany@royals.ee.nctu.edu.tw).

Publisher Item Identifier S 1051-8215(01)01245-9.

resolution video services, the compressed data rate of a HDTV
system is more than 100 Mbits/s, since the sampling rate is about
52 Mpixel/s and the color profile (Y : U : V) is 4: 2 : 2. Subse-
quently, the VLC codec throughput of HDTV systems is in-
creased several order of magnitudes than that of earlier appli-
cations, such as MPEG2 MP@ML. In contrast, a videoconfer-
encing system which is established on limited network band-
width is a low bit rate application. However, the two-way com-
munication needs real-time compression and decompression.
The cost is high to implement an encoder and a decoder, while
the control complexity and buffer size are increased to switch
encoding and decoding processes with a single VLSI design.
Therefore, a concurrent VLC codec system with shared func-
tion units is the optimal solution in this case. To meet diverse
applications and data types, user-defined tables which are gen-
erated by related source data are essential for further increasing
compression ratios. Before systems begin to deal with input
data, user-defined tables have to be loaded into memories. Con-
sequently, a VLC codec design needs the programmability to
change coding tables without redesigning original architecture.

VLC codec algorithms and architectures have been discussed
in the literature. In terms of characteristics, the algorithms
can be divided into two classes: tree-based and group-based.
According to Huffman tree structures, tree-based VLC codec
schemes encode/decode a codeword from leaf/root node
to root/leaf node several bits at a time [4], [8]–[11]. These
schemes are not quite suitable for high-performance real-time
applications because the time period is long for a sequence
of long codewords. Besides, their I/O conditions and buffer
designs are complex since the operation clock cycles are
variable for every codeword. In contrast, using codeword
properties, such as leading characters in [7], [12], [13] and
prefixes concatenating with suffixes in [14], group-based VLC
codec algorithms perform constant operation rates to enhance
performance and reduce control complexities. However, most
of them deal with decoding methods and without encoding
approaches. In addition, when algorithms use the leading
character property, monotonic codewords and regular leading
characters are essential for reducing design complexities and
programmability costs. Hence, these algorithms are difficult
to be modified for the codewords which are nonmonotonic
and have both leading-1 and leading-0 prefixes, such as
MPEG2 DCT coefficient table one. Several categories of
VLC codec architectures, such as PLA-, ROM-, CAM-, and
RAM-based, have been proposed. Completing the codec
processes by matching all possible patterns in parallel, PLA,
ROM, and CAM-based VLC codec designs are popular for

1051–8215/01$10.00 © 2001 IEEE

SHIEH et al.: GROUP-BASED VLC CODEC SYSTEM WITH FULL TABLE PROGRAMMABILITY 211

Fig. 1. Huffman code and codeword grouping.

standard-defined table applications [2]–[4], [6], [14]. Neverthe-
less, PLA and ROM-based systems lack programmability, and
CAM-based designs require high costs to store all possible pat-
terns. With efficient memory-mapping schemes, RAM-based
VLC codec architectures in [7]–[13], [15] reduce design costs
by saving memory space and obtain table programmability by
changing memory contents. Consequently, these architectures
can meet the requirements of various applications.

In this paper, we present the algorithm and architecture of a
VLC codec system with a new group-based approach. Based
on the proposed codeword grouping and memory mapping,
numerical properties can be applied to codewords, symbol
addresses, and bit streams. Therefore, the encoding/decoding
procedures as well as the group searching scheme are accom-
plished by arithmetic operations instead of by pattern matching.
Additionally, with a novel symbol conversion technique, the
VLC codec system can reduce the memory requirement of the
encoding process and achieve the programmability of code-
words and symbols. For MPEG applications, we show a 0.6-m
CMOS design of the VLC codec system. This design performs
concurrent encoding and decoding processes and satisfies a
programmable table up to 256-entry 12-bit symbols and 16-bit
codewords. Moreover, both compression and decompression
rates of this design are 100 Msymbols/s at a 100-MHz clock
rate.

The organization of this paper is as follows. In Section II, a
group-based VLC codec algorithm is described. Several tech-
niques that save memory space for storing symbol information
are discussed, too. In Section III, the architecture of a VLC
codec system for MPEG applications is presented. After that,
chip implementation and performance estimation are shown. Fi-
nally, concluding remarks are made in Section IV.

II. GROUP-BASED VLC CODEC ALGORITHM

A. Definition of Codeword Groups

An example of the Huffman code and codeword grouping
is illustrated in Fig. 1. The Huffman procedure assigns char-
acters “0” and “1” to the combined source symbols with the
lowest probability, respectively. The result of the combination
is viewed as a composite symbol having the probability equal
to the sum of the probabilities of the combined symbols. This
procedure is applied as much as possible until all symbols are
combined together. Based on the result of this procedure, the
proposed codeword group is a set of codewords whose source
symbols are combined to perform the Huffman procedure and
receive the same codeword length. According to this definition,
the codeword groups have the following properties.

1) In a group, the codeword can be treated as a codeword
length-bit binary number, called VLC_codenum, since
the codeword length is the same.

2) The codeword that has the smallest VLC_codenum in a
group is denoted VLC_mincode.

3) A VLC_codeoffset is the offset value between the
VLC_mincode and the VLC_codenum. Because code-
words in the same group have the same prefix, the bit
length of VLC_codeoffsets is the word length of suffixes.

In Fig. 1, the symbols x7, x8, and x9 belong to the codeword
group G3. In this group, the codewords have the same codeword
length, 4-bit, and prefix, 2′b11. The word length of the suffixes
is 2-bit. Therefore, the 4-bit VLC_codenums are 13, 14, and 15,
the VLC_mincode is 4′b1101, and the 2-bit VLC_codeoffsets
are 0,1, and 2. Although codeword lengths are identical source
symbols which are not combined will belong to different groups,
such as x1, x2, and x3 in G0 and x7, x8, and x9 in G1. Besides,

212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001

Fig. 2. Example of intra-group symbol memory map and group information.

there is only one symbol in group G1 since symbol X4 com-
pletes the Huffman procedure alone.

B. Intra-Group Encoding/Decoding Procedures

In addition to grouping codewords, it is necessary for both
encoding and decoding procedures to map symbols onto
memories and extract codeword group information. During
intra-group symbol memory mapping, the memory address of
a symbol in a group is calculated by the VLC_codeoffset of
this symbol and the base address which denotes the symbol
address of the VLC_mincode of the group. In other words, the
symbol address is the sum of the VLC_codeoffset and the base
address. After applying this arithmetic relation, VLC_code-
offsets, decoded symbol addresses, and encoded codewords
can be found by numerical calculations rather than by pattern
matching. Therefore, the group information to be stored is
composed of codeword lengths, VLC_mincodes, and base
addresses. Furthermore, the memory space of concurrent VLC
codec systems can be saved since their encoders and decoders
share the group information.

Based on the memory map and the group information in
Fig. 2, intra-group encoding/decoding procedures can be
described as follows.

Decoding procedure—assume the decoded codeword is
(00 100 101):

1) VLC_codeoffset VLC_codenum (00 100 101)
VLC_mincode (00 100 000) 00 000 101 ;

2) symbol_address VLC_codeoffset (5) base_address
(100) 105;

3) the decoded symbol, x5, is accessed by the symbol_ad-
dress, 105.

Encoding procedure—assume the encoded symbol address is
103:

1) VLC_codeoffset symbol_address (103) base_ad-
dress (100) 3;

2) VLC_codenum VLC_codeoffset (3) VLC_mincode
(32) 35;

3) the encoded 8-bit codeword is 00 100 01135.

C. Group-Searching Scheme

Because the encoding/decoding procedures are performed
after the group information is acquired, an efficient
group-searching scheme with low complexity and high

Fig. 3. PCLC table and intra-/inter-group symbol memory map.

Fig. 4. Group information of the coding table shown in Fig. 3.

operation rate determines the performance of a group-based
VLC codec system. To realize such a group searching
scheme, the following pseudo-constant-length-code (PCLC)
and inter-group symbol memory mapping are used. If all
codeword lengths are the same, the numerical properties of
codewords in a group can be applied to the whole coding
table. A PCLC procedure is applied to equalize codeword
lengths by adding redundant characters 000 behind VLC
codewords. Hence, PCLC codewords which have the same
length as the longest VLC codeword can be treated as
binary numbers, PCLC_codenums. Because the VLC code
is a prefix code, PCLC codewords and PCLC_codenums
can be distinguished from each other. Accordingly, a
PCLC table is established by ascending PCLC_code-
nums, i.e., codenum codenum codenum.
This results in ascending PCLC_mincodes, i.e.,
mincode mincode mincode . Based on the PCLC
table, the base addresses have to be assigned in PCLC_mincode
order, i.e., base_addr base_addr base_addr for
inter-group symbol memory mapping. An example of the
PCLC table and the intra-/inter-group symbol memory map is
shown in Fig. 3. The group information of this PCLC table

SHIEH et al.: GROUP-BASED VLC CODEC SYSTEM WITH FULL TABLE PROGRAMMABILITY 213

Fig. 5. Detailed descriptions of the VLC codec processes and corresponding examples.

is given in Fig. 4, where the valid bit indicates whether the
group information is used.

According to PCLC tables and symbol memory maps, the
proposed group searching scheme is realized by applying
numerical properties to bit streams and symbol addresses.
Similar to PCLC codewords, a decoded bit stream that has
the same length as the PCLC codewords is treated as a binary

number, bitstream_num. Because the bit stream is a sequence of
concatenated codewords, such as codeword–codeword–etc.,
a relation between the bit stream and the PCLC table can
be expressed by PCLC_codenum bitstream_num
PCLC_codenum . Therefore, the group searching scheme
is accomplished by the following numerical comparisons. The
decoded codeword belongs to group when the hit condition

214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001

Fig. 6. Symbol conversion and CBS-LUT based on MPEG2 table-15.

Fig. 7. Three techniques for saving the symbol memory space.

PCLC_mincode bitstream_num PCLC_mincode is
encountered. Besides, the hit condition will be base_addr
symbol_address base_addr if the encoded symbol is
located in group .

D. Overall Group-Based VLC Codec Processes

Before realizing the codec processes, the word lengths of both
VLC_codeoffset and VLC_codenum operands have to be deter-
mined, since it is difficult to implement arithmetic units with
variable length inputs. To perform memory mapping, the sup-
ported symbol memory must satisfy the requirement of coding
tables. Consequently, the value of VLC_codeoffsets will not ex-
ceed the address space of the symbol memory. For this reason,

it is reasonable that the word length of the VLC_codeoffset
operand equals that of the symbol address. On the other hand,
because hardware components are designed for all codewords,
VLC_codenums have to be extended to the maximum code-
word length bits. However, the numerical value of VLC_code-
nums cannot be changed by this operation. It is necessary for the
VLC_codenum operand to do sign-bit extension of an unsigned
number before transmitting to arithmetic units.

Based on the word lengths of the operands discussed above,
the VLC codec algorithm is completed by the group searching
scheme and the intra-group encoding/decoding procedures.
Detailed descriptions of the VLC codec processes and corre-
sponding examples based on the coding table from Fig. 3 are
presented in Fig. 5.

SHIEH et al.: GROUP-BASED VLC CODEC SYSTEM WITH FULL TABLE PROGRAMMABILITY 215

Fig. 8. Block diagram of the proposed VLC codec system for MPEG applications.

TABLE I
ANALYSIS OF SYMBOL MEMORY EFFICIENCY FORSEVERAL IMAGE

CODING TABLES

E. Memory Requirement Reduction for Symbol Information

Because memory modules may occupy large area, mini-
mizing memory requirements can reduce the cost of a system.
Data to be stored for the proposed VLC codec processes are
group information, encoded symbol addresses, and decoded
symbols. For a table with 256-entry 12-bit symbols and 16-bit
codewords, the size of the symbol address memory is 2
bits for fetching 8-bit symbol addresses by 12-bit encoded sym-
bols. The symbol memory space is 2 bits for accessing
12-bit decoded symbols by 8-bit symbol addresses. Besides,
it needs bits storage space for n-entry

group information which consists of 1-bit valid, 4-bit codeword
length, 16-bit PCLC_mincode, and 8-bit base address.

It is essential to shorten the 12-bit symbols since the memory
efficiency is low for storing 256-entry symbol addresses in 2
locations. For MPEG DCT coefficient tables, one technique that
converts Run-Level-Pairs (RLP) into 8-bit converted symbols is
presented in [15]. However, it is not a proper method for pro-
grammable symbols because different RLPs can be transformed
into the same converted symbol. A novel symbol conversion is
shown in Fig. 6 based on MPEG2 table-15. To generate com-
pact conversion results for arbitrary RLPs, the proposed con-
verted symbols are the sum of the encoded level and the con-
version-based symbol (CBS) which accumulates the maximum
level from run to run for each run. Escaped RLPs are de-
tected by comparing the value of the encoded level with the
maximum level of the encoded run. With a memory-based CBS
look-up table (CBS-LUT), this symbol conversion technique
is suitable for programmable RLPs. Furthermore, the memory
requirement for finding encoded symbol addresses is reduced
to () to obtain 8-bit CBS’s by 5-bit encoded
runs and fetch 8-bit symbol addresses by 8-bit converted sym-
bols. Therefore, with this symbol conversion, the total memory
space of the proposed VLC codec processes is now reduced to

bits.
Three techniques for saving the symbol memory space are

shown in Fig. 7. According to the proposed intra-group symbol
memory mapping, discontinuous VLC_codeoffsets induce
unused locations in the symbol memory, such as locations 5, 6,
and 18 in Fig. 3. For user-defined coding tables, reassigning the
codewords in continuous numerical sequence results in saving
memory space as shown in Fig. 7(a). Because the codeword

216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001

Fig. 9. Detailed schematic of a group detector.

length is identical, the changed codeword do not affect the
compression ratio. Nevertheless, this technique cannot be ap-
plied to standard-defined tables where the codewords cannot be
changed. In this case, partitioning the discontinuous codewords
into individual groups is the method to reduce the memory
requirement as shown in Fig. 7(b). In addition, it is not nec-
essary for decompression applications to perform inter-group
symbol memory mapping. If the intra-group memory mapping
is satisfied, the base address can be any location in the memory.
Consequently, another group, such asin Fig. 7(c), is allowed
to occupy the unused memory locations for increasing the
memory efficiency. An analysis of symbol memory efficiency
for several image coding tables is given in Table I.

III. GROUP-BASED VLC CODECSYSTEM ARCHITECTURE

The proposed VLC codec system is designed for MPEG
applications with coding tables up to 256-entry 12-bit symbols
and 16-bit codewords. This system performs concurrent en-
coding and decoding procedures by accessing the same group
information and achieves table programmability by loading
data into on-chip memories. To complete the VLC codec
processes for MPEG videos, this design includes the operations
of sign bits and escaped run-levels (escRL) following VLC
codewords. By the efficient symbol conversion, the memory
requirement is reduced to ()
bits for a CBS-LUT, a symbol address memory, a symbol
memory, and 32-entry group-information. Block diagram of
the proposed VLC codec system is shown in Fig. 8. It mainly
consists of the following components.

1) The group-based VLC encoder/decoder is composed of
group detectors and combinational logic circuits to realize
the VLC codec processes.

2) The input FIFO stores the input bit stream. According
to previous decoded results, the Dec_bitstream selector
transmits codeword bit streams to the VLC decoder. Be-
sides, this selector detects sign bits and escRLs when
VLC codewords are decoded.

3) The Enc_bitstream concatenater adds sign bits or escRL’s
behind VLC codewords and concatenates encoded results
into a single bit stream. Then, every 32 bits of the encoded
bit stream in the concatenater is shifted into the Output
FIFO.

4) The special code detector recognizes special codes, such
as escape and EOB, by checking decoded symbol ad-
dresses instead of decoded symbols. Without waiting for
symbol fetching, this detector can determine the length
of the additional bits following a VLC codeword. Hence,
the next codeword bit stream can be found by the Dec_bit-
stream selector immediately and the decoding throughput
can be increased.

5) The Enc_en and Dec_en Ctrls determine the operations of
the VLC encoder and decoder according to the condition
of input data and FIFOs.

6) Both symbol address and symbol memories are the
on-chip memory modules for storing symbol informa-
tion.

7) The symbol converter performs symbol conversion and
detects escaped RLP’s and EOB symbols. On the other
hand, the symbol recoverer finds correct runs and signed
levels based on decoded results.

SHIEH et al.: GROUP-BASED VLC CODEC SYSTEM WITH FULL TABLE PROGRAMMABILITY 217

Fig. 10. Architecture of group-based VLC encoder/decoder.

A. Detail Architecture of Main Components

1) The Group Detector:A schematic of the group detector
is given in Fig. 9. The format of the stored group informa-
tion is {valid, PCLC_mincode, CL-1, base_address}. The word
length of the PCLC_mincode is 16 bits, to satisfy coding ta-
bles having 16-bit codewords. Because a codeword is at least
1 bit, the codeword length minus one (CLB1) is stored to re-
duce memory space. The 8-bit base_address is desinged for a
256-entry symbol memory. In addition, two subtractors realize
the arithmetic operations, (8′b enc_symaddr 8′b base_addr

8′b enc_offset) and (16′b dec_bitstream 16′b PCLC_min-
code 16′b dec_offset). The numerical comparison results,
sign_bits, are transmitted to theXOR gates. According to the
group searching scheme, the hit condition of groupcan be
expressed by (sign , sign). Therefore, theXOR gate
of the matching group turns on the tri-state buffers to transmit
the group information. For this reason, the sign_bit of unused
group detectors must be “1” to guarantee that the result of group
searching is correct.

2) The Group-Based VLC Encoder/Decoder:An architec-
ture of the Group-based VLC Encoder/Decoder is presented in
Fig. 10. Monotonic codewords with leading characters, such as
JPEG AC tables, generate 15 groups when the codeword lengths
vary from 2 to 16-bit. For this reason, 32 group detectors are
sufficient for most of coding tables containing both leading-1
and leading-0 codewords. Nevertheless, the number of group
detectors has to be increased for irregular or sparse coding ta-
bles, which have a large number of codeword groups. The tri-
state buffers of every group detector are connected together to
transmit the matching group information, since only one group
detector encounters the hit condition. Two barrel shifters (BS)

select the valid VLC_mincode and VLC_codeoffset for the en-
coding and decoding processes, respectively. Because adding
zero bits 15′b0 and 7′b0 to the inputs of two barrel shifters per-
forms the sign-bit extensions of unsigned numbers, the outputs
of the barrel shifters are the fixed-length operands with cor-
rect numerical values. After the arithmetic operations are com-
pleted, the encoded codeword length minus one, encCL-1, and
the encoded VLC_codenum, enc_codeword16′b { ,
encCL′b VLC_codeword}, are transmitted to the Enc_bitstream
Concatenator. On the other hand, the 8-bit decoded symbol ad-
dress, dec_symaddr, is sent to both Symbol Memory and special
code detector. Besides, the decoded codeword length minus one
(decCL-1) is feedback to the Dec_bitstream Selector for finding
the next codeword bit streams.

3) The Dec_bitstram Selector and the Special Code De-
tector: A block diagram of the Dec_bitstream Selector that
detects 16-bit codeword bit stream, 18-bit escRL, and 1-bit
sign is depicted in Fig. 11. The operation of the special
code detector is presented here, too. To decode one complete
codeword at a time, two 32-bit buffers—MSB32′breg and
LSB32′breg—are used for storing the bit stream. The start
pointer of the decoded VLC codeword in the buffers is the
decCL_acc which accumulates the length of decoded bits.
According to this pointer, one barrel shifter selects undecoded
32 bits, dec_bitstream32, from the buffers. Then, the 16 most
significant bits of the dec_bitstream32, dec_bitstream are
transmitted to the VLC decoder. After receiving the decoded
codeword length, the other barrel shifter shifts decCL-1 bits
from the 31 less significant bits of the dec_bitstream32 to find
escRL’s and sign bits. The special code detector determines
the lengths of additional bits when decoded symbol addresses

218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001

Fig. 11. Block diagram of Dec_bitstream selector and special code detector.

Fig. 12. Block diagram of Enc_bitstream concatenator.

are available. Therefore, current decCL_acc can be calculated
immediately. If current decCL_acc exceeds 32, the stored data
of the LSB32′breg will replace that of the MSB32′breg and

32 bits input bit stream in the Input FIFO will be shifted into
the LSB32′breg. Consequently, the next decCL_acc must be
updated from current decCL_acc subtracted by 32.

SHIEH et al.: GROUP-BASED VLC CODEC SYSTEM WITH FULL TABLE PROGRAMMABILITY 219

Fig. 13. Chip layout of the proposed VLC codec system.

TABLE II
SIMULATION RESULTSBASED ON HDTV SYSTEMS (I-FRAME)

4) The Eec_bitstram Concatenator:A block diagram
of the Enc_bitstream Concatenator is illustrated in Fig. 12.
To deal with escRLs, two 32-bit buffers, MSB32′breg and
LSB32′breg, are applied to perform the concatenation scheme.
The encCL_acc, which accumulates the length of encoded
results, is the start pointer for storing current encoded bits to the
buffers. According to this pointer, the concatenation scheme
is using one barrel shifter for shifting the encoded bits to the
inputs of correct registers and the other barrel shifter for trans-
mitting the signals, buf_en, to enable these registers. Therefore,
the encoded bits can be concatenated without overwriting the
previous encoded results. When current encCL_acc exceeds
32, the shift-out signal is activated to transmit the encoded bit
stream in the MSB32′breg to the Output FIFO and overwrite
the MSB32′breg by the LSB32′breg. Like decCL_acc, the next

encCL_acc is updated from current encCL_acc subtracted by
32.

B. Chip Implementation and Performance Estimation

The proposed VLC codec system was implemented using
0.6- m CMOS SPTM process. It consists of two major parts:
1) an in- house 5-V standard cell library and 2) memory mod-
ules. To satisfy a coding table up to 32 codeword groups and
256-entry 12-bit symbols and 16-bit codewords, the memory
modules of this system are -bit CBS-LUT, -bit
symbol address memory, -bit symbol memory, and

-bit group information. In addition, both output and
input FIFOs are 64-bit buffers. Nevertheless, their sizes have to
be modified to meet application requirements. For simplifying
the I/O control, these FIFOs align the output and the input bit
streams to 16 bits, i.e., 2 B.

220 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001

TABLE III
COMPARISON WITH EXISTING VLC CODEC DESIGNS

To enhance system performance, this VLSI solution is
designed to achieve concurrent codec processes and constant
symbol rate, i.e., one symbol per cycle. Because of the special
code detector, the Dec_bitstream Selector can determine next
codeword bit streams without stalls. Therefore, the pipeline
stages for this concurrent VLC codec system is organized as
follows:

• stage 1) the Symbol Converter/Recoverer;
• stage 2) the Symbol Address/Symbol Memories;
• stage 3) the Group-based VLC Encoder/Decoder and the

bit stream Concatenator/Selector.

Additionally, the pipeline is stalled when the
enc_valid/dec_receive signals are disabled or the
output_FIFO_full/input_FIFO_empty flags are set. Simulation
results based on HDTV systems are given in Table II. These
results show that the operation performance of this chip design
achieves 100 Msymbols/s at 100-MHz clock rate with 5-V
supply voltage. Because the bit streams are aligned to 16 bits,
some overheads are induced due to the stalls of the Input and
Output FIFOs. Moreover, a comparison with existing VLC
codec designs is given in Table III. It shows that the symbol rate
of the proposed design is about 2.5 times [15] and 3 times [7].

IV. CONCLUSION

In this paper, the algorithm and architecture of a VLC codec
system with a new group-based approach have been presented.
Based on the codeword grouping and symbol memory map-
ping, both encoding and decoding procedures are completed
by applying numerical properties to codewords and symbol ad-
dresses. Using the proposed PCLC table, the group searching

scheme is accomplished by arithmetic operations. In addition,
by a novel symbol conversion, not only memory space reduc-
tion for symbol information but also full table programmability
can be achieved. A 0.6-m CMOS chip that performs table pro-
gramming and concurrent VLC codec processes has been de-
signed for MPEG applications. Simulation results show that this
VLSI solution achieves compression/decompression rates up to
100 Msymbol/s at a 100-MHz clock rate. Thus, the proposed
solution is suitable for high throughput applications, such as
HDTV, and concurrent VLC codec applications, such as video-
conferencing.

ACKNOWLEDGMENT

The authors would like to thank their colleagues within the
SI2 group of NCTU for many fruitful discussions.

REFERENCES

[1] D. A. Huffman, “AA method for the construction of minimum–redun-
dancy codes,”Proc. IRE, vol. 40, pp. 1098–1101, Sept. 1952.

[2] S.-M. Lei and M.-T. Sum, “AA parallel variable-length-code decoder for
advanced television applications,” inProc. 3rd Int. Workshop on HDTV,
Aug. 1989.

[3] S.-M. Lei and M.-T. Sum, “An entropy coding system for digital HDTV
applications,”IEEE Trans. Circuits Syst. Video Technol., vol. 1, pp.
147–155, Mar. 1991.

[4] A. Mukherjee, N. Ranganathan, and M. Bassiouni, “Efficient VLSI de-
sign for data transformations of tree-based codes,”IEEE Trans. Circuits
Syst., vol. 38, pp. 306–314, Mar. 1991.

[5] A. Mukherjee, H. Bheda, and T. Acharya, “Multibit decoding/encoding
of binary codes using memory-based architectures,” inProc. Data Com-
pression Conf., Snowbird, UT, Apr. 1991, pp. 352–361.

[6] S.-F. Chang and D. G. Messerschmitt, “Designing a high-throughput
VLC decoder Part I–B concurrent VLSI architectures,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 2, pp. 187–196, June 1992.

SHIEH et al.: GROUP-BASED VLC CODEC SYSTEM WITH FULL TABLE PROGRAMMABILITY 221

[7] P. A. Ruetz, P. Tong, D. Luthi, and P. H. Ang, “A video-rate JPEG chip
set,”J. VLSI Signal Processing, vol. 5, pp. 141–150, 1993.

[8] A. Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya,
“MARVLE: A VLSI chip for data compression using tree-based
codes,”IEEE Trans. VLSI Syst., vol. 1, pp. 203–213, June 1993.

[9] H. Park and V. K. Prasanna, “Area efficient VLSI architectures for
Huffman coding,” IEEE Trans. Circuits Syst., vol. 40, pp. 568–575,
Sept 1993.

[10] Y. Ooi, A. Taniguchi, and S. Demura, “A 162Mbit/s variable length de-
coding circuit using an adaptive tree search technique,” inProc. IEEE
1994 Custom Integrated Circuits Conf., May 1994, pp. 107–110.

[11] R. Hashemian, “Design and hardware implementation of a memory ef-
ficient Huffman decoding,”IEEE Trans. Consumer Electron., vol. 40,
pp. 345–352, Aug. 1994.

[12] S. B. Choi and M. H. Lee, “High speed pattern matching for a fast
Huffman decoder,”IEEE Trans. Consumer Electron., vol. 41, pp.
97–103, Feb. 1995.

[13] B. W. Y. Wei and T. H. Meng, “A parallel decoder of programmable
Huffman codes,”IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp.
175–178, Apr. 1995.

[14] C.-T. Hsieh and S. P. Kim, “A concurrent memory-efficient VLC de-
coder for MPEG applications,”IEEE Trans. Consumer Electron., vol.
42, pp. 439–446, Aug. 1996.

[15] Y. Fukuzawa, K. Hasegawa, H. Hanaki, E. Iwata, and T. Yamazaki,
“A programmable VLC core architecture for video compression DSP,”
Proc. IEEE SiPS ’97 Design and Implementation (formerly VLSI Signal
Processing), pp. 469–478, Nov. 1997.

Bai-Jue Shieh was born in Taipei City, Taiwan,
R.O.C . in 1974. He received the B.S. and M.S.
degrees from National Chiao Tung University,
Hsinchu, Taiwan, R.O.C., in 1996 and 1998,
respectively, both in electrical engineering. Since
September 1998, he has been working toward the
Ph.D. degree in the Department of Electronics
Engineering, National Chiao Tung University, as
part of the SI2 Research Group.

His research interests include IC design flow,
cell-based and fully-custom VLSI design, video

signal processing, system-on-chip design technology, cell library design, and
memory circuit design.

Yew-San Lee was born in Muar City, Johore,
Malaysia, in 1971. He received the B.S. and M.S.
degrees in June 1995 and 1997, respectively, from
the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Since September 1997, he has been working toward
the Ph.D. degree in the Department of Electronics
Engineering, National Chiao Tung University, as
part of the SI2 Research Group.

His research interests include advanced VLSI
design for video signal processing and compression,

error detection and correction coding, high-performance cell library and
memory circuit design, digital phase-locked loop, mix-mode IC design, and
related CAD design.

Chen-Yi Leereceived the B.S. degree from National
Chiao Tung University, Hsinchu, Taiwan, R.O.C.,
in 1982, and the M.S. and Ph.D. degrees from
Katholieke University Leuven (KUL), Belgium,
in 1986 and 1990, respectively, all in electrical
engineering.

From 1986 to 1990, he was with IMECNSDM,
working in the area of architecture synthesis for
digital signal processing (DSP). In February 1991,
he joined the faculty of the Electronics Engineering
Department, National Chiao Tung University, where

he is currently a Professor. His research interests include VLSI algorithms and
architectures for high-throughput DSP applications. He is also active in various
aspects of high-speed networking, system-on-chip design technology, very low
bit-rate coding, and multimedia signal processing.

