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Abstract

In this paper, we first present a new variation of hypercubes, denot&@QhySQ, is obtained fromQ,, by changing some
links. SQ, is also amm-regularn-connected graph but of diameter abay#. Then, we present a generalizationSj),. For
any positive integeg, we can construct an-dimensional generalized shuffle-cube with &rtices which isz-regular and
n-connected. However its diameter can be aboig if we considerg as a constantl 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction length of the shortest path fromto v. Thediameterof
G, denoted byD(G), is maxd(u,v) |u,v € V}. The
The topology of any interconnection network for connectivityof G, denoted by (G), is the minimum
parallel and distributed systems can be representednumber of vertices whose removal leaves the remain-
by an undirected graph. For the graph theoretic def- ing graph disconnected or trivial.

initions and notations we follows Harary’s book [7]. ~ Network topology is a crucial factor for intercon-
G = (V, E) is agraphif V is a finite set anc¥ is a nection networks since it determines the performance
subsetof(a, b) | (a, b) is an unordered pair df }. We of a network. However, designing an interconnection

say thatV is thevertex seand E is theedge setThe network is a multiple-objective optimization problem.
degrea)faverte)(x, denoted by ng), is the number UsuaIIy, we want to minimize the diameter and to
of edges incident withr. A k-regular graph is a graph ~ maximize the connectivity. There are a lot of inter-
with degx) = k for any vertexx € V. A sequence of ~ connection network topologies proposed in literature.
verticesP = (xo, x1, . .., x¢) is a path fromxg to x; if Among these topologies, the-dimensional hyper-
(xi—1,x) € Efor1<i <kandx; #x; if i # j. The cube, denoted by, is one of many popular topolo-
lengthof P is k. Letu andv be two vertices o6;. The gies. Itis known thaD(Q,) =n andk (Q,) =n [11].
distancebetweenu andv, denoted by (x, v), is the However, a hypercube does not make the best use of its

hardware. It is possible to fashion networks with lower
B T— ) . ) _ diameters than that ap,, and with the same connec-
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All of these topologies have connectivityand have
diameter around/2. Thus, this is an improvement of
approximately a factor of 2. A natural question raised
is: if there is another way to change the connection of
some hypercube links to lower the diameter.

In this paper, we first present a variant of hyper-
cubes, called the shuffle-cub&),. SQ, is obtained
from Q,, by changing some links a@,,. It has connec-
tivity n and has diameter around4. Then we present
a generalization of shuffle-cubes. For any positive in-
tegerg, we can construct an-dimensional general-
ized shuffle-cube with 2vertices which is:-regular
andn-connected. Its diameter can be abayg if we
considerg as a constant.

2. Shuffle-cubes

We usen-bit binary strings to represent vertices, for
example,u = u,_1u,—2...uiug for u; € {0,1} and
0<i<n—1 We usep;(u) to denote thej-prefix
ofu,i.e.,pj() =up_1up—2...u,—;, ands;(u) thei-
suffixof u, i.e.,s; (u) =u;_1u;_2...ujug. Letu andv
be two vertices. The number of bits that are differing in
u andv is called theHamming distancbetween: and
v, denoted by:(u, v). Then-dimensional hypercube
On, consists of all of the:-bit binary strings as its
vertices and two vertices are adjacent if and only if
h(u,v) = 1. It is known thatQ, can be recursively
constructed from two copies @,_1. For this reason,
Qo is the complete graplki as the basis of the
hypercubes. We will use to denote addition with
modulo 2.

To construct shuffle-cubes, we define the following
four sets:

Voo= {1111 0001, 001Q 0011,

Vo1={0100 0101, 011Q 0111,

V10= {1000 1001, 101Q 1011,

V11 =1{11001101 1110 11113.

For ease of exposition, we limit our discussion to
n=4k+2fork > 0.

Definition 1. The n-dimensional shuffle-cub&Q,,
is recursively defined as followsSQ, is Q2. For
n > 3, SQ, consists of 16 subcub&xd''2**, where
i; €{0,1} for 1< j < 4 andpa(u) = i1izizis for all
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0011 0111 1011 11
0010 110 1 Oy/ 0
0001 /601 1001 | 771101
1
10 Y P
00 0100 1000 1100
00 01
Fig. 1.SGs.

verticesu in Sqqlizfi“. The vertices: = u,_1uy—2. ..
uiug andv = v,_1v,_2...v1vg in different subcubes
of dimensiormm — 4 are adjacent i8Q, if and only if
(1) sp—au) = sy—a(v), and

(2) pa(u) ® pa(v) € Via(u)-

For example, the vertex 111101 8¢ is linked to
the following vertices in different subcubes of dimen-
sion 2: 101101, 101001, 100101 and 100001. We il-
lustrateSQ; in Fig. 1 showing only edges incident at
vertices inS@°° and omitting others. Obviously, the
degree of each vertex &Q, is n and the number of
vertices (edges, respectively) is the same as that,of

For 1< j < k, the jth 4-bit of u, denoted by,
is defined asy = uaj1usjusaj_1usj—2. In particular,
the Oth 4bit of u, u3, is defined ag$ = uquo. uy = v}
if and only if ug;4; = vaj4; for —2 <i < 1. Thus,
similar to Hamming distance, we definebt Ham-
ming distanceébetweeru andv, denoted byza(u, v),
as the number of 4-bits with 0 < j < k such that
ufl #* vfl, i.e.,
ha(u,v) = |{j | u} # vj for 0< j <k}

Using the notion ofi4(u, v), we can redefin&Q,
as follows: The vertex and the vertex are linked by
an edge if and only if one of the following conditions
holds: .

(1) uy ®vy € V,0 for exactly onej* satisfying 1<
J* <kandu£=v£ forall0< j # j* <k.
(2) ud® 1§ € {01, 10} anduy = v; forall 1< j <k.

For example, the ten neighbors of 1011000010 in
SQg are given by 001000010, 001000010,
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0001000010, 000000010, 1011100®m, 101110010,
101110100, 101110110, 101100000, and
1011000011In other words, the vertex is adjacent
to the vertexv only if hs(u, v) = 1. The converse is
not necessarily true. For example= 0000000000 is
not adjacent ta = 0000000011 thoughy(u, v) = 1.
Thus, d(u, v) > ha(u,v) for any two verticesu, v
of SQ,.

3. Properties of shuffle-cubes

In this paper, we only discuss on the connectivity
and the diameter &Q,.

Theorem 1. SQ, is n-connected.

Proof. We prove this theorem by induction. Since
SQ = 02, SQ is 2-connected. SInc&Q, is n-
regular, it suffices to show that after removing arbitrary
f vertices fromSQ, for 1 < f < n —1, the remaining
graph is still connected. L&t be an arbitrary set of
vertices.

Now considern = 6. By definition, SQ consists
of 16 SQ subcubes. We decompo§£, into two
subgraphg{; and H2, whereH; consists of thos8Q,
subcubes containing vertices M, and Hz consists
of the remainingSQ subcubes. It is observed that
H> is connected, and thdi; — F is not necessarily
connected. We distinguish the following two cases:

Casel.l. EachtSQ, subcube has at most one vertex
in F. It follows that each subcube &Q — F is still
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Hence SQ; is 6-connected.

We assume thabQy_» is (4k — 2)-connected for
k > 2. Now consideiSQ, for n = 4k + 2 andk > 2,
and there are at mostk4+ 1 vertices in F. Each
subcube ofSQy, ,, is anSQy,_,. We distinguish the
following two cases fofF:

Case?2.1. Each subcube contains at mo%t-43
vertices in F. By the induction hypothesis, each
subcube is still connected. Consider two arbitrary
subcubesSQz"W4 and SQ;25/*. The edgesu, v)
betweenS 1,{’2’3“‘ and S ””3“ satisfy sa_2(u) =
sa—2(v), and pa(u) ® p4(v) = i102i3i4 ® j1j2j3j4 €
Vo) Therefore, the number of edges3Q, between
SQL?%* and SQL2 is 2%-* which is greater
than |F| Consequently, each subcu 1‘2’3’4 —

F is connected to every subcu }C’ff"‘ — F.
Furthermore, it follows from the induction hypothesis
that each subcub® 1‘2’3’4 — F is connected. Hence

SQui2— Fis connected

Case2.2. There is a subcube containing at least
4k — 2 vertices inF. It follows that H; contains at
most four subcubes. The proof is similar to Case 1.2
for SQ.

Hence, SQy.» is 4k + 2 connected. And the
theorem follows. O

Lemma 1. D(SQ,) >
k>4.

[n/4] + 3 if n = 4k + 2 with

connected and has at least three vertices. FurthermoreProof. Let P be any path 08Q, from« to v. We can

H1 contains at most five subcubes sinég < 5. Let
Q' be a subcube ii{; — F. SinceQ’ contains three

view P as a sequence of 4-bits changing freno v.

k l :
Letu =u,_1up_2...utug = u’flu4 .ug Wlth ug =

vertices, it has twelve edges connected with eleven or 00, M _ 1100 M¢21 — 1000 M4 —0100. and:’ = 0001

twelve other subcubes i8Q; — F. Since there are
at most five subcubes i — F, Q' is connected to
some subcubes iH>. SinceH> is connected and each
subcube inf; — F is also connected télp, SQ — F
is connected.

Casel.2. There is a subcube containing at least two
vertices of F. Let v be a vertex ind1 — F. Thenv
is connected to four other subcubes. Singe < 5,
H; contains at most four subcubes and thereforis,
connected to a subcube ib. SinceH> is connected,
it follows that each vertex if{; — F is connected to
some vertices itH. ThereforeSQ — F is connected.

if4 <j<k. Letv=v,_1v,-2.
for0 < j <n.

Note that 0001010Q 1000, and 1100 are only in
Voo, Vo1, V10, and Vi1, respectively. We can change
any 4-bit 0001010Q 1000, or 1100 into 0000 in one
step only if the Oth 4-bit is 0®1, 10, or 11, respec-
tively. Thus,d(u,v) > [n/4] + 3. HenceD(SQ,) >
[n/4]1+3. O

.v1vg With v; =0

Next, we propose a routing algorithm &Q,. Let
u and v be two vertices ofSQ,. We usehj(u, v)



38 T.-K. Li et al. / Information Processing Letters 77 (2001) 35-41

to denote the number oa‘£ for 1 < j < k such that 4. Generalized shuffle-cubes

ui #* vi. . . . .
In this section, we generalize the shuffle-cubes into

Routel(u, v) generalized shuffle-cubeBor any positive integef,

(1) If u = v, then accept the message. we useS(/) to denote the set of all binary strings of

(2) Find a neighborw of u such thath}(w, v) = length/ and we uses* (/) to denoteS(/) — {00- - -0}.
hy(u,v) — 1if w exists. Then route int. l

(3) Ifthere is no neighbaw of u such thak};(w, v) = Let b andg be any positive integers satisfyin§ 2
hi(u, v) — 1, then route into the nelghbfnr of u (28 — 1)/g. For eachiyiz---ip € S(b), we associate

that changes1uo in a cyclic manner with respect it with a subsetd;;,..;, of $*(g) with the following
to 00, 01, 11, 10. For example, = p,_2(u)00 if properties:

uquo = 10. (1) 1Aiipiyl = g, and

(2) Uiipipesp) Airiz—ip = S (8)-

We say the familyA = {A;,i,...i, | i1i2---ip € S(b)}
with the above properties is @ormal (g, b) family.
For example{Aqo, Ao1, A10, A11} iS the normal4, 2)
family where Ago, Ao1, A10, A11 are defined in Sec-
tion 2.

Example 1. Let « = 0001000101001000110000 and
v = 0000000000000000000011 be two vertices of
SQyp- The path obtained frorRoutel(u, v) is

0001000101001000110000

000000101001000110000 Definition 2. Let B be any b-regular graph with

vertex setS(b) and A be any normalkg, b) family.
0000000010010001100Q0 Then we can recursively define thedimensional

0000000001001000110001 generalized shuffle-cub6SQn, A, B) for any n =
kg + b for k > 0 with its vertex set to be(n) as

00000000000D000110001 follows:

000000000000100011001 (1) Ifn=0,GSQn, A, B) is B.

(2) If n=kg+ b for k > 1, any two verticex andv
00000000000010000000 in GSQu, A, B) are adjacent if and only if

0000000000001000000Q10 (@) sy—g(u) ands,_g(v) are adjacent iIlGSQn —

g A, B),andp, (u) = pg(v); or
00000000000000GM001Q (0) sn—gu) = sp—g(v) and pg(u) & py(v) €

000000000000000000000 Aup_qup_z-uo-

0000000000000000000001 For example,Q, is the GSQn, A, B) where A =

0000000000000000000D1 {Ag} is a normal(1,0) family with Ag = {1} and

B = Qo; and SQ, is the GSQn, A, B) where A =

We note that this path is not the shortest path. {Aoo, Ao1, A10, A11} IS @ normal(4, 2) family and B
is Qo.

Assume thaGSQn, A, B) be a generalized shuffle-

Applying the above algorithm to any two vertices . .
cube. ObviouslyGSQn, A, B) is ann-regular graph

andv on SQ,, it is observed that we may apply step ** s . X
(3) at most three times to obtain a vertexsuch that ~ With 2" vertices. Letw andv be vertices inGSQu,
I%(w, v) = 0. Hence the algorithm will find a path, A/ B). For 1< j < k, the jth g-bit of u, denoted by
not necessarily the shortest path, of length at most “g: iSup = wgjp-1lgjrp—2- - Ugj+p—g. IN particular,
h}(u, v) + 6 that joinsu to v. Therefore,D(SQ,) < the Oth g-bit of u is ud = up_1up_2---uo. The g-
[n/éﬂ + 5. We will discuss the exact value 8f(SQ,) bit Hamming dlstancd)etweenu and v, denoted
after we introduce the concept of generalized shuffle- by %4 (u, v), is the number ofg-bits uy With 0<
cubes. j <k such thatup # vy, i.e., he(u,v) = [{j | uy #
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v;é for0< j <k}|. We also usér (u, v) to denote the

number Ofué for 1< j <ksuch thaué # vé.
Applying similar arguments to Theorem 1, we have
the following theorem.

Theorem 2. «(GSQn, A, B)) =n if k(B) =b.

To discuss the diameter of a generalized shuffle-
cube GSQn, A, B), we assume thaB has some
Hamiltonian properties. L&t be a graph. A sequence
of verticesC = (xo, x1, ..., xx) ina graphG is acycle
if k>3, (xi_1,x;) e E for1<i<k, xo=ux,, and
x; #xjfor0<i # j < k. A Hamiltonian path(cycle)
is a path (cycle) that spans all the verticegiofWe say
thatG is Hamiltonianif G has a Hamiltonian cycle.

A graphG is Hamiltonian connected there exists
a Hamiltonian path fronx to v for any two different
verticesu and v in G. However, it is known that
any bipartite graph with at least three vertices is
not Hamiltonian connected. A bipartite graph with
bipartition (X, Y) is Hamiltonian laceableif there
exists a Hamiltonian path from to v for any two
different verticesu andv that are in different parts,
i.e., one inX and one inY. For example,Q, is
Hamiltonian laceable [10].

Suppose thaB is Hamiltonian. LeC = (xo, x1, ...,

x; = xo) is a Hamiltonian cycle oB. The cycle(00,
01,11, 10, 00), for example, is a Hamiltonian cycle of
0. We generalize the routing algorithRoute 1(u, v)
for GSQn, A, B) as follows:

Route2(u, v)

(1) If u = v, then accept the message.

(2) Find a neighborw of u such thathg(w, v) =
h;‘(u, v) — 1 if w exists. Then route inte.

(3) If hg(u,v) > 0 and there is no neighbas of u
such thalh;(w, v) = hg(u,v) — 1, then route into
the neighborw of u that changeﬂg in a cyclic
manner with respect t@.

(4) If hg(u,v) =0, find a neighbot of s,(u) in B
such that the distance betweemnds; (v) is the
distance between, (1) ands, (v) minus one. Then
route intop,—p (1)z.

So we have the following theorem.

Theorem 3. D(GSQn, A, B)) < (n — b)/g + 20 —
1+ D(B) if B is Hamiltonian.
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The upper bound for theD(GSQn, A, B)) can
be further reduced iB is Hamiltonian connected or
Hamiltonian laceable. Assume thAtis Hamiltonian
laceable. To route to v, we first compute a vertex
sequenceZ(u,v) of S(b) as follows: If s;,(u) and
sp(v) are in different parts, sef(u,v) to be any
Hamiltonian path froms, () to sp(v). If sp(u) and
sp(v) are in the same part, find a neighborhagd,)
of sp(v) in B, let P be a Hamiltonian path from, (1)
to sp(z), and setZ(u,v) to be the vertex sequence
(P, sp(v)). Then the path o65SQn, A, B) from u to
v can be determined by the following algorithm:

Route3(u, v)

(1) If u = v, then accept the message.

(2) Find a neighborw of u such thathg(w,v) =
hy(u,v) —1 if w exists. Then route inte.

(3) Ifthereis no neighbap of u such thatg (w, v) =
hy(u, v) — 1, then route into the neighber of u

that changesg in the order ofZ (u, v).

Example 2. As we point out beforeSQ, is a gener-
alized shuffle-cub&SQn, A, B) with B = Q5. Itis
known thatQ» is Hamiltonian laceable. Let

1 =0001000101001000110000
and
v =0000000000000000000011

be two vertices 0fSQy. Obviously, 00 and 11 are
in the same part and 10 is a neighbor of 11. Hence
(00,01, 11, 10) is a Hamiltonian path from 00 to 10 in
Q». Thus, we can seX (u, v) as(00,01, 11,10, 11).
The path obtained frorRoute3(u, v) is
0001000101001000110000
000M00101001000110000
0000000®1001000110000
0000000001001000110001
000000000000000110001
0000000000001000110D1
0000000000001000000D
0000000000001000000010
00000000000000@WO01Q
0000000000000000000011
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We note that this path is shorter than the path r-dimensional generalized shuffle-cube with Zer-
obtained in Example 1. tices which isz-regular and:-connected. Its diameter
can be about/g if we considerg as a constant.
It is observed that we should apply step (3) exactly ~We can also choose as log: and chooseé as

2" —1 times to obtain a vertex such that eithew = v logn — loglogn. Obviously, 2 > (2¢ — 1)/g. So

or w is a neighbor ofv. Thus, we have the following ~ we can find a(g, ) family A and construct am-

theorem. dimensional generalized shuffle-cuB&Qn, A, 0p).
By Theorem 4,

Theorem 4. (n — b)/g < D(GSQn, A, B)) < (n — R
b)/g + 2% if B is Hamiltonian laceable. D(GSQn, A, Qp)) <2

logn’

Assume tha®B is Hamiltonian connected. To avoid Let N = 2" be the number of nodes GiSQx, A, p).
trivial case, we assume that> 1. To route fromu Thus, the diameter d6SQn, A, Op) is
tov in GSQn, A, B), we compute a vertex sequence log N
Z(u,v) of S(b) as follows: If sp(u) # sp(v), set o<7)
Z(u,v) to be any Hamiltonian path froms, () to loglogN
sp(v). If sp(u) = sp(v), find a neighborhood,(z) of The star graphss,, is another family of famous
sp(v) in B, let P be a Hamiltonian path frons, (u) interconnection networks [2, is an(n — 1)-regular
to s,(z), and setZ(u, v) to be the vertex sequence graphswithV = n! vertices and of diametéB(n — 1)

(P, sp(v)). We can also appliRoute3(u, v) to obtain /2]. Thus, the diameter o, is also Q log N ) which

: loglogN
a path fromu to v. So we have the following theorem. . N
P v 9 is of the same order as thatGSQn, A, Qp).

Theorem 5. D(GSQn, A, B)) < (n—b)/g+2" if B
is Hamiltonian connected.
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