
Discrete Mathematics 226 (2001) 337–345
www.elsevier.com/locate/disc

A typical vertex of a tree
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Abstract

Let T denote a tree with at least three vertices. Observe that T contains a vertex which
has at least two neighbors of degree one or two. A class of algorithms on trees related to the
observation are discussed and characterized. One of the example is an algorithm to compute
the minimum rank m(T ) of the symmetric matrices with prescribed graph T; which is easier to
process than the algorithm previous found by Nylen [Linear Algebra Appl. 248 (1996) 303–316].
Two interpretations of the number m(T ) in terms of some combinatorial properties on trees are
given. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and results

Let T denote a tree with n(T ) vertices. We also use T as its vertex set. We refer the
reader to [2, pp. 376–388] for the de�nition and the properties of trees. For a vertex
subset U ⊆T; let T \U denote the subgraph induced on the vertex subset T \U of T .
Let p be a vertex of T; and let T 1p; : : : ; T

t
p denote the connected components of T \{p}.

Note that each T ip is a tree. Observe

n(T ) = n(T 1p) + · · ·+ n(T tp) + 1: (1)

Let Pn denote the simple path with n vertices. Line (1) can be viewed as a trivial
algorithm on trees to compute n(T ) provided the initial condition n(P1) = 1. The
choice of a vertex p does not a�ect the value n(T ).
We shall give another algorithm on trees. We need a few de�nitions �rst. For an

n×n symmetric matrix A=[aij]; we associate with it the graph �(A) having n vertices
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Fig. 1.

labeled 1; 2; : : : ; n. For i 6= j; the unordered pair (i; j) will be an edge in �(A) if and
only if aij 6= 0. Given a graph G on n vertices, we de�ne the number m(G) by

m(G) :=min{rank A |�(A) = G}: (2)

The study of m(G) can be found in [3–5]. Observe

m(P1) = 0; m(P2) = 1: (3)

A vertex p of T is called appropriate if at least two of the connected components in
T \{p} are the simple paths (one or more vertices) which were connected to p through
an endpoint. It is not di�cult to see that every tree T with at least 3 vertices has an
appropriate vertex, see [3, Lemma 3:1] for details. Provided the initial conditions in
(3), Nylen [3] gives the algorithm

m(T ) = m(T 1p) + · · ·+ m(T tp) + 2 (4)

to compute m(T ); where n(T )¿3 and p is an appropriate vertex of T . The choice of
p among the appropriate vertices of T does not a�ect the number m(T ) also.
Motivated by the above de�nition, we de�ne a vertex p of T to be typical if p has

at least two neighbors of degrees 1 or 2 in T . It is immediate from the de�nition that
an appropriate vertex is a typical vertex. In Fig. 1, the vertices labeled 2, 4, 6; 11 are
typical and only the vertices labeled 2; 11 are appropriate.
We shall prove in Theorem 1.7 that the condition p being appropriate in line (4)

can be replaced by p being typical. We study a general class of algorithms on trees
�rst. Fix three reals a; b; c. We assign a tree T with the real numbers f(T ) recursively
by the following rules:

f(P1) = a; f(P2) = b; (5)

f(T ) = f(T 1p) + · · ·+ f(T tp) + c; (6)

where p is a typical vertex of T . Note that f(T ) may not have a unique solution,
since the choice of a typical vertex p may be di�erent. For a=1; b=2; c=1; f= n;
(5)–(6) is the case of (1) with p typical. We list our results in this section and the
proofs shall be in next section.

Lemma 1.1. Suppose the algorithm in (5)–(6) generates a unique solution f(T ) for
each tree T . Then 3a− 2b+ c = 0.
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We shall prove the converse of Lemma 1.1 in Theorem 1.4. In fact, if 3a−2b+c=0
then we can express f(T ) into a linear combination of n(T ) and the number s(T )
de�ned below. For a vertex subset U ⊆T; let cT (U ) denote the number of connected
components in the subgraph T \U . The separating number of a tree T is the number

s(T ) :=max{cT (U )− |U | |U ⊆T}: (7)

U is a separating set of T if cT (U ) − |U | = s(T ). Note that if U is a separating set
of T; T \U is a union of simple paths. Observe

s(P1) = 1; s(P2) = 1: (8)

Theorem 1.2 gives an algorithm to construct a separating set, and to determine the
separating number of a tree.

Theorem 1.2. Let T be a tree with at least 3 vertices and p be a typical vertex
of T . Let T 1p; : : : ; T

t
p be the connected components of T \{p}. Let U be a subset of

vertices of T containing p. Then U is a separating set of T if and only if for each
i (16i6t); U ∩ T ip is a separating set of T ip. Furthermore;

s(T ) = s(T 1p) + · · ·+ s(T tp)− 1: (9)

Note that (8)–(9) is the case a=1; b=1; c=−1 and f= s of (5)–(6). It follows
from (8)–(9) that s(Pn) = 1. Corollary 1.3 improves the algorithm in Theorem 1.2.

Corollary 1.3. Let U be a subset of the typical vertices of T satisfying the following
(∗) condition of T :
(∗) Each vertex of U with degree 2 in T is not adjacent to other vertices in U .

Let T 1U ; : : : ; T
l
U be the connected components of T \U . Suppose Sj is a separating

set of T jU (16j6l). Then,

U ∪

 ⋃
16j6l

Sj




is a separating set of T . Furthermore,

s(T ) = s(T 1U ) + · · ·+ s(T lU )− |U |: (10)

The following theorem shows that n(T ) and s(T ) span all the functions de�ned on
trees satisfying (5)–(6).

Theorem 1.4. Suppose 3a−2b+c=0. Then f(T ) are numbers generated from (5)–(6)
for trees T if and only if

f(T ) =
a+ c
2
n(T ) +

a− c
2
s(T ) (11)

for trees T . In particular; f(T ) has a unique solution for each tree T .
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For graph theoretical interest, we give another interpretation of s(T ) in Corollary
1.6. Let e(T ) denote the number of edges in T . Note that e(T ) = n(T )− 1. A subset
F of the edge set E(T ) of T dissolves the tree T if the subgraph T \F obtained from
T by deleting all edges in F is a disjoint union of simple paths. Set

s∗(T ) :=min{|F | |F ⊆E(T ) dissolves T}: (12)

An edge subset F is a separating edge set of T if F dissolves T and |F | = s∗(T ).
Observe s∗(Pn) = 0.

Theorem 1.5. Let T be a tree with at least 3 vertices and p be a typical vertex of
degree t. Let e1; : : : ; et denote the edges incident on p; and T 1p; : : : ; T

t
p the connected

components of T \{p}. Assume each of et−1; et is incident on a vertex di�erent from
p of degree at most 2 in T . Suppose Fi is a separating edge set of T ip (16i6t).
Then

{e1; : : : ; et−2} ∪
⋃

16i6t

Fi

is a separating edge set of T . Furthermore;

s∗(T ) = s∗(T 1p) + · · ·+ s∗(T tp) + t − 2: (13)

Equivalently; g(T ) := e(T )− s∗(T ) satis�es
g(T ) = g(T 1p) + · · ·+ g(T tp) + 2: (14)

Corollary 1.6.

s(T ) = s∗(T ) + 1: (15)

Theorem 1.7. Let T be a tree with at least 3 vertices and p be a typical vertex of
degree t. Let T 1p; : : : ; T

t
p be the connected components of T \{p}. Then

m(T ) = m(T 1p) + · · ·+ m(T tp) + 2; (16)

where m(T ) is de�ned in (2).

Following the above lines, we reprove the following corollary which was proved by
Johnson and Duarte [1].

Corollary 1.8. m(T ) = e(T )− s∗(T ) = n(T )− s(T ).

To end this section, we show how to compute m(T ) for the tree T in Fig. 1. The
best algorithm is Corollary 1.3. We set U = {2; 4; 6; 11} which of course satis�es (∗)
condition of Corollary 1.3. Since T \U contains 8 simple paths, the separating number
s(T ) = 8− 4 = 4 by (10). Now m(T ) = 13− 4 = 9 by Corollary 1.8.
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2. Proofs of results

Proof of Lemma 1.1. Suppose the algorithm in (5)–(6) generates a unique solution
f(T ) for each tree T . Considering the simple path P3 of three vertices, the middle
vertex is typical, so f(P3)=2a+c by (5)–(6). For the simple path P5 of �ve vertices,
there are essentially two di�erent ways to choose a typical vertex. According to these
two ways,

f(P5) = f(P2) + f(P2) + c

=2b+ c

and

f(P5) =f(P1) + f(P3) + c

= a+ (2a+ c) + c:

Hence 3a− 2b+ c = 0.

Proof of Theorem 1.2. We �nd an upper bound of s(T ) �rst. Let V denote a vertex
subset of T . We shall prove

cT (V )− |V |6s(T 1p) + · · ·+ s(T tp)− 1: (17)

Set Vi = V ∩ T ip (16i6t). Suppose p ∈ V . Then

|V |= 1 +
t∑
i=1

|Vi| (18)

and the components in T \V are exactly those in T ip \Vi (16i6t). Hence,

cT (V )− |V | =
t∑
i=1

cT ip(Vi)−
(
1 +

t∑
i=1

|Vi|
)

=
t∑
i=1

(cT ip(Vi)− |Vi|)− 1

6 s(T 1p) + · · ·+ s(T tp)− 1: (19)

Suppose p 6∈ V . Then

|V |=
t∑
i=1

|Vi|: (20)

Let u denote the number of neighbors of p in T \V . Each of the u vertices is in a
connected component of T ip \Vi which contains it, and p merges these u components
into a single connected component of T \V . Then

cT (V ) = 1− u+
t∑
i=1

cT ip(Vi): (21)
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Let v denote the number of neighbors of p in V which have degrees 1 or 2 in T .
Since each of these v vertices has degree 0 or 1 in the subgraph T ip which contains it,
and by the fact, a separating set contains no endpoints, we have the corresponding Vi
is not a separating set of T ip. Hence there are at least v indices i such that

cT ip(Vi)− |Vi|+ 16s(T ip):
Then

v+
t∑
i=1

(cT ip(Vi)− |Vi|)6
t∑
i=1

s(T ip): (22)

Note that

u+ v¿2; (23)

since p is typical. Then by (20)–(23),

cT (V )− |V | = 1− u+
t∑
i=1

cT ip(Vi)−
t∑
i=1

|Vi|

= 1− u+
t∑
i=1

(cT ip(Vi)− |Vi|)

6 s(T 1p) + · · ·+ s(T tp) + 1− u− v
6 s(T 1p) + · · ·+ s(T tp)− 1: (24)

This proves (17). To prove Theorem 1.2, set V = U in (17). Then p ∈ V . Suppose
Vi = V ∩ T ip is a separating set of T ip for all i. Then equality holds in (19). Hence for
the vertex set V; cT (V )−|V | attains its maximum in (17). We conclude V is separating
set of T; and (9) holds. To prove the other direction, suppose V is a separating set of
T . Then equality holds in (17) and (19). This forces

cT ip(Vi)− |Vi|= s(T ip) (16i6t);

where Vi =V ∩ T ip. Hence for each i (16i6t); V ∩ T ip is a separating set of T ip. This
proves the theorem.

Proof of Corollary 1.3. We prove the corollary by induction on the cardinality of U .
This is clear if U is empty. Assume U is not empty. Pick p ∈ U . Let T 1p; : : : ; T

t
p

denote the connected components of T \{p}. Fix an integer i (16i6t). Observe that
T ip contains those T

j
U it intersects. First we prove that

(U ∩ T ip) ∪

 ⋃
Sj ⊆ T ip

Sj


 (25)

is a separating set of T ip; and

s(T ip) =
∑

T jU ⊆ T ip

s(T jU )− |U ∩ T ip|: (26)
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Eqs. (25)–(26) follow from induction, if we prove U ∩T ip contains typical vertices of
T ip satisfying (∗) condition of T ip. Let x denote the neighbor of p in T ip. Note that for
vertices in T ip, the degrees in T and the degrees in T

i
p are the same except the vertex

x whose degrees are decreased by 1. Hence, we only need to show that if x ∈ U then
x is also typical in T ip; and furthermore, if x has degree 2 in T

i
p then x is not adjacent

to other vertices in U ∩ T ip. Suppose x ∈ U . Then p has degree at least 3; since U
satis�es the (∗) condition of T . Hence x is also typical in T ip by the de�nition of
typical. Furthermore, suppose x has degree 2 in T ip. By the de�nition of typical again,
the two neighbors of x in T ip have degrees 1 or 2 in T; and then are not contained
in U since U satis�es the (∗) condition of T . This proves (25)–(26). By applying
Theorem 1.2 to (25)–(26),

{p} ∪
⋃

16i6t


(U ∩ T ip) ∪


 ⋃
Sj ⊆ T ip

Sj




= U ∪


 ⋃
16j6l

Sj




is a separating set of T; and

s(T ) = s(T 1p) + · · ·+ s(T tp)− 1

=
∑
16i6t


 ∑
T jU ⊆ T ip

s(T jU )− |U ∩ T ip|


− 1

= s(T 1U ) + · · ·+ s(T lU )− |U |:
This proves the corollary.

Proof of Theorem 1.4. First, assume f(T ) are numbers generated from (5)–(6). We
prove by induction on the number n(T ). Note that n(P1) = 1; n(P2) = 2, s(P1) =
s(P2) = 1; f(P1) = a; f(P2) = b. Hence (11) can be checked directly if n(T )62.
Assume n(T )¿3. Pick a typical vertex p in T . By (6), induction, (1) and (9), we
obtain

f(T ) =f(T 1p) + · · ·+ f(T tp) + c

=
a+ c
2

t∑
i=1

n(T ip) +
a− c
2

t∑
i=1

s(T ip) + c

=
a+ c
2

(
t∑
i=1

n(T ip) + 1

)
+
a− c
2

(
t∑
i=1

s(T ip)− 1
)

=
a+ c
2
n(T ) +

a− c
2
s(T ): (27)

This proves the necessary condition (11). f(T ) has a unique solution, since n(T ); s(T )
in (11) are well-de�ned functions. For the other direction, we assume (11) holds. (5)
can be check directly. Reversing above four equalities in (27), we obtain f(T ) satis�es
(6). This proves the theorem.
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Proof of Theorem 1.5. We give a lower bound of s∗(T ) �rst. Suppose F ′ ⊆E(T )
dissolves T . We shall prove

|F ′|¿s∗(T 1p) + · · ·+ s∗(T tp) + t − 2: (28)

Set F ′
i = F

′ ∩ E(T ip) (16i6t). Since the vertex p has degree t in T; and T \F ′ are
simple paths, F ′ contains at least t − 2 edges incident on p. Hence

|F ′|¿|F ′
1|+ · · ·+ |F ′

t |+ t − 2: (29)

Observe that F ′
i dissolves T

i
p. Hence,

|F ′
i |¿s∗(T ip) (16i6t): (30)

Eq. (28) follows from (29)–(30). To prove the theorem, set

F ′ = {e1; : : : ; et−2} ∪
( ⋃
16i6t

Fi

)
:

Hence F ′
i=Fi. Observe F

′ dissolves T; and equalities hold in (29)–(30). Hence equality
holds in (28). This proves that (13) holds and F ′ is a separating edge set of T . To
prove (14), observe

g(T ) = e(T )− s∗(T )
= e(T )− s∗(T 1p)− · · · − s∗(T tp)− t + 2
=
∑
16i6t

(e(T ip)− s∗(T ip)) + 2

=
∑
16i6t

g(T ip) + 2:

Proof of Corollary 1.6. With the notation of Theorem 1.5, observe g(Pn) =
e(Pn)− s∗(Pn) = n− 1; especially g(P1) = 0 g(P2) = 1. Hence (14) is the case f = g;
a = 0; b = 1; and c = 2 in (5)–(6). We obtain e(T ) − s∗(T ) = n(T ) − s(T ) by (11).
Then s(T ) = s∗(T ) + 1; since n(T )− e(T ) = 1.

Proof of Theorem 1.7. m(T ) is the unique solution of the algorithm in (3)–(4). How-
ever (3)–(4) is a special case of (5)–(6) with p appropriate, a= 0; b= 1 and c = 2.
Since 3a− 2b+ c=0; the algorithm in (5)–(6) with p typical has the unique solution
m(T ) by Theorem 1.4.

Proof of Corollary 1.8. The result follows by applying (3), (16) to (11)
using (15).
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