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Abstract

We develop an algorithm to identify invariant curves efficiently. In dynamical systems, it helps do continuations of branches
of quasi-periodic solutions smoothly in bifurcation diagrams. Several examples are demonstrated to provide the numerical
evidence for the versatility of the algorithm. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that, in a dynamical system, the bifurcation diagram from steady-state solutions to branches
of periodic solutions can be smoothly developed by the local theory and the continuation method. Due to the
non-recurrence of quasi-periodic solutions along with some theoretic and computational difficulties (detailed later),
a further continuation from a branch of periodic solutions to a new branch of quasi-periodic solutions is always a
big challenge (in particular, for high-dimensional systems). There are two nontrivial key problems involved, one is
searching for a proper starting point for the new branch; the next one is, for each parameter in this new branch, to
find out the corresponding quasi-periodic solution; in other words, to identify an invariant torus (or curve). The first
problem can be approached rather technically and case by case. The second one may be solved by algorithms (e.g.
[3–5,7,8]). Of course, in order to complete the entire branch smoothly, one must make sure that the applied algorithm
works in each and every parameter in this interval of parameters. From our experience, some algorithms cited above
are truly excellent under a fixed generic parameter, but they do have their own problems in doing the continuation
when the parameter varies (as commented in [3–6] and some detailed later). In fact, we have tried, in many ways
and for some long time, to complete the continuation for certain high-dimensional non-autonomous system (i.e.
Section 3.2). Thanks to Kaas-Petersen [3] and Kevrekidis et al. [4], we adopt and modify their ideas to create a new
one, which, roughly speaking, has a smaller size (in doing computation of an invariant torus at a fixed parameter)
and a better structure (to be more stable in doing continuation of the branch in varying parameters). In this paper, we
provide two different formulations for our algorithm, parameterized by polar coordinate and arc length coordinate,
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respectively, to search for invariant tori, one of them is particularly good and convenient for high-dimensional cases.
We also suggest an simple and direct idea to see how to determine the possibly least amount of nodes2 to start
with our algorithm for each fixed parameter. As demonstrated in Section 3, our algorithm succeeds in search for
T 2-invariant sets in a more powerful, versatile, less cost and weakness manner as illustrated by the results and the
comparisons shown; moreover, it accomplishes the entire continuation process for Section 3.2. Indeed, it has been
tested to be able to work very nicely for the general problems.

2. Algorithms for identifying invariant curves

For dynamical systems restricted to a Poincaré section, flows are reduced to a map, and invariant tori become
invariant curves. Here, we concentrate on how to identify invariant curves for maps.

First, we briefly review the method by Kevrekidis et al. [4]. In polar coordinates, letF(θ, x) = (g(θ, x), f (θ, x))

be a map onS1 × R whereθ ∈ S1 = [0, 2π) andx ∈ R. If a curver(θ) is invariant underF , then we have

r(g(θ, r(θ))) = f (θ, r(θ)). (1)

In principle,r(θ) can be derived by solving the equation. Numerically, we consider a discretization{(θi, r(θi))}Ni=1
of the graph ofr(θ). Denote the image of these points underF by (θ̃i , r̃i ) = F(θi, r(θi)). The points constitute a
discretization of̃r(θ), the image of the graph ofr(θ). We might consider the two functions to be “close” ifr̃(θi) is
nearr(θi) for eachθi , i = 1, . . . , N . Since we know only the information ofr̃(θ) at θ = θ̃i , i = 1, . . . , N , and,
in general, thẽθi does not coincide with any of theθj , we must obtain an estimateρ(θi) of r̃(θi) by interpolation
(e.g., through splines). Kevrekids [4] solves (1) in the form

r(θi) − ρ(θi) = 0, i = 1, 2, . . . , N, ρ = Ipo({(θ̃i , r̃i )}Ni=1), (2)

and Ipo(·) denotes the operator of interpolation. We notice that there areN independent nodesθi used in the system
which are distributed along the entirer(θ), the system (2) is clearly big.

Kaas-Petersen [3] realizes that if the rotation number3 of r, sayωr , is not zero, i.e.,ωr > 0, then, generically,
any point onr will iterate dense image underF , and one can pick some moderate iteration points to interpolate the
whole curve. With this concept, Kaas-Petersen solves (1) in the form

r(θ∗) − ρ(θ∗) = 0, ρ = Ipo({(θ̂i , r̂i )}mi=1), (θ̂i , r̂i ) = FSi (θ∗, r(θ∗)), i = 1, 2, . . . , m. (3)

As detailed in [3], the way to choose the numbers of iterations{Si}mi=1 is, essentially, to make sure that all of(θ̂i , r̂i )

are close enough to(θ∗, r(θ∗)) in order to produce a better interpolationρ of r nearr(θ∗), and the total amount of
iterates needed to achieve this goal is much dependent on the rotation number ofr. Here, there is only one generating
angle nodeθ∗ in the system, so the dimension of (3) is much smaller than that of (2). Yet, by observing, one may
need a lot of iterates to determine{Si}mi=1 before doing interpolation.

In our opinion, among those we cited above, the algorithms of (2) and (3) in [3,4] are most easily utilized and
with simpler structures. For dynamical systems at a generic fixed parameter, the two algorithms work well in all
stable, unstable and mixed cases. On the other hand, when the parameter varies in the progress of the continuation
of branches of the quasi-periodic solutions, the rotation number of the corresponding invariant curve may change
smoothly. If it meets the KAM condition,4 then as indicated in [3], the continuing process of (3) will be interfered

2 Variables of points that generate a curve by interpolation.
3 See definition in [2].
4 When the rotation number is close to a rational number with small numerator and denominator.
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since the amount of iterates needed to recover the curve (i.e., the determination of{Si}mi=1) may be beyond the
computers’ capacity, and the rounding error also becomes a big problem. Consequently, in doing the continuation,
the algorithm of (2) seems more adequate. While the system (3) is much smaller in size, (2) has a much simpler
structure (i.e., without the factor{Si}mi=1). We try to reduce the size of (2), meanwhile to improve the structure of (3).

Recall the fundamental concept in [3] that, under the iteration of mapF , the image of any point or segment on
r will wind around the curve again and again. Lety be a point onr, y = (θ1, r(θ1)), F(y) means its image under
F , i.e.,F(y) = F(θ1, r(θ1)). Denote the segment of graph ofr between these two pointsy andF(y) by [y, F (y)],
andκ is the maximum integer less than or equal to 1/ωr whereωr is the rotation number ofr (for the caseωr = 0,
see Section 3.3 for further argument). Note that

r = [y, F (y)] ∪ [F(y), F 2(y)] ∪ · · · ∪ [Fκ(y), F κ+1(y)], (4)

where [Fj (y), F j+1(y)] is the j th times of iteration image of [y, F (y)] underF . Since any portion ofr can be
reached by iterates of [y, F (y)], the segment [y, F (y)] might be regarded as a generator of the entire curver. Note
that the role of the pointr(θ∗) in (3) has been replaced by the segment [y, F (y)], and the interpolation on the entire
r in (2) is now substituted by interpolating only on this generator [y, F (y)] of r.

In R2, we consider a discretization{(θi, r(θi))}M+1
i=1 of the segment [y, F (y)] where (θM+1, r(θM+1)) =

F(θ1, r(θ1)). Denote the image of these points underFκ andFκ+1 by (θ̄i , r̄i ) = Fκ(θi, r(θi)), i = 1, 2, . . . , M,
(θ̄i+M, r̄i+M) = Fκ+1(θi, r(θi)), i = 1, 2, . . . , M + 1. These 2M + 1 points constitute a discretization of
[Fκ(y), F κ+2(y)], and, as illustrated in Fig. 1, the angular interval between the initial and terminal points covers
that of [y, F (y)], i.e., [θ̄1, θ̄2M+1] ⊃ [θ1, θM+1]. Thus, we can obtain an interpolation functionρ(θ), θ ∈ [θ1, θM ],
in [Fκ(y), F κ+2(y)]. Now, (1) is solved in a similar form

r(θi) − ρ(θi) = 0, i = 1, 2, . . . , M, ρ = Ipo({(θ̄i , r̄i )}2M
i=1). (5)

SinceM ≤ N/(κ − 1), the dimension of the system (5) is much smaller than that of (2). A majority of thoseN

nodesr(θi) in (2) has been substituted by iterates of the others according to the winding property (4), which also
guarantees that the efficiency of (5) is at least as good as that of (2). On the other hand, a single noder(θ∗) in (3)
has been replaced by{r(θi)}Mi=1 on [y, F (y)], a key point that the entire curver now can be recovered in a finite

Fig. 1. The curver is regarded invariant when the differencesri − ρi (the bold lines) at the discretization{θi}Mi=1 of [y, F (y)] (the dashed
segment) are all zero. HereM = 2, for simplicity.
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number of iterates regardless of the KAM condition, contrary to the uncertainty for the determination of{Si}mi=1 in
(3) when the KAM condition is present. In comparison with (3), the size of (5) is clearly larger, yet, in practical
tracing for continuation of tori, the cost is well under control.

Notice that the above algorithms are all inR2 and formulated in polar coordinates. Such polar forms impose a
geometric constraint to the curver(θ). In the algorithm of (2),r(θ) is not allowed to intersect more than once with
the radial lineθ = θc for eachθc in [0, 2π). For the algorithm of (5), the requirement is relieved to be constrained
only to the intervalθc ∈ [θ1, θM ], and the algorithm of (3) seems to have even less constraint. The geometry inR2

under polar coordinates is clear and precise, so are those algorithms and the corresponding constraints. For the case
in Rn, n > 2, the formulations of (2), (3) and (5) are parameterized in a single-angle coordinateθ , everything we
mentioned now becomes ambiguous since the angleθ in Rn, n > 2, has to be well defined before anything can be
carried on. To describe and apply the algorithms correctly without ambiguity, one must find a suitable origin and a
two-dimensional planeH such thatr and its projectionπ(r) onH is 1–1 correspondent, in which case the curver

in Rn can be parameterized in terms of polar coordinates ofπ(r) on H . Then everything follows just like that in
R2. Unfortunately, to carry out this entire transformation becomes a troublesome and unreliable job. Along with the
problem of interpolation error (as detailed in the followings), these factors could possibly destroy the stability of
the convergence process. Motivated by eliminating such problems brought by a single-angle coordinateθ , we now
apply the arc length parameterization to reformulate our idea inRn in (6), which indeed gives a solid improvement
in the versatility of our algorithm in high-dimensional spaces, as seen in Section 3.2.

Suppose that{y∗
i }M+1

i=1 is a discretization of the segment [y∗
1, F (y∗

1)] in an invariant curver wherey∗
M+1 = F(y∗

1).
For i = 1, . . . , M, Hi is a hyperplane in the Poincaré section which transverses tor at y∗

i . In a neighborhood of
(y∗

1, y∗
2, . . . , y∗

M), say,(Nδ(y∗
1)∩H1)× (Nδ(y∗

2)∩H2)×· · ·× (Nδ(y∗
M)∩HM), we define a system of vector-valued

functions{Qi (y1, y2, . . . , yM)}Mi=1 such that

Q1(y1, y2, . . . , yM) = ρ ∩ H1, Q2(y1, y2, . . . , yM) = ρ ∩ H2, . . . ,

QM(y1, y2, . . . , yM) = ρ ∩ HM, ρ = Ipo
(
{Fκ(yi )}Mi=1 ∪ {Fκ+1(yi )}Mi=1

)
. (6)

Clearly,{y∗
i }Mi=1 is a fixed point solution of the systemQi (y1, y2, . . . , yM) = yi , i = 1, . . . , M. For further use, we

denoteȳ = {yi}Mi=1, ȳ∗ = {y∗
i }Mi=1, Q̄(ȳ) = {Q1(ȳ) − y1, Q2(ȳ) − y2, . . . , QM(ȳ) − yM}.

Another important factor which may interfere with the convergence process of (3), (5) and (6) is the interpolation
error. It will be the best policy if a least yet sufficient amount of nodes in moderate intervals can be well chosen such
that the system could correctly lock the true invariant curve (not a spurious one) for a small range of interpolation
error. Here, we propose a simple direct criterion for such mesh adjustment (an idea which has often arisen in
the course of error estimate for interpolation) as follows. In system (6), letϑ = Ipo({y∗

i }M+1
i=1 ) andy∗

i = ϑ(µi),
i = 1, . . . , M + 1. Suppose thatFκ(y∗

i ) = ρ(τi), i = 1, . . . , M, Fκ+1(y∗
i ) = ρ(τi+M), i = 1, . . . , M + 1. Let

τ̄j = 1
2(τj + τj+1), j = 1, . . . , 2M andρ+ be the curve interpolated from{Fκ(y∗

i )}Mi=1 ∪ {Fκ+1(y∗
i )}M+1

i=1 with
splines one order higher thanρ. We determine whether or not to add or delete certain interpolating nodes by keeping
the error of interpolation under prior given thresholds, i.e., we check the deviations betweenρ andρ+, 5

Dj = max{d(ρ(τ̄j ), ρ
+(τ̄j )), d(ρ(τ̄j+M), ρ+(τ̄j+M))}, j = 1, . . . , M.

If Dj exceeds the maximum threshold, then a new node with initial positionϑ(1
2(µj + µj+1)) is added to the

interpolating node set̄y. If Dj andDj+1 are both below the minimum threshold, then the nodeyj is deleted from
ȳ. The whole scheme is performed in Section 3.2 and the outcome is quite satisfactory.

5 d(x, y) means the distance betweenx andy.
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In doing continuation of the entire branch of the quasi-periodic solutions, the stage from parameter valueαk to
the next valueαk+1 proceeds as follows. Suppose that, at thekth step, a solution̄y = ȳ∗

k of Q̄(ȳ, αk) = 0 in system
(6) is derived (which is understood to represent one invariant curve at the parameter valueαk), then we evaluate
the deviations{Dj }Mj=1 first; if someDj exceeds the given threshold, then a refinement for the interpolating node
set ȳ must be done before passing to the next step for the valueαk+1. The refinement intends to keep the error
of interpolation under control to assure that the continuation process proceeds uninterruptedly, and is derived as
follows: (i) according to our mesh adaptation criterion, add or delete some nodes inȳ to create a new set, sayỹ, with
its valuesỹ∗

k ; (ii) construct new hyperplanes̃Hi , i = 1, . . . , which must properly transverse the interpolated curve
Ipo(ỹ∗

k); (iii) correct the new discretizatioñy∗
k by one additional Newton’s method for the root ofQ̃(ỹ, αk) = 0;

(iv) repeat the above process (i)–(iii) and stop at the last refined discretization, sayỹ∗∗
k , where all deviationsDj ,

j = 1, . . . , are now between the prior given maximum and minimum thresholds. Then, for the(k + 1)th step, a
solution atαk+1 will be derived with the initial guess̈yk+1 in

ÿk+1 = ỹ∗∗
k + h

[
dQ̃(ỹ∗∗

k , αk)

dỹ

]−1(
−dQ̃(ỹ∗∗

k , αk)

dα

)
, (7)

whereh = αk+1 − αk is the step size. This formula (7) is part of the standard algorithm of continuation method for
bifurcation diagrams.

3. Numerical examples

For those models which have been investigated by others, we redo and summarize all the results with comparisons.
A brief demo program of the algorithm of (5) is given in Appendix A.

3.1. A map

Consider the map (7) in [4]:

θn+1 = θn + ω, xn+1 = λxn(1 − xn) + ε cosθn,

whereλ, ε andω are parameters. For this model, we make a comparison between the algorithms of (2) and (5).
For stability analysis, algorithm of (3) works well (since the rotation number is fixed atωr = ω/2π , not a KAM
condition), and the eigenvalues of its Jacobians can be calculated.

3.1.1. Case 1:λ = 3.46, ω = π(
√

5 − 1)

As evaluated in Fig. 4 of [4], there are two attracting period 2 and one unstable period 1 invariant curves. The
unstable case is nontrivial, so we test the case withε as the varying parameter.

As in Fig. 2 and in Table 1, 160 evenly distributed nodes for discretization have been used for the computation6

in [4]. Here, forκ = 4, it needs no more than 55 nodes (in fact, only 20 nodes) to get results of the same level in
the computation of (5).

3.1.2. Case 2:λ = 2.5, ω = 0.5
There are only attracting curves and stability analysis is thus trivial. Compared to Fig. 6 in [4], our algorithm of

(5) still works even that curve 8 is highly jagged as depicted in Figs. 3 and 4 and in Table 2.

6 See the caption in Fig. 4 of [4].
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Fig. 2. Invariant curves 1–6 of Case 1 plotted forθ ∈ (0, 2π) on thex-axis.

Table 1
Data for each invariant curve in Fig. 2

No. ε M nodes r(0) Eigenvalue of [2]

1 0.001 20 0.7117199 −464872.32
2 0.022 20 0.7266202 −374527.30
3 0.062 20 0.7520316 −78200.64
4 0.094 20 0.7693318 −1357.00
5 0.110 20 0.7764683 −34171.94
6 0.115 20 0.7780265 −540.46
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Fig. 3. Invariant curves 1–8 of Case 2 plotted forθ ∈ (0, 2π) on thex-axis.

3.2. The 2-mode truncated sine-Gordon ODE

For theN -mode truncated damped, driven sine-Gordon ODE (see a brief introduction in Appendix B), the
constructions of the Poincaré maps consume heavy computing, and the computers’ capacity will be eventually
incapable of doing further work such as approaching invariant curves. Indeed, the initial motivation to develop
our algorithm is trying to identify and continue the invariant sets for the entire branch. In this example, we apply
algorithm of (6) to demonstrate its feasibility and efficiency, and, at the same time, test our criterion for mesh
adjustment.
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Fig. 4. The exact detailed graph of the curve 8 in Fig. 3 in 1500 iterates in(x, y)-coordinate. The bold line is the part actually interpolated in
our program (the interpolation error can be seen).

ForN = 2, (B.1) yields that

ä0 + 0.04ȧ0 = −
√

12J0

(
a1√

6

)
sin

(
a0√
12

)
− Γ

√
12 cos(0.87t),

ä1 + 0.04ȧ1 = −
(

2π

12

)2

a1 − 2
√

6J1

(
a1√

6

)
cos

(
a0√
12

)
, (8)

whereΓ is the parameter, andJ0, J1 are the Bessel functions. Here, for conventional reason (e.g., see [1]),ω =
0.87, α = 0.04, L = √

12. Let b0(t) = ȧ0(t), b1(t) = ȧ1(t), then (8) is reduced to a system of first-order

Table 2
Data for each invariant curve in Fig. 3

No. ε M nodes r(0)

1 0.01 5 0.6064263
2 0.10 12 0.6601657
3 0.20 12 0.7133255
4 0.25 13 0.7338592
5 0.30 15 0.6989777
6 0.32 16 0.6991233
7 0.33 17 0.8069227
8 0.341875 27 0.8844668
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Fig. 5. Projection of invariant curves on thev1, v2-plane (horizontal:v1-direction; vertical:v2-direction), wherev1 = (1, 0, 1, 0),v2 = (0, 1, 0, 1)

and the origin is(3.0384, −2.4048, 1.8238, −1.0612). Curve 2 is on a degenerate torus composed of periodic flows.

non-autonomous ODEs,




ȧ0

ḃ0

ȧ1

ḃ1


 =




b0

−0.04b0 − √
12J0

(
a1√

6

)
sin

(
a0√
12

)
− Γ

√
12 cos(0.87t)

b1

−0.04b1 −
(

2π

12

)2

a1 − 2
√

6J1

(
a1√

6

)
cos

(
a0√
12

)




.

We found a branch of invariant tori (i.e., quasi-periodic solutions) bifurcating from a periodic orbit atΓ = 0.0781873
(Hopf bifurcation). As depicted in Fig. 5 and in Table 3, a Poincaré section is set up att = 0 with its origin transversed
by the periodic orbit, and invariant tori are reduced to invariant curves.

For this model, the rotation number increases with decreasingΓ , so there are degenerate tori mixed through
the entire branch. As pointed out early, since each one of them corresponds to a KAM condition, the continuation
process of system (3) will be interrupted (of course, its stability analysis is no more valid). On the other hand, after

Table 3
A list of points on each of the invariant curves in Fig. 5

No. Coordinates ofy1 solved in system (6)

1 (3.00683697821019, −2.43138619315944, 2.03467601898394, −1.0915413683294)
2 (2.99576505316505, −2.43498059283767, 2.12181203847718, −1.1066790407384)
3 (3.03050303738719, −2.24295522350729, 2.66438056361979, −1.2396269543157)
4 (3.04822764315913, −2.12560947926463, 2.82216435886872, −1.3305490554311)
5 (3.03475790720348, −2.05256838707615, 2.86542464997452, −1.4388124240403)
6 (2.65216751991587, −2.42984790830223, 2.68526012034587, −1.6141144154183)
7 (2.64826996290989, −2.42040072083200, 2.66294858309643, −1.6285777516285)
8 (2.64010671044121, −2.40035773563487, 2.60384223466678, −1.6565491413303)
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Table 4
Data for some invariant curves including those in Fig. 5

No. Γ κ M1 M2 Stability of mapFκ+1 aty1

1 0.0778100 6 5 5 {1.041, 1.0024, 0.132, 0.12721}
2 0.0774334 7 8 7 {0.645± 1.01i, 0.044± 0.070i}
3 0.0720600 7 18 10 {2.33, 0.95, 0.10433, 0.042551}
4 0.0680600 8 21 11 {4.71, 1.05, 0.07071, 0.015773}
5 0.0636600 9 23 12 {5.67, 1.005, 0.0553, 0.009849}

0.0616361 10 23 11 {10.80, 1.04, 0.0401, 0.003826}
0.0602987 11 20 11 {25.38, 1.20, 0.0260, 0.001207}
0.0590661 12 20 11 {37.47, 1.15, 0.0202, 0.000630}

6 0.0582711 13 20 11 {76.09, 1.28, 0.0136, 0.000199}
7 0.0576321 14 – 11 {138.8, 1.34, 0.0097, −0.00022}

0.0571165 15 – 11 {222.0, 1.30, 0.0074, −0.00103}
0.0567745 16 – 11 {518.6, 1.63, 0.0043, −0.00317}
0.0564584 17 – 11 {883.6, 1.64, −0.0122, 0.00330}

8 0.0562991 18 – 11 {2490.1, 2.56, −0.020, 0.00151}

κ ≥ 10, system (2) needs at least 100 nodes to obtain the same results as we have done, and the dimension of its
Jacobian is much larger than ours.

In Table 4, we give a brief comparison of our programs, one is of the type (5) withM1 automatically evenly spaced
nodes, the other one is of the type (6) withM2 nodes automatically determined by our mesh adjustment criterion.
By observing, afterΓ < 0.0774334, whereκ = 7,M1 blows up rapidly due to the inflation of the invariant curves;
on the other hand,M2 amount increases slowly and tends to a constant, which does depend only on the complexity
of the geometry of the interpolation for curves. Note that, afterΓ < 0.0602987, curves 6–8 lie close to each other,
that means the dynamics of this model begins to change violently in this region of parameters (as reflected from the
stability of mapFκ+1). System (5) withM1 fails afterΓ < 0.0582711 whereκ = 13; however, system (6) with
M2 proceeds stably to at leastΓ = 0.0562991 whereκ = 18. In summary, (6) withM2 under the mesh adjustment
criterion is less interfered by the behaviors of the dynamics and works better in the sensitive region of parameters;
moreover, the above results show that a proper distribution of nodes is much more important than their amount.

3.3. Forced van der Pol oscillator

ẋ = y − α(1
3x3 − x), ẏ = −x + λ cosωt.

This is an example that cannot be accomplished by our original algorithm of (5) under the interpolation of a segment.
Fig. 6 is forα = 0.4, ω = √

0.84, andλ are given by 0.3418750, 0.3350000, 0.2798046 (in which cases, rotation
numbers of tori are all 0). On a Poincaré section, each invariant curve (reduced from the corresponding invariant
torus) contains a saddle and a sink, iterates of any points on the curve will go away from the saddle and forward to
the sink, and obviously none of iterations of any point has dense image in the entire curve. Since the algorithms of
(3) and (5) are founded on the winding property (4) (i.e., iterates of any point or segment on the curve dense in the
entire curve), it is natural that both will be improper and fail in this example. However, a simple modification of (5)
will do. Now (4) is replaced by

[y1, yM ] ⊆ [F(y1), F (yM)] ⊆ [F 2(y1), F
2(yM)] ⊆ · · · .

The key point is that the segment [y1, yM ] is chosen to contain the saddle. Let{yi}Mi=1 be a discretization on this
segment [y1, yM ], andρ be the interpolation function in [F(y1), F (yM)] whereρ = Ipo({F(yi )}Mi=1). Clearly, the
angular interval of [F(y1), F (yM)] covers that of [y1, yM ], and the functions{r(θi) − ρ(θi)}Mi=1 are therefore well
defined as before, and hence the modified algorithm is applicable to models inωr = 0 such as this one.
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Fig. 6. Smaller curves correspond to largerλ, the bold segments are actually interpolated in our program.

This famous example has been studied in [5,7]. Here, we just emphasize that the idea for interpolation on a
segment seems adequate for variety of problems.

4. Conclusion

In cooperation with Newton’s method, our algorithm has shown that it is capable and efficient in identifying
invariant torus for each fixed parameter and smoothly carry out the continuation of the entire branch of quasi-periodic
solutions in an interval of parameters as demonstrated in the SG ODE forN = 2 and other examples above. In
summary, our algorithm essentially includes the two ingredients: the main algorithm of (5) and (6) in two different
representations and the mesh adaptation criterion (for interpolating nodes). In comparison with (2), our system has
a much smaller size; in comparison with (3), our system has a much simpler and better structure. We should point
out that the criterion for mesh adaptation plays more than one role in our entire scheme. First, it helps adjust the
amount of the nodes to keep the system as small as possible. Secondly, in doing continuation, it helps make a smooth
transition in an interval of parameters with less interruption. To explain, we claim that the criterion can verify the
accuracy of the solutions derived through the techniques of interpolation, and in addition, it is capable to promote
them to higher precision, which is indeed the key for smooth transitions of the continuation. This can be seen when
one evaluates̄Q in (6). According to the rule, the value of each node is iterated (underF ) for κ + 1 times, and it is
possible that, for models with violent dynamics, the iterated discretization{Fκ(yi )}Mi=1 ∪ {Fκ+1(yi )}Mi=1 may blow
up, and, consequently, the induced interpolationρ is generally erratic (e.g., it did occur in the SG case). Trying to
avoid such a possibility, one must do precise evaluation for the initial guess (7) in each step of the continuation
process, and this can only be done in high precision ofỹ∗∗. In fact, this was the origin that enforced us to design the
criterion, and it indeed does the job (i.e., promoteỹ∗∗ to higher precision) as numerical evidences already showed
in the proceeding of system (6) in Section 3.2.

In developing a bifurcation diagram, it becomes particularly clear that stability analysis for solutions of the same
degree of freedom allows one, in principle, to approach solutions of one more degree of freedom. For example,
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stability analysis for the periodic solutions makes it possible for one to approach the dynamics of the quasi-periodic
flows (or, equivalently,T 2-invariant tori) starting from a Hopf bifurcation in some branch of periodic solutions.
Naturally, from this aspect, one might be able to approach and investigate much more complicated high-dimensional
tori if one can do stability analysis forT 2-invariant tori, which is still open. We have tried and designed many
numerical experiments for our algorithm for analyzing the stability ofT 2-invariant tori, though not much has been
achieved, we believe that it is important and still put a lot of effort in this subject.

It will be unrealistic for any attempt to develop a perfect algorithm. In our view, a good algorithm should be
very versatile in the manner that it can do the generic problems efficiently, can be easily modified to apply to the
special cases, and can contact with and help improve the investigations of other related subjects. Currently, we
are continuing the improvement of our algorithms in two directions, one is associated with the stability analysis
as mentioned above, the other one is doing numerical analysis of SG ODE forN > 2. We believe that there are
unexpected difficulties ahead both theoretically and numerically, yet it is worth to go on and try to develop a better
algorithm since, then, one might easily realize some degree of the complexity of the general dynamics.

Appendix A. Program for evaluating invariant curves

The following is a sample program written in Mathematica for the algorithm of (5):

external functions:
FFF: a defined map
ANGLE: angle in polar coordinates

global variables:
DomainDimension: dimension of the domain ofFFF
windingCYCLE: the numberκ in (5)

INTERPOLATE[pointSETList]:=
Module[{i, j, pointNUMBER= Dimensions[pointSET][[1]]},

Do[
tempFUNC[i]= Interpolation[

Table[{pointSET[[j]][[−1]],pointSET[[j]][[i]] },{j,1,pointNUMBER}]
]

,{i,1,DomainDimension}];
interpolatedFUNC[angle ] := Table[tempFUNC[i][angle],{i,1,DomainDimension}];

];
quasiFUNC[pointSETList,delta ]:=
Module[{i,j,temp,coordinates,sectionNUMBER= Dimensions[pointSET][[1]],

iteratedSECTION1= {}, iteratedSECTION2= {}},
coordinates= Table[ANGLE[pointSET[[j]]],{j,1,sectionNUMBER}];
Do[

temp= pointSET[[i]];
Do[temp= FFF[temp, delta], {j, 1, windingCYCLE}];
iteratedSECTION1= Append[iteratedSECTION1,Append[temp,ANGLE[temp]]];
temp= FFF[temp,delta];
iteratedSECTION2= Append[iteratedSECTION2,Append[temp,ANGLE[temp]]]

,{i,1,sectionNUMBER}];
INTERPOLATE[Join[iteratedSECTION1,iteratedSECTION2]];
Table[pointSET[[j]]−interpolatedFUNC[coordinates[[j]]],{j,1,sectionNUMBER}]

]
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Appendix B. Derivation of the truncated NNN -mode SG ODE

The damped, driven SG PDE is a well-known nearly integrable system (e.g. [9]) given as

uxx − utt = sinu + αut + Γ cos(ωt), u(x + L, t) = u(x, t).

The traditional Galerkin method [10] reduces the damped, driven SG PDE to theN -mode truncated SG ODE. To
briefly summarize, suppose thatej (X) = Cj cos(2jπX/L) on [−1

2L, 1
2L], j = 1, 2, 3, . . . , with the ansatz

u(x, t) =
N−1∑
j=0

aj (t)ej (x).

Substituting it into the damped, driven SG PDE yields that

äj + αȧj = aj 〈e′′
j , ej 〉 −

〈
sin

(
N−1∑
i=0

aiei

)
, ej

〉
− Γ cos(ωt)〈1, ej 〉, j = 0, 1, . . . , N − 1. (B.1)
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