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Bayesian analysis of a growth curve model
with power transformation, random eþ ects
and AR(1) dependence

JACK C. LEE & W. H. LIEN, Institute of Statistics, National Chiao Tung
University, Taiwan

abstract In this paper we devote ourselves to a general growth curve model with power
transformation, random eVects and AR(1) dependence via a Bayesian approach. Two
priors are proposed and both parameter estimation and prediction of future values are
considered. Some numerical results with a set of real data are also given.

1 Introduction

In this paper we consider analysing growth curve data through a Bayesian point of
view using a growth curve model with random eþ ects and AR(1) dependence,
while applying the Box± Cox transformation on observations.

Since Poþ hoþ & Roy (1964) the growth curve model has been considered by
many authors. Laird & Ware (1982) considered the random eþ ects model with white
noise errors. Jennrich & Schluchter (1986) discussed various types of covariance
structures, including random eþ ects models and the AR(1) model separately. Chi
& Reinsel (1989) considered the ML estimates for the model with both random
eþ ects and AR(1) errors by the score method. Lee & Niu (1999) considered the
model from a Bayesian point of view and suggested some approximations that are
better than the ML approach. The importance of the AR(1) dependence was
demonstrated in Lee (1988, 1991) and Keramidas & Lee (1990). In Lee & Lu
(1987) tremendous improvement was found in predictive accuracy using the data-
based transformation models for technology substitutions. This is primarily due to
the fact that the linearity assumption for the growth function can be enhanced
signi® cantly with the Box± Cox power transformation, along with incorporating into
the model the proper dependence structure among the observations. Enhancement
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224 J. C. Lee & W. H. Lien

of normality and constancy of variance may have relatively minor roles in the
improvement of predictive accuracy.

The model considered here is:

Y (k i)
i j

pij 3 1
5 Xi j

pi j 3 mi

s i
mi 3 1

+ Di j
pi j 3 wi

Uij
wi 3 1

+ e i j
pi j 3 1

, (1)

for i 5 1, 2, . . . , r; j 5 1, 2, . . . , Ni

where Yi j are the measurements and not necessarily of equal lengths, s i is an
unknown mi 3 1 vector of regression coeý cients of group i, Xij and Di j are known
design matrices, Ui j is the random eþ ect error and possesses wi-variate normal
distribution with mean vector 0 and covariance matrix r 2C i, and the disturbance
term e ij is an independent pij-variate normal distribution with mean 0 and covariance
matrix r 2Ci j, where Ci j 5 ( q ½ a 2 b ½ ), a, b 5 1, 2, . . . , pij ; and r > 0 and 2 1< q < 1 are
unknown. The Box± Cox power transformation is de® ned as:

Y (k i)
ijk 5 {(Yi jk + c ) k i 2 1

k i

, if k i ¹ 0,

log(Yi jk + c ), if k i 5 0,

(2)

for i 5 1, 2, . . . , r ; j 5 1, 2, . . . , Ni; k 5 1, 2, . . . , pij

where Yijk is the kth component of Yi j, c is a known constant such that (Yijk + c ) > 0
for all i, j, k, and k i is an unknown parameter. Thus, the covariance matrix of Y (k i)

i j

can be written as

R i j 5 r 2(Dij C iD ¢
i j + Ci j) º r 2 K i j (3)

For the choice of priors, there are two possibilities considered for our Bayesian
analysis of model (1). In addition to parameter estimation, we also derive two
speci® c types of prediction problems useful in practice. Furthermore, in recent
years, statisticians have been increasingly drawn to Markov chain Monte Carlo
(MCMC) methods, especially the Metropolis± Hastings (M-H) algorithm (Metro-
polis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman & Geman,
1984). Therefore, we will consider Bayesian point and interval estimates for each
of the unknown parameters and prediction of future observations via MCMC
methods.

In Section 2, two types of priors are introduced. In Sections 3 and 4, Bayesian
methods for parameter estimation and prediction of future values are developed.
In Section 5, Bayesian inference by means of MCMC methods is studied for model
(1). Some numerical results, with real data analysed by the methods developed in
this paper are illustrated and compared with the method of maximum likelihood
(ML) in Section 6. Finally, some concluding remarks are given in Section 7.

2 Choices of priors

For convenience, we shall denote ( s 1 , s 2 , . . . , s r), ( C 1 , C 2, . . . , C r) and ( k 1 , k 2 , . . . , k r)
as s, C and ,̧ respectively.

To choose prior densities, we will assume s, r 2 , C , q and ¸ to be independent a
priori. It is easily seen that the non-informative prior distribution for s, q and ¸ is
proportional to a constant since all of the elements of s and ¸ are just real and q is
con® ned within ( 2 1, 1). For r 2 , we choose r 2 2 as its prior for r 2 > 0. For C , two

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
42

 2
7 

A
pr

il 
20

14
 



Bayesian analysis of a growth curve model 225

possibilities are considered. We may consider each of its elements as a ratio of the
variance± covariance components of the covariance matrix of Ui j to the main
variance r 2 , so every element of C should be within a ® nite interval such that
neither random eþ ects nor the AR(1) errors dominate the others. Utilizing the
`principle of stable estimation’ suggested by Edwards et al. (1963), a uniform prior
is appropriate for C . Therefore, the prior for s, r 2 , C , q and ¸ can be written as:

p (s, r 2 , C , q , )̧µ p (s) p (r 2) p ( C ) p ( q ) p (¸)µ r 2 2 (4)

Another approach to determine the prior is to introduce an informative prior such
as the inverse Wishart distribution, IW( X , m ), for C . The hyperparameters X and m

may be roughly estimated from the data. For m , it can be set as small as possible,
i.e. m + 2. Meanwhile, X could be set as diagonal with diagonal elements being the
sample variance of the corresponding regression coeý cients when each individual
regresses on the design matrix Xij with white noise errors.

We shall refer to the priors discussed above as prior 1 and prior 2 in the rest of
this paper. In the following Bayesian inference, we shall denote the prior of C , q

and ¸ as p ( C , q , )̧ without specifying which prior is being used.

3 Parameter estimation

Combining the likelihood with the prior and integrating w.r.t. s and r 2 , we obtain

P( C , q , ¸ ½ Y)

µ p ( C , q , ¸) ( *
r

i 5 1

*
Ni

j 5 1

½ K i j ½ 2 1/2 ) ½ J ½ (5)

( *
r

i 5 1
|+

Ni

j 5 1

X ¢
i j K

2 1
i j Xij|2 1/2 ) B 2 (n 2 R r

i 5 1 mi)/2

where

Y 5 (Y11, . . . , Y1N1
, Y21, . . . , Y2N2

, . . . , Yr1, . . . , YrNr
)

B 5 +
r

i 5 1

+
Ni

j 5 1

(Y (k i)
i j 2 Xij s Ã i) ¢ K 2 1

i j (Y (k i)
i j 2 Xij s Ã i) (6)

s Ã i 5 ( +
Ni

j 5 1

X ¢
ij K

2 1
ij Xi j ) 2 1 ( +

Ni

j 5 1

X ¢
i j K

2 1
ij Y ( k i)

i j ), i 5 1, 2, . . . , r

J 5 {*
r

i 5 1

*
Ni

j 5 1

*
Pij

k 5 1

(Yijk + Y ) k i 2 1 if k i ¹ 0

*
Y

i 5 1

*
Ni

j 5 1

*
Pij

k 5 1

(Yijk + Y ) 2 1 if k i 5 0

By applying Ljung & Box (1980), we have the following approximate posterior
distribution and region of s i for i 5 1, 2, . . . , r :
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226 J. C. Lee & W. H. Lien

s i ½ Y ~ ÇÇ Tmi
( s Ã *i , BÃ ( m +

Ni

j 5 1

X ¢
ij K Ã

2 1
ij Xi j)

2 1, m ) (7)

BÃ 2 1( s i 2 s Ã *i ) ¢ ( +
Ni

j 5 1

X ¢
ij K Ã

2 1
ij Xi j ) ( s i 2 s Ã *i ) <

mi

v
F1 2 a (mi, v) (8)

where

s Ã *i 5 ( +
Ni

j 5 1

X ¢
i j K Ã

2 1
i j Xi j) 2 1 ( +

Ni

j 5 1

X ¢
i j K Ã

2 1
i j Y (k Ã i)

i j )
BÃ 5 +

r

i 5 1

+
Ni

j 5 1

(Y (k Ã i)
i j 2 Xi j s Ã *i ) ¢ K Ã 2 1

i j (Y (k Ã i)
i j 2 Xij s Ã *i ) (9)

K Ã ij 5 Di j C Ã iD ¢
i j + CÃ ij , CÃ i j 5 ( q Ã ½ a 2 b ½ ), for a, b 5 1, 2, . . . , pi j

m 5 n 2 +
r

k 5 1

mk

C Ã , q Ã and Ã̧ maximize P( C , q , ¸ ½ Y ), as given in equation (5), and Tp( l , R , n) is the
p-variate T distribution with mean l and covariance matrix n(n 2 2) 2 1R .

With similar arguments as above, the posterior distribution of r 2 may be
approximated as IG((n 2 R r

i 5 1 mi)/2, BÃ /2), where BÃ is given in equation (9) and
IG( m 1 , m 2) is the inverse gamma distribution with parameters m 1 and m 2 .

4 Prediction of partially observed future values

The prediction of ylk , future q-dimensional values of measurement Ylk , will be
considered in this section. To accomplish this purpose, the covariance structure
must be assumed to be extendible to the future values of all observed individuals.

Let x and d, respectively, be the q 3 mi and q 3 wi matrices corresponding to ylk.
Then we have: E(Y ( k l) ¢

lk , y ( k l) ¢
lk ) ¢ 5 (X ¢

lk , x ¢ ) ¢ s l, and Cov(Y (k l) ¢
lk , y (k l) ¢

lk ) ¢ 5 r 2(D* C lD* ¢ + C*)
º r 2 K *, where K * 5 ( K *i j ), i, j, 5 1, 2, D* 5 (D ¢

lk , d ¢ ) ¢ and C* 5 ( q ½ a 2 b ½ ), a, b 5 1, . . . ,
plk + q. Let Y* 5 (Y ¢

lk , y ¢ ) ¢ , X* 5 (X ¢
lk , x ¢ ) ¢ and Y*(k l) 5 (Y (k l) ¢

lk , y (k l ) ¢ ) ¢ . The conditional
density function of y ( k l)

lk given Ylk , s l , r 2 , C l , q and k l is:

f(y (k l)
lk ½ s l, r

2 , C l, q , k l , Ylk)

(10)

µ (r 2) 2 q /2 ½ K *22.1 ½ 2 1/2 exp f 2
1

2r 2
(y (k l )

lk 2 l 2.1) ¢ K * 2 1
22.1 (y (k l)

lk 2 l 2.1) g
where

K *22.1 5 K *22 2 K *21 K * 2 1
11 K *12

(11)
l 2.1 5 x s l + K *21 K * 2 1

11 (Y ( k l)
lk 2 Xlk s l)

Upon combining (10) with the joint posterior of s, r 2 , C , q , ¸ and integrating w.r.t.
r 2 , s and y (k l )

lk we have the posterior density of C , q , :̧

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
42

 2
7 

A
pr

il 
20

14
 



Bayesian analysis of a growth curve model 227

P( C , q , ¸ ½ Y)

µ p ( C , q , ¸) K *22.1 ½ 2 1/2 ( *
r

i 5 1

*
Ni

j 5 1

½ K ij ½ 2 1/2 ) ½ JkQ ½ 2 1/2 ½ G22 ½ 2 1/2 (12)

( *
i ¹ k
|+

Ni

j 5 1

X ¢
i j K

2 1
i j Xi j|2 1/2 ) [B1 + B2 + B3] 2 (n 2 R r

i 5 1 mi)/2

where

B1 5 +
i ¹ l

+
Ni

j 5 1

(Y ( k i)
i j 2 Xi j s Ã i) ¢ K 2 1

i j (Y ( k i)
i j 2 Xi j s Ã i)

B2 5 +
j ¹ k

(Y (k l)
l j 2 Xl j s Ã l1) ¢ K 2 1

l j (Y ( k l)
l j 2 Xl j s Ã l1)

B3 5 (Y ( k l)
lk 2 Xlk s Ã l1) ¢ G11.2(Y

(k l)
lk 2 Xlk s Ã 21)

s Ã i 5 ( +
Ni

j 5 1

X ¢
ij K

2 1
ij Xi j ) 2 1 ( +

Ni

j 5 1

X ¢
ij K

2 1
ij Y (k i)

ij ), i ¹ l

s Ã l1 5 Q 2 1
1 ( +

j ¹ k

X ¢
l j K

2 1
l j Y (k l )

l j )
Q 5 Q1 + Q2 , Q1 5 +

j ¹ k

X ¢
lj K

2 1
l j Xl j , Q2 5 X* ¢ K * 2 1X*

G 5 K * 2 1X*Q 2 1
2 Q1Q 2 1X* ¢ K * 2 1 + Z*(Z* ¢ K *Z*) 2 1Z* ¢ 5 (Gi j), i, j 5 1, 2

G11.2 5 G11 2 G12G 2 1
22 G21

Z* : (plk + q) 3 (plk + q 2 ml) matrix such that X* ¢ Z* 5 0

With arguments similar to those in (7), we also have the following approximate
predictive density for y ( k l)

lk :

F(y (k l)
lk ½ Y) 8 Tq( l Ã , (BÃ 1 + BÃ 2 + BÃ 3) ( m GÃ 22) 2 1 , m ) (13)

where ( C Ã , q Ã , Ã̧ ) is the mode of P( C , q , ¸ ½ Y ), as in (12), and the quantities BÃ 1 , BÃ 2 ,
BÃ 3 and GÃ are, respectively, B1 , B2 , B3 and G evaluated at ( C Ã , q Ã , Ã̧ ), m 5 n 2 R r

i 5 1 mi

and l Ã 5 xs Ã l1 2 GÃ 2 1
22 GÃ 21(Y ( k l)

lk 2 Xlk s Ã l1).
Therefore, we can predict ylk by the following approximate predictor:

yÃ lkh 5 {(1 + k Ã l l Ã h)
1/ k l 2 c , if k Ã l ¹ 0,

exp( l Ã h) 2 c , if k Ã l 5 0,
for h 5 1, 2, . . . , q (14)

where yÃ lkh is the hth component of yÃ lk and l Ã h is the hth component of l Ã .
A (1 2 a ) predictive region for ylk can be constructed through the following

inequality:

(y (k Ã l)
lk 2 l Ã ) ¢ GÃ 22(y ( k Ã l)

lk 2 l Ã ) < const (15)
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228 J. C. Lee & W. H. Lien

where

const 5 [BÃ 1 + BÃ 2 + BÃ 3]
q

n 2 R r
i 5 1 mi

F1 2 a ( q, n 2 +
r

i 5 1

mi )

5 Bayesian inference via Markov chain Monte Carlo methods

In order to make inference about model parameters and to make predictions, we
need to integrate over high-dimensional probability distributions. Markov chain
Monte Carlo (MCMC) methods are very helpful for solving our problems. MCMC
is essentially Monte Carlo integration using Markov chains. It draws samples from
the required distribution by running a cleverly constructed Markov chain for a
long time and then forms sample averages to approximate expectations. The Gibbs
sampler and the Metropolis± Hastings (M-H) algorithm are well-known among the
several ways of constructing those chains. A great advantage of the Gibbs sampler
and the M-H algorithm is the ease of implementation which makes heavy use of
modern computational capabilities. Excellent references on the methodology have
been provided by Gelfand & Smith (1990), Casella & George (1992), Gelman &
Rubin (1992), Chib & Greenberg (1995) and Gilks et al. (1996). The Gibbs
sampler is used in conjunction with the M-H algorithm to make inference and to
make predictions. The strategy is described in this section.

5.1 Model and algorithm

The joint posterior density of s, r 2 , C , q and ,̧ given the sample, Y, can be
obtained easily from combining the likelihood with the prior. The MCMC
algorithm proceeds as follows.

Step 1. Generate s i given r 2 , C , q , ¸ and Y from

Nmi ( s Ã i, r
2( +

Ni

j 5 1

X ¢
i j K

2 1
ij Xij ) 2 1 ) (16)

where s Ã i is given in equation (6).
Step 2. Generate r 2 given s, C , q , ¸ and Y from the inverse gamma distribution

IG ( n

2
,

S(s, C , q , )̧

2 ) (17)

where S(s, C , q , ¸) 5 R r
i 5 1 R Ni

j 5 1 (Y (k i)
i j 2 Xi j s i) ¢ K 2 1

i j (Y ( k i)
i j 2 Xi j s i) and n 5 R r

i 5 1

R Ni
j 5 1 pi j.

Step 3. Generate C given s, r 2 , q , ¸ and Y using the M-H algorithm, where

f( C )µ p ( C , q , ¸) ( *
r

i 5 1

*
Ni

j 5 1

½ K i j( C , q ) ½ 2 1/2 ) exp f 2
1

2r 2
S(s, C , q , ¸) g (18)

and K i j( C , q ) 5 Di j C iD ¢
i j + Ci j.

Step 4. Generate q given s, r 2, C , ¸ and Y using the M-H algorithm, where
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Bayesian analysis of a growth curve model 229

f( q )µ p ( C , q , )̧ ( *
r

i 5 1

*
Ni

j 5 1

½ K i j( C , q ) ½ 2 1/2 ) exp f 2
1

2r 2
S(s, C , q , ¸) g (19)

Step 5. Generate ¸ given s, r 2 , C , q and Y using the M-H algorithm, where

f(¸)µ p ( C , q , ¸) ½ J( k ) ½ exp f 2
1

2r 2
S(s, C , q , )̧ g (20)

½ J(¸) ½ 5 P r
i 5 1 ½ Ji( k i) ½ and

½ Ji( k i) ½ 5 {*
Ni

j 5 1

*
pij

k 5 1

½ Yi jk + Y ½ k i 2 1 , if k i ¹ 0

*
Ni

j 5 1

*
pij

k 5 1

½ Yi jk + Y ½ 2 1 , if k i 5 0

, for i 5 1, 2, . . . , r

To elaborate on Steps 3, 4 and 5 of the above algorithm, we choose the Wishart
distribution, W(( C (k)

i /Ni 2 1), Ni 2 1), as the proposal distribution, q( C (k + 1)
i ½ C (k)

i ), in
Step 3. As regards q , we ® rst transform q into q * 5 log(1 + q )/(1 2 q ) and then
apply the M-H algorithm to the following function:

g( q * ½ s, r 2 , C , ,̧ Y)µ p ( C , q *, )̧ ( *
r

i 5 1

*
Ni

j 5 1

½ K i j( C , q *) ½ 2 1/2 )
(21)

exp f 2
1

2r 2
S(s, C , q *, ¸) g ½ J( q *) ½

where ½ J( q *) ½ 5 (2e q * /(1 + eq *)2) and S(s, C , q *, )̧ is obtained from S(s, C , q , ¸) with
q replaced by (eq * 2 1)/(eq * + 1). Two normal distributions with means q *(k) , k (k)

i

and variances r 2
q *(k) , r 2

k (k)
i

are chosen as the proposal distributions, q( q *(k + 1) ½ q *(k))
and q( k (k + 1)

i ½ k (k)
i ), respectively. The values of r q *(k) and r k (k)

i
are usually chosen to

re¯ ect the conditional standard deviations of q * given s, r 2 , C , ¸ and Y, and k i

given s, r 2 , C , q * and Y, respectively. Thus, we can estimate the variances
r 2

q *(k) and r 2
k (k)

i
by the following method. Let l( q *; s, r 2 , C , ,̧ Y ) 5 log

(g( q * ½ s, r 2 , C , ,̧ Y )). At the (k + 1)th iteration, the preliminary variance estimate
of q *, r Ã 2

q * , would be the inverted sample information of l( q *; s, r 2 , C , ,̧ Y ) given
the q *(k ) value in the MCMC algorithm and likewise for r 2

k (k)
i

. After obtaining q *,
we transform q * back to q by (e q * 2 1)/(e q * + 1).

It is worth noting that for the fatigue data to be illustrated later, all observations
are considered in the same group and to have a random eþ ect in slope, i.e. r 5 1
and w 5 1. In Step 3, we ® rst decompose C into f 2 for practical calculation and
then apply the M-H algorithm to the following function:

g( f ½ s , r 2 , q *, k , Y)µ p ( f, q *, k ) ( *
r

i 5 1

*
Ni

j 5 1

½ K i j( f, q *) ½ 2 1/2 )
(22)

exp f 2
1

2r 2
S( s , f, q *, k ) g ½ J( f ) ½

where ½ J( f ) ½ 5 ½ 2f ½ and S( s , f, q *, k ) is obtained from S(s , C , q , k ) with C and q
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230 J. C. Lee & W. H. Lien

replaced by f 2 and (eq * 2 1)/(e q * + 1), respectively. The proposal distribution
q( f (k + 1) ½ f (k )), is taken as a mixture of two normal distributions, N( f (k) , r 2

f (k)) and
N( 2 f (k), r 2

f (k)). The same operation as above can be applied to specify the values
of r 2

f (k) . We transform f back to C by f 2 after obtaining f.
So far, we have considered running only one chain, but multiple chains are

permissible. In fact, comparing several seemingly converged chains might reveal
genuine diþ erences if the chains have not yet approached stationarity, and so it is
reasonable to simulate multiple chains. Gelman & Rubin (1992) suggested using
`overdispersed’ starting values in multiple chains to assist in assessing convergence.
Overdispersed starting points are an important design feature because starting far
apart can make the lack of convergence apparent and, for the purpose of inference,
ensure that all major regions of the target distribution are represented in the
simulations.

After suý ciently long burn-in iterations, we can use the remaining samples to
estimate the functional of the parameters in which we are interested.

5.2 Forecast

Now we implement the above algorithm with R chains and M iterations for each
chain. Once a R 3 (M 2 K) array of values is obtained from the MCMC runs,
dropping the R 3 K burn-in samples out, the functional, such as estimators and
percentiles of the future values, can be computed.

Assuming that c 5 0, we have y ( k l)
lk 5 l 2.1 + n for given Ylk , where

n ~ Nq(0, r 2K *22.1), and from equation (2),

ylkh 5 {( k l y
(k l)
lkh + 1)1/ k l , if k l ¹ 0

exp(y ( k l)
lkh ), if k l 5 0

, for h 5 1, 2, . . . , q (23)

where ylkh is the hth component of ylk . To obtain the prediction of the future values,
ylk , we consider two cases:

Case 1. k l ¹ 0,

ylkh 5 [ k l( l 2.1.h + n h) + 1]1/ k l (24)

Case 2. k l 5 0,

ylkh 5 exp( l 2.1.h + n h) (25)

where ylkh , l 2.1.h and n h are the hth component of ylk , l 2.1 and n , respectively, and
l 2.1 is given in equation (11). Let l (s,t)

2.1 and K *(s,t)
22.1 denote the functional (11) evaluated

at the sth chain and tth replication of the MCMC runs and n (s,t ) is generated from
Nq(0, r 2(s,t)K *(s,t)

22.1 ), then we can get the predicted value of ylk by computing the
functional (24) and (25) with k l, l 2.1.h and n h replaced by k (s,t)

l , l (s,t)
2.1.h and n (s,t)

h . It
means that we predict ylk by

yÃ lk 5
1

R
+
R

s 5 1

y (s)
lk (26)
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Bayesian analysis of a growth curve model 231

Table 1. Fatigue crack growth data from Bogdanoþ & Kozin (1985) (million cycles)

Path 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

1 0.9 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64
2 0.9 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 1.60
3 0.9 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 1.58 1.77
4 0.9 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 1.55 1.73
5 0.9 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 1.55 1.71
6 0.9 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 1.31 1.68
7 0.9 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 1.52 1.66
8 0.9 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39 1.49 1.62
9 0.9 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72

10 0.9 0.92 0.96 1.00 1.04 1.08 1.13 1,19 1.26 1.34 1.42 1.52 1.67
11 0.9 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65
12 0.9 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 1.37 1.48 1.64
13 0.9 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 1.31 1.40 1.52
14 0.9 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 1.30 1.37 1.45
15 0.9 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 1.33 1.40 1.49
16 0.9 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.40
17 0.9 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20 1.24 1.32 1.38
18 0.9 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35
19 0.9 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.20 1.25 1.31
20 0.9 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29
21 0.9 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 1.18 1.22 1.27

(a) original fatigue crack data (b) data after taking power transformation
with k 5 2 1.59

Fig. 1. Plots of fatigue crack data.

where

y (s)
lk 5

1

M 2 K
+
M

t 5 K + 1

y (s, t)
lk (27)

and y (s,t)
lk consists of y (s,t)

lkh , h 5 1, 2, . . . , q.

6 Numerical illustration

In this section, we apply the results developed in Sections 3 and 4 to the fatigue
crack growth data from Bogdanoþ & Kozin (1985), which are unbalanced, as listed
in Table 1 and plotted in Fig. 1(a). All observations are considered in the same
group, i.e. r 5 1, and to have a random eþ ect on the slope.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
42

 2
7 

A
pr

il 
20

14
 



232 J. C. Lee & W. H. Lien

When implementing the MCMC, the convergence is monitored by examining
the measure Î RÃ proposed by Gelman & Rubin (1992). Before running the MCMC,
we locate the mode of the target distribution ® rst and estimate roughly the scale of
the target distribution near the mode. Starting points are chosen from a random
perturbation around the mode so that they are more variable than the target
distribution. There are seven independently simulated chains running in parallel,
simultaneously on two or more workstations in a network with seven diþ erent
initial values. We ran the simulations until the values of Î RÃ are all less than 1.1 or
1.2. Once the convergence is judged to be adequate, the functionals of the
parameters are summarized based on the last 1000 simulated values of each chain.

6.1 Parameter estimation

The estimates of parameters obtained via the approximate Bayesian approach are
listed in Table 2, and those summarized by the MCMC methods, including the
sample percentiles, means and standard deviations, are listed in Tables 3 and 4. It
can be seen that all the methods considered here give similar estimates for

Table 2. Comparison of parameter estimations

b 1 b 2 r 2 C q k

prior 1 2 0.15018 0.03695 0.00004 0.96769 0.52716 2 1.58983
prior 2 2 0.15019 0.03695 0.00004 0.89508 0.53259 2 1.59006
MLE 2 0.15014 0.03695 0.00004 0.93614 0.51964 2 1.59054

Table 3. Summaries of MCMC posterior disributions (prior 1)

b 1 b 2 r 2 C q k

2.5% 2 0.15251 0.03388 0.00003 0.61185 0.35862 2 1.67762
5% 2 0.15215 0.03443 0.00003 0.66837 0.38207 2 1.66292
25% 2 0.15083 0.03588 0.00003 0.95903 0.44540 2 1.62080
50% 2 0.15001 0.03686 0.00004 1.21613 0.48740 2 1.59449
75% 2 0.14916 0.03782 0.00004 1.54509 0.53367 2 1.57355
95% 2 0.14799 0.03927 0.00005 2.32800 0.59409 2 1.53184
97.5% 2 0.14760 0.03986 0.00005 2.63815 0.61459 2 1.52099
Mean 2 0.15002 0.03685 0.00004 1.31905 0.48851 2 1.59593
SD 0.00125 0.00150 0.00000 0.52202 0.06506 0.03928

Table 4. Summaries of MCMC posterior distributions (prior 2)

b 1 b 2 r 2 C q k

2.5% 2 0.15273 0.03445 0.00003 0.46298 0.36717 2 1.68643
5% 2 0.15229 0.03484 0.00003 0.50546 0.39960 2 1.66881
25% 2 0.15095 0.03604 0.00004 0.69612 0.46892 2 1.61635
50% 2 0.15009 0.03690 0.00004 083702 0.51382 2 1.59331
75% 2 0.14921 0.03777 0.00004 1.04686 0.55954 2 1.56734
95% 2 0.14800 0.03901 0.00005 1.46374 0.62202 2 1.52314
97.5% 2 0.14755 0.03945 0.00006 1.62054 0.63824 2 1.50796
Mean 2 0.15010 0.03690 0.00004 0.89818 0.51220 2 1.59367
SD 0.00131 0.00129 0.00001 0.29941 0.06710 0.04243
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Bayesian analysis of a growth curve model 233

Table 5. Comparison of the various approximate percentiles of the
marginal density of b 1

prior 1 prior 2

Bayesian MCMC Bayesian MCMC

2.5% 2 0.15257 2 0.15251 2 0.15261 2 0.15273
5% 2 0.15218 2 0.15215 2 0.15221 2 0.15229
25% 2 0.15100 2 0.15083 2 0.15102 2 0.15095
50% 2 0.15018 2 0.15001 2 0.15019 2 0.15009
75% 2 0.14936 2 0.14916 2 0.14936 2 0.14921
95% 2 0.14818 2 0.14799 2 0.14816 2 0.14800
97.5% 2 0.14779 2 0.14760 2 0.14777 2 0.14755

Table 6. Comparison of the various approximate percentiles of the
marginal density of b 2

prior 1 prior 2

Bayesian MCMC Bayesian MCMC

2.5% 0.03427 0.03388 0.03436 0.03445
5% 0.03471 0.03443 0.03478 0.03484
25% 0.03603 0.03588 0.03606 0.03604
50% 0.03695 0.03686 0.03695 0.03690
75% 0.03787 0.03782 0.03784 0.03777
95% 0.03920 0.03927 0.03913 0.03901
97.5% 0.03963 0.03986 0.03955 0.03945

s 5 ( b 1 , b 2) ¢ , r 2 , q , and k but the estimates using diþ erent priors are somewhat
diþ erent for the other components of the covariance structure. Prior 1 gives
estimates close to those by the ML method and puts more weight on the variation
from random eþ ects than prior 2.

Figure 1(b) is the plot of the data after taking the power transformation with k

being 2 1.59, and it reveals that the linearity assumption is satis® ed after applying
the adequate power transformation on observations. It also exhibits an obvious
random eþ ect in slope. For s , the comparison for the various percentiles of the
marginal densities of b 1 and b 2 , obtained by the approximate Bayesian method,
with those estimates from the MCMC methods, is given in Tables 5 and 6, and
Fig. 2. They all show that the two diþ erent approximate marginal densities of b 1

and b 2 obtained via the approximate Bayesian approach and the MCMC methods
are nearly the same. The 95% posterior regions for s constructed by the Bayesian
approach derived in this paper and the corresponding con® dence region by the
ML method are plotted in Fig. 3. The posterior region constructed using prior 1
is slightly larger than that by the ML method and the region constructed using
prior 2 is the largest. Table 7 is a comparison of the coverage probability for s in a
balanced case in which r 5 1 and pi j 5 10. It is clear that the coverage probability
by each method considered here becomes closer to 0.95 as the sample size N
increases. Generally speaking, prior 1 performs much better than prior 2 and the
ML method.

6.2 Prediction of future values

We will consider both balanced and unbalanced cases. Two types of prediction
problems are considered here for the balanced subset of fatigue crack data with
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234 J. C. Lee & W. H. Lien

Fig. 2. Graphical comparison of Tables 5 and 6.

Fig. 3. 95% posterior and con® dence regions for s 5 ( b 1, b 2) ¢ .

pi j 5 10: conditional prediction and extended prediction. The goal of both problems
is to predict yip , i Î 1, 2, . . . , N, and we use two criteria, the mean absolute deviation
(MAD) and the mean absolute relative deviation (MARD) of the predictions from
the actuals, as the measure of the predictive accuracy to compare the performances
of diþ erent prediction methods.
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Bayesian analysis of a growth curve model 235

Table 7. Comparison of coverage probabilities (1 2 a 5 0.95)

Prior 1 Prior 2 MLE

N 5 10 0.9165 0.8780 0.8960
N 5 20 0.9275 0.9100 0.9150
N 5 30 0.9315 0.9160 0.9225

The presumed parameters are given as:

s 5 ( 2 0.15

0.0373), r 2 5 0.00003, C 5 1.1, q 5 0.4, k 5 2 1.45,

X 5 ( 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 ) ¢

D 5 (1 2 3 4 5 6 7 8 9 10) ¢

and the number of replications is 2000.

In the conditional prediction we use the leave-one-out procedure as described
in Lachenbruch (1975) and Rao (1987) or the cross-validation of Stone (1974),
and the predictive sample ruse of Geisser (1974, 1975) and Lee & Geisser (1975).
It means that the last point of each vector measurement is taken out as the true
future value to be predicted each time. Although not shown, all predictors have
similar errors.

When comparing the accuracy of extended prediction, we consider the one-step-
ahead forecasts using the pseudo-cross-validation approach, which is in the spirit
of the cross-validation and predictive sample reuse mentioned above. This process
is addressed by using all the observations from all paths before the point being
forecast in our samples. Table 8 shows the MAD and MARD of all methods
including the MCMC. Generally speaking, they all perform similarly. Moreover,
compared with the approximate Bayesian and the ML method, the MCMC
methods does not render any signi® cant improvement in predictive accuracy.

For the unbalanced data set, we consider only extended prediction. In addition,
the prediction will be made using the most recent eight observations from the point

Table 8. Comparison of predictive accuracy in extended prediction I*

Approximate Bayesian MCMC
Point being Point used to
forecast forecast Prior 1 Prior 2 MLE Prior 1 Prior 2

6 1 ~ 5 MAD 0.00681 0.00688 0.00686 0.00702 0.00683
7 1 ~ 6 0.00626 0.00633 0.00628 0.00623 0.00619
8 1 ~ 7 0.00797 0.00795 0.00800 0.00800 0.00793
9 1 ~ 8 0.01156 0.01160 0.01148 0.01131 0.01132

10 1 ~ 9 0.00744 0.00725 0.00747 0.00738 0.00719
Average 0.00801 0.00800 0.00802 0.00799 0.00789

6 1 ~ 5 MARD 0.00630 0.00637 0.00635 0.00649 0.00631
7 1 ~ 6 0.00555 0.00561 0.00556 0.00552 0.00549
8 1 ~ 7 0.00678 0.00677 0.00681 0.00681 0.00675
9 1 ~ 8 0.00897 0.00900 0.00891 0.00880 0.00879

10 1 ~ 9 0.00557 0.00542 0.00559 0.00553 0.00559
Average 0.00663 0.00663 0.00664 0.00663 0.00658

*for the balanced subset
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236 J. C. Lee & W. H. Lien

Table 9. Comparison of predictive accuracy in extended prediction II*

Approximate Bayesian
Point being Point used to
forecast forecast Prior 1 Prior 2 MLE

9 1 ~ 8 MAD 0.00725 0.00729 0.00762
10 2 ~ 9 0.00741 0.00727 0.00740
11 3 ~ 10 0.00799 0.00796 0.00773
12 4 ~ 11 0.01164 0.01156 0.01198
13 5 ~ 12 0.01684 0.01616 0.01702
Average 0.01023 0.01005 0.01035

9 1 ~ 8 MARD 0.00565 0.00568 0.00596
10 2 ~ 9 0.00555 0.00543 0.00555
11 3 ~ 10 0.00594 0.00593 0.00572
12 4 ~ 11 0.00774 0.00767 0.00792
13 5 ~ 12 0.01070 0.01026 0.01081
Average 0.00712 0.00699 0.00719

*using the most recent 8 observations as samples (unbalanced)

of being forecast as the samples in the pseudo-cross-validation process. Since the
approximate Bayesian and the MCMC methods are about the same for predictive
accuracy in the balanced case, only the approximate Bayesian approach and the
ML method will be compared in this case. Table 9 lists the comparison of predictive
accuracy. It shows that all three methods are somewhat comparable, although the
approximate Bayesian approach with prior 2 is better.

7 Concluding remarks

The Bayesian methods presented in this paper, including the approximate Bayesian
and Bayesian via MCMC methods, provide alternative ways for dealing with the
growth curve model having random eþ ects and AR(1) dependence while applying
the Box± Cox transformation on the observations. From the analysis in Section 6
it is evident that model (1) is useful in forecasting the fatigue crack length
growth data.

It is worthwhile noting that the proposed approximate Bayesian method can be
quite useful in analysing the growth curve data when the prior is properly chosen.
Moreover, the situations in which no transformation is needed and no random
eþ ect exists can be treated as special cases of the model (1). Therefore, the results
are also useful for those situations. Of course, the MCMC methods outlined in
this paper will be useful for data in which the appropriate Bayesian method is not
adequate.

Finally, we also analysed the fatigue crack length data using model (1) assuming
that all observations have random eþ ects both in intercept and in slope. The model
is bad at the prediction accuracy. Thus, we know that proper modelling is important
for prediction purposes.
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Appendix

Some results derived based on the maximum likelihood method.

A. Parameter estimation

Through the fact that

max
s, r 2, C , q ,¸

L(s, r 2 , C , q , ¸) 5 max
C , q ,¸,s

max
r 2 ½ C , q ,¸

L(s, r 2 , C , q , ¸) (A.1)
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238 J. C. Lee & W. H. Lien

the MLEs of the parameters s, r 2 , C , q and ¸ for model (1) can be given as:

s Ã i 5 ( +
Ni

j 5 1

X ¢
ij K Ã

2 1
ij Xi j ) 2 1 ( +

Ni

j 5 1

X ¢
i j K Ã

2 1
ij Y (k Ã i)

ij ) (A.2)

r Ã 2 5
1

n f +
r

i 5 1

+
Ni

j 5 1

(Y (k Ã i)
i j 2 Xi j s Ã i) ¢ K Ã 2 1

i j (Y ( k Ã i)
i j 2 Xi j s Ã i) g (A.3)

where n 5 R r
i 5 1 R Ni

j 5 1 pi j, K Ã i j 5 Dij C Ã iD ¢
ij + CÃ i j and CÃ ij 5 ( q Ã ½ a 2 b ½ ), a, b 5 1, 2, . . . , pij. It is

noted that

( C Ã , q Ã , Ã̧ ) 5 argmax
C , q ,¸

[r Ã 2( C , q , ¸)] 2 1/2 ( *
r

i 5 1

*
Ni

j 5 1

½ K i j( C , q ) ½ 2 1/2 ) ½ J( k ) ½ (A.4)

where ½ J(¸) ½ is the Jacobian of the power transformation as de® ned in equation
(20), and r Ã 2( C , q , ¸) is the r Ã 2 given by equation (A.3) with C Ã , q Ã and Ã̧ replaced by
C , q and ,̧ respectively.

Since

s Ã i ½ r 2 , C , q , ¸ ~ Nmi ( s i, r
2( +

Ni

j 5 1

X ¢
i j K

2 1
i j Xi j ) 2 1 )

a 1 2 a con® dence region for s i is approximately constructed as

1

r 2
( s i 2 s Ã i) ¢ ( +

Ni

j 5 1

X ¢
i j K

2 1
i j Xi j ) ( s i 2 s Ã i) < v 2

mi
(1 2 a )

where v 2
mi

(1 2 a ) is the 100(1 2 a )th percentile of the v 2 distribution with mi degrees
of freedom.

B. Prediction of partially observed future values

With the same assumption as described in Section 4, the estimators, s Ã l, r 2, C Ã l, q Ã l and
k Ã l are obtained from equations (A.2), (A.3) and (A.4) with Y 5 (Y1 , Y2 , . . . , YN). We
can predict the q-dimensional future value of the kth measurement in the lth group,
ylk , as the following:

yÃ lk 5 {{1 + k Ã l[xs Ã l + X Ã 21 X Ã 2 1
11 (Y ( k Ã l)

lk 2 Xlk s Ã l)]}
1/k Ã l where k Ã l ¹ 0

exp[x s Ã l + X Ã 21 X Ã 2 1
11 (Y (k Ã l)

lk 2 Xlk s Ã l)] where k Ã l 5 0
(B.1)

where X 5 ( X ij), i, j 5 1, 2, is the same as the K * de® ned in equation (11) with C l

and k l replaced by C Ã l and k Ã l, 1 5 (1, 1, . . . , 1) ¢ , a q 3 1 vector. When q 5 1, a 1 2 a

predictive interval for ylk is given as yÃ lk 6 z(a /2) r Ã ylk
, where z(a /2) is the

100 3 (a /2)% point of the standard normal distribution and

r 2
ylk 5 [h ¢ (l 2.1)] ´ r 2 ´ [ X 22.1 + HW 2 1H ¢ 2 2 X 21 X 2 1

11 XlkW 2 1H ¢ ] (B.2)

is the variance of the forecast error, H 5 x 2 X 21 X 2 1
11 Xlk , W 5 R Ni

j 5 1X ¢
l j X

2 1
11 Xl j,

l 2.1 5 x s Ã + X 21 X 2 1
11 (Ylk 2 Xlk s Ã l), and h ¢ (u) 5 (1 + k lu)(1 2 k l)/k l.
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