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Abstract

Let {(G) (resp. (G)) be the minimum number of components (resp. odd size components) of
a co-tree of a connected graph G. For every 2-connected graph G of diameter 2, it is known that
m(G)=2n(G) — 5 and &(G)<{(G)<4. These results define three classes of extremal graphs.
In this paper, we prove that they are the same, with the exception of loops added to vertices.
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1. Introduction

Throughout this paper, a graph may have multiple edges or loops. It is said to be
simple if it contains neither multiple edges nor loops.

Let G be a graph with n(G)=|V(G)| vertices and m(G) = |E(G)| edges. Murty [2]
(see also [1]) proved the following result.

Theorem 1.1 (Murty [2]). If G is a 2-connected graph of diameter 2, then
m(G)=2n(G) — 5.

Let A be a subset of E(G) and let G — 4 denote the spanning subgraph obtained
from G by deleting all edges in 4. Let ¢(G — 4) be the number of components
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of G — A. The Betti number (or cycle rank) of G — 4 is defined by (G — 4) =
m(G) — |4| — n(G) + ¢(G — A).

For G connected, let T be a spanning tree of G. Denote by (G — T') the number
of components with an odd number of edges of the co-tree G — T. Let £(G) be the
minimum value of &(G — T') over all co-trees of G. The invariant &(G), called the
Betti deficiency of G, was first introduced in Ref. [10] to calculate the maximum
genus y3,(G) of G by the formula y,,(G) = (S(G) — £(G))/2.

Motivated by this result, Skoviera [7] defined the decay number of G, {(G), to be
the minimum value of ¢(G —T') over all co-trees of G. Clearly, {(G)=2n(G)—m(G)—
1 + min{f(G — T)}. It follows that

Theorem 1.2 (Skoviera [8]). If G is a connected graph, then {(G)=2n(G)—m(G)—1
and equality holds if and only if G admits an acyclic co-tree.

For 2-connected graph G of diameter 2, Skoviera [8] gave a tight upper bound on
{(G), and hence &(G).

Theorem 1.3 (Skoviera [8]). If G is a 2-connected graph of diameter 2, then
dG)<UG)<4.

It is interesting to note that the preceding bound, together with Theorem 1.2, yields
an another proof of Theorem 1.1.
For general G, Nebesky [5] discovered a formula to calculate {(G).

Theorem 1.4 (Nebesky [5]). For any connected graph G,
1+ {(G) =max{2c¢(G — 4) — |4] | A CE(G)}.

As above, one notes that the preceding formula, together with Theorem 1.3, yields
another proof of Theorem 1.1 (take 4 = E(G) in Theorem 1.4).

This paper concerns the extremal graphs of Theorems 1.1 and 1.3. We will prove
that they are the same, with the exception of loops added to vertices.

2. Extremal 2-connected graphs of diameter 2

A 2-connected graph G of diameter 2 is called extremal if and only if
m(G)=2n(G) — 5. By Theorem 1.1, such a graph is simple.

Remark 2.1. Let G be a connected graph with m(G) =2n(G) — 5. Then the diameter
of G is at least 2. Moreover, it has at least 4 vertices and its minimum degree is at
most 3.

Note here the following result proved in [6] (see also [3]).
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Fig. 1.
Theorem 2.2 (Palumbiny [6]). Let G be a simple graph of diameter 2 with minimum
degree at least 3. Then m(G)=2n(G)—5 if and only if G is the Petersen graph.

Murty [3] characterized extremal 2-connected graphs of diameter 2. His result can
be stated as follows.

Theorem 2.3 (Murty [3]). The following statements are equivalent for a graph G.

(1) G is an extremal 2-connected graph of diameter 2.
(2) G is either the Petersen graph or is constructed by connecting all vertices of K,
or K3 to a new vertex by paths of length 2.

Examples: In Fig. 1, K, and K3 are in heavy lines, 1 is the new vertex.

3. Two-connected graphs of diameter 2 and decay number 4

In this section, we proceed to characterize 2-connected graphs G of diameter 2
satisfying the equality {(G) =4.

Before stating this characterization, it will be convenient to introduce the following
concept.

Definition 1. Let G be a connected graph. We say that a subset 4 of E(G) is {-minimal
if 1 +{(G)=2c¢(G —A)—|A| and, for every BC A4, 1+ {(G) > 2¢(G — B) — |B]|.

The following remark will prove useful subsequently.
Remark 3.1. Let G be a connected graph and let 4 be a {-minimal subset of E(G).
Then each component of G — 4 is an induced subgraph of G and any two different

components are joined by at most one edge in A.

We are now prepared to describe the family of 2-connected graphs G of diameter 2
with {(G) =4.
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Theorem 3.2. Let G be a 2-connected graph of diameter 2. Then {(G)=4 if and only
if G is an extremal 2-connected graph of diameter 2 with loops added to vertices.

Proof. First let B(G) be the set of loops of G and suppose that G — B(G) is an
extremal 2-connected graph of diameter 2. Then the removal of 4=E(G)— B(G) from
G results in a graph with n(G) components. Since |4| =2n(G)— 5, Theorem 1.4 gives
{(G)=4. By Theorem 1.3, equality must hold and the sufficiency of the condition is
proved.

Conversely, let G be a 2-connected graph of diameter 2 with {(G)=4. Let 4 be a
{-minimal subset of E(G). Let {C,C,...,C,} be the set of components of G — A.
Then [A|=2p — (1 +{(G))=2p—5. It follows that the loopless graph obtained from
G by contracting each C; to a single vertex verifies Remark 2.1. So p>4 and there
are two components that are not joined by an edge in 4. We are going to show that
p =n(G), or equivalently, every C; has only one vertex. Suppose, on the contrary,
there is a component C; with |V (Cy)|=>2. Since G is 2-connected, there must be two
disjoint edges joining Cj to the remainder of the graph. Let a and b be their endvertices
in V(Cy). Now contract each component C; (i # k) to a single vertex, then identify
any vertex in V(Cy) — {a} with b (loops are deleted and multiple adjacencies between
a and b are replaced by a single edge). Let H be the resulting graph. Then H has
diameter 2 since it is not complete. We now show that A is 2-connected. Assume
not. Then A has a cutvertex, say C,, which is adjacent to any C;. This implies that
the removal of C, from G results in a graph with at least 2 components G; and G,
(Fig. 2).

It follows that there are two disjoint subsets 7 and J of {1,2,..., p — 1} such that
G, and G, are spanned, respectively, by Ul.E[C,- and UjeJCj' Let, say Cj, be any
component contained in G;. By Remark 3.1, let u € V(Cy) and v € V(C,) be the
endvertices of the unique edge between C; and C,. Now there is in G, a component,
let C,, which is not joined to v by an edge; for otherwise, v would be a cutvertex
of G (recall that there is an unique edge between C, and any C;). So, in G, every
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vertex of C, is at distance >3 from u, contradicting the fact that G has diameter 2.
In conclusion, H is a 2-connected diameter 2 graph. But this contradicts Theorem 1.1
because m(H)=1|4|+1=Q2p—-5)+1=2(p+1)—6=2n(H) — 6 and the theorem
is proved. [J

On the other hand, the above result can be also proved by an extension of
Theorem 1.1 which was obtained by Tsai [9]. Before stating this method, we need the
following definition.

Definition 2. Let G be a connected graph. We say that a subset 4 of E(G) is E-minimal
if any two different components of G —4 are joined by at most one edge in G. Further-
more, we denote by G/A the graph obtained from G by contracting each component
of G — 4 into a vertex.

The following remark is an extension of Theorem 1.1.
Remark 3.3 (Tsai [9]). Let G be a 2-connected graph of diameter 2 and let 4 be an
E-minimal subset of E(G). Then
m(G/A)=2n(G/A) — 5 + i(G/A4),
where i(G/A) is the number of components in G — A containing at least two vertices

of G.

Remark 3.4. By Remark 3.1, any (-minimal subset of E(G) is also an E-minimal
subset of E(G). To prove the necessity of Theorem 3.2, one can let 4 be an {-minimal
subset of £(G). Then {(G)=2n(G/4) — 1 — m(G/A) =4. This implies i(G/4) =0 and
m(G/A) =2n(G/A) — 5. Hence Theorem 3.2 can be obtained by Remark 3.3.

4. Two-connected graphs of diameter 2 and Betti deficiency 4

We conclude this paper with a characterization of 2-connected graphs G of diameter
2 satisfying the equality £(G) = 4. Notice here a formula discovered by Nebesky [4]
to calculate &(G).
Theorem 4.1 (Nebesky [4]). For any connected graph G, 14 &(G)=max{c(G—A4)+
o(G—A)—|4)|A CE(G)}, where o(G —A) denotes the number of components of odd
Betti number.

As above, the following fact may prove useful.

Remark 4.2. Let G be a connected graph and let 4 be a &-minimal subset of
E(G) (ie. 1 +&4(G)=¢c(G—A)+ o(G — A) — |A4| and, for every BC A4, 1+ &G) >
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¢(G — B) + o(G — B) — |B|). Then each component of G — A4 is an induced subgraph
of odd Betti number (i.e. ¢(G —A)=0(G — A)) and any two different components are
joined by at most one edge in A.

Now, we state

Theorem 4.3. Let G be a 2-connected graph of diameter 2. Then &(G) =4 if and
only if G is an extremal 2-connected graph of diameter 2 at each vertex of which
an odd number of loops are added.

Proof. A proof can be readily supplied by imitating that of Theorem 3.2. Here, let
us apply Theorems 2.3 and 3.2 to present a short one of the non-trivial part of the
statement.

Let G be a 2-connected graph of diameter 2 with (G) = 4. Then {(G) =4 by
Theorem 1.3. Hence, we know from Theorem 3.2 that G arises from an extremal
2-connected graph H of diameter 2 by adding loops to vertices. We now show that if
some vertex of G has an even number of loops then &(G)<3. To see this we shall
show, in fact, that for any vertex x of an extremal 2-connected graph H of diameter 2,
there is a co-tree K with {(K)=4 such that the component containing x has only one
vertex. Using Theorem 2.3, this follows immediately from the constructions illustrated
in Fig. 3 below.
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(a) a co-tree of the Petersen graph.

(b), (c) co-trees of the graph built up from K, by connecting 2 and 3 to 1 by two
2-paths.

(d), (e), (f) co-trees of the graph built up from K3 by connecting 2 and 4 to 1 by
two 2-paths, 3 to 1 by one 2-path.

Remark 4.4. By Remark 4.2, any ¢&-minimal subset of E(G) is also an
E-minimal subset of £(G). To prove the necessity of Theorem 3.2, one can let 4 be a
£-minimal subset of £(G). Hence Theorem 4.3 can also be obtained by Remark 3.3
as Remark 3.4.
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